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Improving management practices in industrial forest plantations may increase production efficiencies, thereby re-
ducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume
(V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne
Light Detection and Ranging (LiDAR) data. Forest inventoryattributes and LiDAR-derived metrics were calculated at
108 sample plots. The best LiDAR-based predictors of V were identified based on loadings calculated from a prin-
cipal component analysis (PCA). After selecting these best predictors using PCA, we developed multiple regression
models predicting V from selected LiDAR metrics. Metrics related to tree height and canopy depth were most ef-
fective for V prediction, with an overall model coefficient of determination (adj. R2) of 0.87, and a root mean
squared error (RMSE) of 27.60 m3 ha21 (i.e. relative RMSE¼ 9.99 per cent). We used this model to map stem V of
Eucalyptus hybrid clones across the full LiDAR data extent. The accuracy and precision of our results show that
LiDAR-derived V is appropriate for updating Eucalyptus forest base maps and registries in the paper and pulp
supply chain. However, further studies are necessary to evaluate and compare the cost of acquisition and process-
ing of LiDAR data against conventional V inventory in this system.
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Introduction
Eucalyptus spp. are the most important short fibre source for pulp
and paper production in southeast Brazil. Extensive Eucalyptus spp.
plantations have been established in this region since the early
1970s due to their rapid growth rate (over 40 m3 ha21 year21).
The share of the Brazilian GDP represented by the planted tree in-
dustry has grown each year, closing 2014 with 1.1 per cent of all
the wealth generated in the country and 5.5 per cent of industrial
GDP (Ibá, 2015). Plantations now cover an area of 3.18 million hec-
tares and account for 57 per cent of the total reforested area in
Brazil (Ibá, 2015). The stem volume (V) production of Eucalyptus
spp. is extremely high compared with natural forests and contri-
butes strongly to meet current wood fibre production demands,
thereby reducing pressure on native forest exploitation (Vital,
2007). As the extent of these plantations has expanded, so too
has the need for accurate monitoring of forest V in the pulp and
paper supply chain.

Forest inventory in plantation of Eucalyptus hybrid clones
is usually conducted annually to monitor V growth, identify prob-
lematic conditions (e.g. pathogens) during initial growth stages,
and determine optimal harvest time later in the growth cycle.
However, this procedure is expensive and time consuming. There-
fore, approaches for deriving forest inventory information based on
remotely sensed data are of great utility and interest (Ponzoni and
Gonçalves, 1999; Gama et al., 2010). Airborne laser scanning (ALS),
also referred as airborne Light Detection and Ranging (LiDAR), is a
powerful tool for forestry applications (Lefsky et al., 2002; Næsset,
2002, 2004, Næsset and Gobakken, 2008; Hudak et al., 2009). Key
LiDAR applications include high accuracy retrieval of tree density,
stem volume, above ground carbon, leaf area index and basal area
(Naesset, 1997; 2002; Andersen et al. 2005; Roberts et al., 2005;
Hudak et al., 2006; Coops et al., 2007; Silva et al., 2014).

LiDAR is very useful for providing high resolution, three-
dimensional information of vertical and horizontal forest struc-
tures and the underlying topography. As a result, LiDAR data
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provide precise information of vegetation height, density and
ground elevation. From these measurements, three-dimensional
digital surface models (DSMs) and bare earth digital terrain
models (DTMs; also more generally referred to as a digital elevation
models or DEMs) can be generated. The difference between DSM
and DTM elevations results in a topographically normalized digital
surface model, also known as the canopy height model (CHM).

In the case of discrete return airborne LiDAR systems, the CHM is
interpolated from points representing the three-dimensional (x,y,z)
locations of top-of-canopy elements. Because the density of LiDAR
returns can range from hundreds to many thousands of points per
traditional forest plot area, these points can be analyzed to provide
numerous canopy structure metrics useful in modeling forest
stand variables. For example, in a given area, it is possible to calcu-
late several metrics such as maximum height, mean height, height
percentiles and canopy densities. Examples of the use of LiDAR
metrics in forestry, including equations for metrics calculation,
can be found in Næsset (2002, 2004), Hudak et al. (2006), Garcı́a
et al. (2010) and McGaughey (2014).

In order to derive forest parameters using LiDAR data, it is neces-
sary to model field-collected in situ variables using the most im-
portant LiDAR metrics (i.e. predictor variables) within a statistical
model framework. Because the number of candidate LiDAR
metrics can be very large (e.g. .30 metrics), principal component
analysis (PCA) may be one useful option to reduce the number of
variables used in regression-based models (Li et al., 2008; Mutlu
et al., 2008; Pascual et al., 2010). PCA is one of the most common

multivariate statistical methods, and can be used to select the
subset of variables (from a large number of predictor variables)
that best explain the majority of the variation in a given forest bio-
metric (Manly, 2004). In addition to indicating which metrics can be
used in regression models, the PCs themselves can be included in
regression models for predicting forest biometrics.

Stem volume is a forest inventory attribute directly related
to the supply of fibre to pulp and paper companies. The develop-
ment of better methods for regular inventory and monitoring of in-
dustrial forests will help pulp and paper production efficiency.
However, to our knowledge, the use of PCA in LiDAR-based forest
biometric prediction has been little studied. Therefore, our objec-
tives were to: (i) select the best LiDAR-derived metrics for V model-
ing according to the PCA analysis; (ii) select the best model to
predict and map V; and (iii) generate maps representing the
spatial distribution of V in different plantations of Eucalyptus
hybrid clones of different ages. This investigation was based on
the hypothesis that LiDAR data and PCA analysis can facilitate
precise and accurate inferences of V in Eucalyptus hybrid clones
plantations in southeast Brazil.

Methods

Study area description
The studyarea consisted of six farms located within the Paraı́ba Valley in the
state of São Paulo, Brazil (Figure 1). The climate of the region is characterized

Figure 1 Location of the study area in the State of São Paulo, Brazil. The stars indicate the location of the Eucalyptus plantations.
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as humid subtropical, with dry winters and hot summers (Cwa) (Köppen and
Geiger, 1928). Annual average precipitation is �1200 mm; average tem-
perature ranges from a minimum of 17.18 C in the coolest month (July) to
a maximum of 23.98 C in the hottest month (February). The topography
in the selected plantations is complex with high relief, ranging from 578
to 1310 m in elevation.

The plantations contained seven hybrid clones of two species of euca-
lyptus, Eucalyptus grandis W. Hill ex Maid and Eucalyptus urophylla S.T.
Blake. The plantations are managed by Fibria Celulose S/A, a pulp
company. Stand age across the farms was variable and ranged from
three to 8 years. All the trees were planted in a 3×2 m grid configuration,
resulting in an average density of 1667 trees per ha.

Field data collection

A total of 108 circular plots of 400 m2 each were established across the six
farms for stand measurement. All plots were georeferenced with a geodetic
GPS with differential correction capability (Trimble Pro-XR). For each GPS lo-
cation, we recorded data for a time period ranging from 20–40 min, which
allowed us to reduce the horizontal error to the level of 10 cm. In each
sample plot, individual trees were measured for DBH and a subsample
(15 per cent) of trees for maximum height (Ht). For trees in the plot that
were not directly measured for Ht, the inventory team of the Fibria Celulose
S/A company predicted heights from hypsometric models, which are
models that use DBH as a predictor of Ht. The V (m3 tree21) was obtained
through the Spurr linear model (Spurr, 1952) adjusted for each farm,
employing as independent variables the square of DBH and the Ht, and V
as the dependent variable, following the model below.

V = b0 + b1 × DBH2 × Ht + 1, (1)

whereb0 is the linear coefficient;b1 is the slope coefficient; DBH is the diam-
eter at breast height (1.30 m); Ht is the height and 1 is the error.

The V models had adjusted coefficients of determination (adj. R2)
ranging from 0.96 to 0.99 and relative RMSE per cent ranging from 3.18 to
6.09 per cent (Table 1).

Differences in the average values of the DBH, Ht and Vare mainly related
to the age of the Eucalyptus spp. stands. However, differences may also
depend on other factors such as the type and intensity of land use before
the establishment of the stands; amount of soil compaction or reduction
of edaphic fertility; and site index. Normally, at early stand ages there are
small diameter DBH values and consequently small BA, Ht and V values.
With increased stand age, specific site index values tend to increase, and
well-defined vertical strata develop. The summed V content of all trees in
the sample plot was multiplied by the plot area (0.04 ha) to calculate the
V stored in the sample plot in m3 ha21. Summary statistics of DBH, Ht and
V measured in the stands are presented in Table 2.

LiDAR data acquisition and data processing

LiDAR data were obtained by a Riegl LMS-Q680I sensor mounted on a Piper
Seneca II aircraft. The characteristics and precision of the LiDAR data are
listed in Table 3. LiDAR data processing consisted of several steps that
ingested the lidar point cloud data and provided four major outputs: the
DTM, the digital surface model (DSM), the CHM, and the LiDAR-derived
canopy structure metrics. All of the LiDAR processing phases were per-
formed using US Forest Service FUSION/LDV 3.42 software (McGaughey,
2014).

Initially the catalog function in FUSION/LDV was used to evaluate the
quality of the LiDAR data set. A classification algorithm based on Kraus
and Pfeifer (1998) and available in the groundfilter function was applied
to differentiate between ground and vegetation points. DTMs were gener-
ated using the classified ground points with a spatial resolution of one
metre using gridsurfacecreate. The canopymodel tool was then used to in-
terpolate the vegetation points and to generate DSMs with a spatial reso-
lution of 1 m.

After generating the DSMs, the clipdata function was applied to nor-
malize heights and to assure that the z coordinate for each point corre-
sponded to the height above ground and not the orthometric elevation
of the single point. The canopymodel function was applied again, but at
this time it was used to create the CHM, which provided an estimate of
vegetation height. The polyclipdata function was then used to subset of
the LiDAR points within each of the 108 in situ-measured sample plots,
and the cloudmetrics tool was applied to compute the LiDAR metrics as
derived from the point cloud (McGaughey, 2014). Finally, the gridmetrics
functions were used to generate the same LiDAR metrics as computed
with cloudmetrics, but within grid cells of 3 m spatial resolution across
the landscape.

In this study, we considered only the first returns to compute the LiDAR
metrics. The first returns of the LiDAR pulses most likely reflect canopy tops
and, according to Bater et al. (2011), the first returns are more stable than
other returns in characterizing forest structure. Moreover, Silva et al. (2014)
showed that LiDAR metrics derived from first returns strongly correlate with
forest attributes, such as aboveground carbon in a plantation of Eucalyptus
hybrid clones in southeast Brazil. Therefore, 31 LiDAR metrics calculated
from first returns were considered for V modeling (Table 4). We decided to
not use the entire suite of cloudmetrics in FUSION, because some of the
metrics derived from this process did not have a reasonably intuitive phys-
ical meaning or relationship with forest attributes. Moreover, we considered
only those metrics that have been frequently used as candidate predictors
for forest attribute prediction in other studies (Næsset, 2002;2004; Garcı́a
et al., 2010; Hudak et al., 2012; Silva et al., 2014).

LiDAR metrics selection and regression model development
We used three data analysis approaches to model Vof Eucalyptus spp. First,
Pearson’s correlation (r) was used to identify highly correlated predictor
variables (r . 0.9) as presented in Hudak et al. (2012) and Silva et al.
(2014). If a given group (two or more) of LiDAR metrics were highly corre-
lated, we retained only one metric by excluding the others that were
most highly correlated with the remaining metrics. Second, PCA was
applied to the selected best predictor LiDAR metrics, and the metrics that
were most likely to contribute to model development were identified by
inspecting the eigenvectors in each PC. We then used those metrics with
highest loading on the PCs as input variables in multivariate linear regres-
sion models predicting stand structure attributes.

An example of the use of PCA, including the equations used to obtain the
eigenvalues, eigenvectors and the principal component (PC) scores, may be
found in Jensen (2005). In the present study, PCA was applied over the
selected LiDAR metrics for each of the 108 sample plots using the prcomp
function from the stats package in R (R Core Team, 2014). A correlation
matrix derived from the LiDAR metrics provided the basis for the eigenvalue
and eigenvector calculations and for the subsequent determination of the

Table 1 Summary of the V models

Eucalyptus spp.
plantations

Model coefficients RMSE

b0 b1 (×1025) Adj. R2 m3 tree21 %

F986 0.006 3.280 0.968 0.006 4.813
F849 0.002 3.430 0.978 0.009 4.789
F950 0.014 3.090 0.976 0.010 6.006
F184 0.005 3.360 0.989 0.006 3.188
F166 0.003 3.330 0.984 0.012 5.116
F634 0.005 3.300 0.982 0.015 6.092

b0¼ linear coefficient; b1¼ slope coefficient; adj. R2¼ adjusted coefficient
of determination; RMSE¼ root mean square error.
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PC scores. Each score represented a transformed metric from the linear
combination of the LiDAR metrics of the sample plots. By analyzing the
eigenvectors and the PC score, we could establish differences in the contri-
bution of each LiDAR metric to the variability in the dataset, as well as the
similarity in metrics calculated across the different aged stands (Manly,
2004; Li et al., 2008).

We used the lm linear model function in R statistical software (R Devel-
opment Core Team, 2015) to develop the multiple linear regression models,
and the Shapiro–Wilk (Shapiro and Wilk, 1965) and Breusch–Pagan
(Breusch and Pagan, 1979) tests to evaluate the normality and heterosce-
dasticityof eachmodel. In addition, the corrected Akaike information criter-
ion (AICc) (Akaike, 1973, 1974) was calculated in order to measure the
relative quality of each proposed model and to rank them accordingly
(Hurvich and Tsai, 1989).

The precision and accuracy of estimates for each model were evaluated
in terms of adjusted coefficient of determination (adj. R2), absolute and
relative root mean square error (RMSE), and absolute and relative bias:

RMSE =

�����������������∑n
i=1 (yi − ŷi)

2

n

√
, (2)

BIAS =
1
n

∑n

i=1
(yi − ŷi), (3)

where n is the number of plots, yi is the observed value for plot i, and ŷi is the
predicted value for plot i. Moreover, relative RMSE and biases were calcu-
lated by dividing the absolute values of RMSE and BIAS (equations 2 and
3) by the mean of the observations. We defined acceptable model precision
and accuracy as a relative RMSE and bias of ,15 per cent.

The best model was selected based on the AICc values, and its perform-
ance was evaluated by means of leave-one-out cross-validation (LOOCV).
We also used the equivalence test (Robinson, 2015) to verify if the observed
and predicted V values were statistically equivalent. Finally, we used the

AsciiGridPredict function from the yaImpute package in R (Crookston and
Finley, 2008) to apply the selected best model across the landscape to
map the spatial distribution of V of Eucalyptus spp at the stand level, with
spatial resolution of 3 m, for the benefit of forest managers. An overview
of the methodology is outlined in Figure 2.

Table 2 Characteristics of the six plantations of Eucalyptus hybrid clones

Eucalyptus spp. plantation Area (ha) DBH H V N Age

F986 94.16 12.70 (1.75) 18.52 (1.43) 173.73 (73.23) 20 3.3
F849 138.96 14.13 (2.40) 22.16 (1.54) 272.73 (35.59) 26 4.7
F950 86.72 13.72 (2.55) 21.44 (3.44) 266.86 (44.14) 17 5.5
F184 58.34 14.55 (2.26) 23.67 (1.18) 291.16 (30.76) 20 5.9
F166 84.35 14.57 (3.25) 24.17 (1.42) 324.83 (44.35) 16 6.1
F634 84.80 14.35 (3.78) 25.89 (2.15) 374.79 (45.65) 14 8.0
Total 586.86 – – 1755.58 108 –
Average 83.84 13.54 (2.98) 21.19 (0.80) 250.80 (17.57) – 5.11

The values are based on in situ measured sample plots (n¼ 108). Standard deviation values are given in brackets.

Table 3 LiDAR flight characteristics

Parameter Value

Average flight height 422.94 m
Average density 10 pulses m22

Pulse frequency 400 kHz
Scan angle +45w

Laser wavelength 1055 nm
Average aircraft speed 57 m s21 (205.20 km h21)
Horizontal precision 0.1–0.15 m (1.0 sigma)

Table 4 LiDAR-derived canopy height metrics considered as candidate
variables for predictive V models (McGaughey, 2014)

Variable Description

HMIN Height minimum
HMAX Height maximum
HMEAN Height mean
HMAD Height median absolute deviation
HSD Height standard deviation
HSKEW Height skewness
HKURT Height kurtosis
HCV Height coefficient of variation
HMODE Height mode
H01TH Height 1st percentile
H05TH Height 5th percentile
H10TH Height 10th percentile
H15TH Height 15th percentile
H20TH Height 20th percentile
H25TH Height 25th percentile
H30TH Height 30th percentile
H35TH Height 35th percentile
H40TH Height 40th percentile
H45TH Height 45th percentile
H50TH Height 50th percentile
H55TH Height 55th percentile
H60TH Height 60th percentile
H65TH Height 65th percentile
H70TH Height 70th percentile
H75TH Height 75th percentile
H80TH Height 80th percentile
H90TH Height 90th percentile
H95TH Height 95th percentile
H99TH Height 99th percentile
CR Canopy relief ratio ((HMEAN 2 HMIN)/(HMAX 2 HMIN))
COV Canopy cover (percentage of first return above 1.30 m)

A principal component approach for predicting the stem volume
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Results

Height variation of Eucalyptus spp. plantations

Variation in height for selected sample plots from Eucalyptus
hybrid clones between early (i.e. 3.3 years), intermediate (i.e. 5.5
years), and advanced (i.e. 7.9 years) stages of development are
shown in Figure 3. Although located at different plantations and
therefore under distinct site indices, the LiDAR-derived height
increased with age across all sites (Figure 3). On the other hand,
the same was not observed for the number of LiDAR returns in
the strata between 2 and 15 m in height, where the number of
returns decreased with age.

In a plantation environment, young trees of Eucalyptus nor-
mally have a well-defined canopy with numerous branches,
while mature trees, due to competition, higher canopy closure
and light limitation, retain a decreased number of lateral branches.
The number of branches was strongly reduced during advanced
canopy growth ages (i.e. Figure 3c), resulting in fewer LiDAR returns
at intermediate heights. In addition, as the stands approached

harvest age, the ground floor had more small trees, bushes
and grasses established due to the greater time since silvicultural
treatment.

Highly correlated LiDAR metrics

Pearson’s correlation test (r) showed that among the 31 candidate
LiDAR metrics, 23 were highly correlated (r . 0.9). We kept one of
the highly correlated metrics (H99TH), which along with seven
other remaining metrics not highly correlated (r , 0.9) were
included in PCA analysis. LiDAR metrics that were retained after
correlation analysis included HSD, HCV, HSKEW, H01TH, H05TH,
H99TH, CR and COV. The correlation structure of these eight
metrics is shown in Table 5.

PCA of LiDAR metrics

The first five of eight PCs accounted for 97.7 per cent of the total
variance contained in the selected set of eight LiDAR metrics.

Figure 2 Procedure for predicting stem volume (V) from LiDAR and inventory plot data in Eucalyptus plantations. AIC, Akaike Information Criterion; LOOCV,
leave-one-out cross-validation; PCA, principal components analysis; RMSE, root mean squared error.
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Specifically, PC1, PC2, PC3, PC4 and PC5 accounted for 60.8, 16.9,
10.7, 6.9 and 2.3 per cent of the total variance, respectively
(Figure 4). We opted to use the first five PCs to select the
best LiDAR metrics for V modeling because PCs 6–8 explained a
less than significant percentage (,2.5 per cent) of the remaining
variance.

The PC eigenvector loadings (Table 6), which represented the
contribution of each LiDAR metric toward the component,
showed both negative and positive values. PC1 was expressed as
positive loadings of HCV, followed by HSKEW (both with absolute

r . 0.90 with PC1). On the other hand, PC2 showed positive load-
ings of H99TH (r¼ 0.95), whereas PC3, PC4 and PC5 showed posi-
tive loadings of COV (r¼ 0.72) and negative loadings of H01TH
(r¼20.51) and H05TH (r¼20.28), respectively.

PC1 was highly correlated with HCV indicative of increasing
canopy height variance associated with the ages of the Eucalyptus
hybrid clones plantations and silvicultural treatments before har-
vesting, corroborating Figure 3. Three major groups are highlighted
for the first two PCs (Figure 5). The firstgroup representing PC1 high-
lights canopy height variation, while PC2 highlights canopy height

Figure 3 LiDAR profiles of selected sample plots of Eucalyptus representative of early (i.e. 3.3 years) (a), intermediate (i.e. 5.5 years) (b) and advanced
(i.e. 7.9 years), (c) stages of development. (1) UTM Easting profile, (2) UTM Northing profile and (3) Density plot (canopy height profile).
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measures and PC3 highlights canopy cover. LiDAR metrics selected
from the first three PCs were not highly correlated with the selected
metrics highlighted from the remaining PCs (Table 5). Therefore,
the five main LiDAR metrics selected from the five first PCs were
HCV, H99TH, COV, H01TH and H05TH (Table 6).

Stem volume modeling

Table 7 shows the performance of four multivariate linear regres-
sion models created to predict V of Eucalyptus hybrid clones
based on the LiDAR metrics highlighted previously by PCA. Results

from the Shapiro–Wilk test and Breusch–Pagan test reveal that
the data were normally distributed, and heteroscedasticity had a
0.05 per cent level of significance. The addition of more terms
into the models did not significantly improve model fit while in-
creasing the AICc statistic (from 1031.4 to 1036.3). The model in-
cluding just the HCV and H99TH metrics produced the lowest AICc
statistic and was therefore selected as the best model.

The best model resulted in an adj. R2¼ 0.84, r¼ 0.92, RMSE¼
27.6 m3 ha21 (9.99 per cent), and Bias¼ 0 (0 per cent) (Table 7).
The LOOCV analysis revealed a highly stable model (Figure 6b),
and the normal Q–Q and residual plots (Figure 6c and D) confirmed
from a graphic perspective that this model met the parametric
assumptions of normality and homoscedasticity.

Results from the statistical equivalence test between the best
model and the LOOCVare presented in Figure 6a,b. The equivalence
plot design presented here is an adaptation of equivalence plots
presented by Robinson (2015). The grey polygon represents the
+25 per cent region of equivalence for the intercept, and the
black vertical bar represents a 95 per cent confidence interval for
the intercept. The predicted V from the model and the LOOCV are
equivalent to the reference for the intercept because the black
bar was completely within the grey polygon. If the grey polygon
is lower than the black vertical bar, the predicted V would be
biased low; if it is higher than the black vertical bar, the predicted
V would be biased high. Moreover, the grey dashed line represents
the+25 percent region of equivalence for the slope, and if the black
vertical bar is contained completely within the grey dashed line, the
pairwise measurements are considered to be equivalent. A bar that
is wider than the region outlined by the grey dashed lines indicates
highly variable predictions. The white dots are the pairwise mea-
surements, and the solid line is a best-fit linear model for the pair-
wise measurements.

Predicted V of Eucalyptus clones for the 108 sample plots
ranged from 117 to 427 m3 ha21. The predicted V means for the
six farms were 187 (F986), 254 (F950), 266 (F849), 288 (F184),
332 (F166) and 372 (F634) m3 ha21 (Figure 7). Predicted Vs were
well balanced overall, being slightly overpredicted during early
and advanced stand ages and slighty underpredicted at intermedi-
ate ages. These differences may reflect varying site indices and
management practices across the plantations. The Eucalyptus
plantations containing younger stands showed the lowest V
values (i.e. IDs F986 and F950). Advanced age stands contained
the highest stem volumes (i.e. IDs F166 and F634). Figure 8

Table 5 Pearson correlations among LiDAR metrics selected

R HSD HCV HSKEW H01TH H05TH H99TH CR COV

HSD 1.00
HCV 0.89 1.00
HSKEW 0.79 0.87 1.00
H01TH 20.54 20.60 20.56 1.00
H05TH 20.64 20.81 20.82 0.66 1.00
H99TH 0.63 0.24 0.21 20.01 0.12 1.00
CR 20.68 20.88 20.85 0.42 0.72 20.06 1.00
COV 20.31 20.48 20.37 0.21 0.33 0.07 0.46 1.00

Figure 4 The percentage of variance and cumulative percentage of
variance in V explained by the eight PCs.

Table 6 Loadings and eigenvectors for the first five PCs

PCs Ev Eigenvectors (Eg)

HSD HCV HSKEW H01TH H05TH H99TH CR COV

PC1 4.87 0.40 0.44 0.42 20.31 20.39 0.11 20.40 20.22
PC2 1.35 0.38 0.03 0.01 0.14 0.27 0.82 0.12 0.27
PC3 0.86 0.00 20.06 0.05 20.51 20.27 20.11 0.17 0.79
PC4 0.55 0.07 20.07 20.26 20.69 0.11 0.15 0.44 20.47
PC5 0.19 0.17 20.01 0.03 0.38 20.66 0.02 0.62 20.11

PC is the given PC; Ev is the eigenvalues for each PC. Check Table 3 for the description of the LiDAR-derived metrics. Bold characters indicate the LiDAR metric
with highest loading on the PC.
Bold values indicate the largest contributing LiDAR metric for a given PC.
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shows the V maps with spatial resolution of 3 m over the six plan-
tations predicted from the best model (Table 7; Eq. 1).

Discussion
Accurate estimates of V are critical for forest plantation inventory
and planning. The development of methods that provide better
estimates of V for regular monitoring of industrial forests is im-
portant for increasing forest management efficiency. This study
presents a novel framework for predicting and mapping V in six
fast-growing plantations of Eucalyptus hybrid clones using air-
borne LiDAR data and PCA.

LiDAR has been shown to be a powerful technology for inventory
of Eucalyptus plantations (Silva et al., 2014; Carvalho et al., 2015);
as expected, there is a significant relationship between V and
LiDAR-derived metrics selected from the PCA analysis. In this
study, the HCV and H99TH metrics were indicated by the PCA as
the best predictor variables for determining V in plantation of Euca-
lyptus hybrid clones. This finding is consistent with previous studies

that have shown LiDAR-derived metrics such as HCV and H99TH
to be effective predictors of forest attributes, such as stem
volume, height, basal area, and aboveground carbon in Eucalyptus
spp. plantations (Packalen et al., 2011; Tesfamichael and Jan Van
Aardt, 2010; Silva et al., 2014). As described in Li et al. (2008),
these selected LiDAR metrics can succinctly describe 3D forest
canopy structure because they capture most of the information
contained in the canopy point cloud.

Using PCA analysis to guide LiDAR metrics selection can be
advantageous relative to other methods such as stepwise variable
selection. This is based on the fact that PCA can capture the covari-
ance structure among candidate metrics in multiple dimensions.
Forexample, each PC biplot (e.g. PC1 and PC2 in Figure 5) represents
clusters of metrics, and the metrics in each cluster have magnitude
and direction. The HCV and H99TH are orthogonal metrics that
capture the majority of variation in PC1 and PC2 and were the
most two important metrics used in the V modeling. In this case,
HCV represents canopy depth variation and H99TH represents
canopy height. Large HCV indicates that some trees are smaller
than others (more variability), which would result in less volume
for a plot with a similar H99TH value. The HCV term, therefore,
adjusts the estimate of V downward to account for variation due
to these smaller trees.

The most accurate method of predicting V in plantation of
Eucalyptus hybrid clones is to physically sample it in the field
using forest mensuration techniques. In a conventional inven-
tory, one sample plot (300–500 m2) is normally established
and measured every 10 or 15 ha, with a goal to achieve a
maximum acceptable relative RMSE of 10–15 per cent (Batista
et al., 2014). However, this type of measurement over large
areas is limited by budgets and time, making it impractical.
Approaches for deriving forest inventory information based
on LiDAR data are of great utility and interest owing to their
promise for improving spatial sampling capabilities within plan-
tations. In this study, we demonstrated that LiDAR can be used
to predict V over large areas with RMSE of ,15 per cent, which
is equal to or less than the level of error that is traditionally
accepted in a conventional field inventory.

LiDAR data have been used for forest inventory in countries such
as Norway, USA and Canada (Næsset 1997, 2002, 2004; Hudak
et al., 2006; Coops et al., 2007); however, the application of airborne
LiDAR technology for Brazilian industrial forest management is
relatively new. Zandoná (2006) and Macedo (2009) applied LiDAR
data to detect individual trees and model stand volume in both
Pinus spp. and Eucalyptus spp. plantations. Rodriguez et al.
(2010) and Zonete et al. (2010) predicted diameter at breast
height (DBH), height (Ht) and basal area (BA) in Eucalyptus spp.

Figure 5 Projection of the first two PC scores from the selected LiDAR
metrics. The grey ellipsoids represent the visual LiDAR metrics clusters.
The grey points represent the values of PC1 vs PC2, and grey numbers
represent the ID number of the sample plot ranging from 1 to 108
(n¼ 108). See Table 3 for the description of the LiDAR-derived metrics.

Table 7 Adjusted coefficients of determination (adj. R2), root mean square error (RMSE) and the corrected Akaike information criterion (AICc) of the
regression models to predict stem volume (V) (m3 ha21)

Equation Models Adj. R2 RMSE RMSE% AICc

1 52268.40–0.24HCV 1 20.33H99TH 0.84 27.60 9.99 1031.41
2 ¼2268.42–0.15HCV + 20.26H99TH + 0.25COV 0.84 27.62 9.99 1033.43
3 ¼2268.20–0.57HCV + 20.45H99TH + 0.12COV 22.85H01TH 0.84 27.45 9.94 1034.40
4 ¼2250.00–1.02HCV + 20.08H99TH 20.023COV 22.35H01TH 20.68H05TH 0.84 27.40 9.93 1036.31

BIAS¼ 0(0%) for all the models. Bold values represent the best model.
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plantations. More recently, Silva et al. (2014) showed that LiDAR
measurements can also be used to model different components
of aboveground carbon stocks (i.e. total, commercial, residuals)
in Eucalyptus spp. plantations. Our findings are comparable to
those of Zonete et al. (2010), who used multilinear regression
models employing LiDAR-derived metrics as independent variables
to predict DBH, height and BA in Eucalyptus spp. plantations in
Bahia State (NE-Brazil).

Although the cost of LiDAR data acquisition was not a central
objective to evaluate in this study, it is nonetheless an important
factor to consider. Many factors influence the cost of LiDAR data.
These factors include normal cost variables, such as project area
size and location, the level of detail needed (pulse density –
number of pulses sent by the sensor per m2), as well as market vari-
ables, such as competition between LiDAR vendors. For Eucalyptus
spp. inventory in southeast Brazil, the cost of LiDAR data acquisi-
tion is affordable because the large extent of plantation areas
decreases the acquisition cost per unit area. Also, due to the low
amount of canopy variability in this type of plantation, it is not
necessary to acquire a point cloud with a high level of detail. There-
fore, the cost of acquiring LiDAR data in a Eucalyptus spp. plantation
can be further decreased by acquiring LiDAR data at low pulse

Figure 6 Equivalence plot of the predicted vs observed V (a); equivalence plot of the observed vs the LOOCVpredicted V (b); normal Q–Q plot–standardized
residuals vs theoretical quartiles; the numbers 53, 74 and 75 are the IDs of three sample plots that are outliers according to the Normal Q–Q analysis (c);
and the ordinary residuals vs predicted V by the model (d); (n¼ 108).

Figure 7 Comparison of observed and predicted V values of Eucalyptus
plantations in the sample plots. See Table 1 for descriptions of the
plantation codes.
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Figure 8 Predicted V for the six Eucalyptus plantations. See Table 1 for descriptions of the plantation codes.
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density. An earlier study indicate that a lowLiDAR pulse density pro-
vides similar results as a high LiDAR pulse density for predicting
forest attributes in a Eucalyptus spp. plantation (Gonzalez-Ferreiro
et al., 2013).

In addition to data acquisition cost, it is also important to take
into account the cost of LiDAR data processing and modeling for
deriving forest biophysical attributes. Several software packages
currently exist for visualizing and processing LiDAR data, with
both proprietary and open source options. Here, we presented a
framework for processing LiDAR data and modeling V in plantation
of Eucalyptus hybrid clones using the free and open source soft-
ware packages FUSION and R. Specifically, we spent about three
person-weeks processing the LiDAR data and modeling the V
across the entire landscape. The time required to process field
and LiDAR data and develop predictive models is directly influenced
by the data volume, the presence of data outliers, the number
of forest attributes modelled and the experience level of the
technician.

The cost of using LiDAR technology for forest inventory could
still be highly expensive in many situations; however, LiDAR has
the advantage of predicting and mapping forest attributes at
the landscape level with high accuracy, along with other natural
resource management applications (Hudak et al., 2009). In a con-
ventional inventory, spatial variability of forest attributes within
stands is not normally considered. Hummel et al. (2011) found
that the accuracy and cost of a LiDAR-based inventory summar-
ized at the stand level was comparable to traditional stand-level,
ground-based assessments for structural attributes. However,
the LiDAR data were able to provide information across a much
larger area and at a higher spatial resolution than stand-level,
ground-based assessments alone. In this study, we mapped V
across the landscape at a spatial resolution of 3 m. Therefore,
the method employed to produce spatially explicit V predictions
(Figure 8) would be applicable to support the supply chain of
pulp and paper companies in Brazil or elsewhere. Although the
range of structural variability represented in this study was
large due to the many age classes and hybrid clone varieties
sampled, it is possible that the framework developed here may
need to be validated and further refined in other Eucalyptus plan-
tation types.

Conclusion
In this study, we demonstrated the use of LiDAR and PCA analysis
for V modeling in six plantations of Eucalyptus hybrid clones in
southeast Brazil. We found that LiDAR measurements can be
used to predict V across variable-age Eucalyptus plantations with
adequate levels of precision and accuracy. Secondly, we found
that PCA can be used to identify the best predictors to be included
in multiple regression models. Thirdly, we found that the HCV and
H99TH metrics were the most important LiDAR metrics for model-
ing V in this study. Finally, the spatial distribution of V stocks can be
precisely mapped providing key information for the supply chain of
a pulp and paper company. Even though we did not evaluate the
cost of LiDAR data acquisition and processing, the framework pre-
sented herein can serve as a useful methodology, and we hope
that the promising results for V modeling in this study will stimu-
late further research and applications not just in plantations of
Eucalyptus hybrid clones in southeast Brazil, but in other planta-
tion types elsewhere.
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Ibá. 2015 Brazilian Tree Industry. http://www.iba.org/images/shared/
iba_2015.pdf (accessed on 10 November, 2015).

Jensen, J.R. 2005 Introductory Digital Image Processing. 3rd edn. Prentice
Hall, 544 pp.
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