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Abstract. Light Detection and Ranging (LiDAR) has demonstrated potential for forest inventory at the individual-tree level. The
aim in this study was to predict individual-tree height (Ht; m), basal area (BA; m2), and stem volume (V; m3) attributes, imputing
Random Forest k-nearest neighbor (RF k-NN) and individual-tree-level-based metrics extracted from a LiDAR-derived canopy
height model (CHM) in a longleaf pine (Pinus palustris Mill.) forest in southwestern Georgia, United States. We developed a new
framework for modeling tree-level forest attributes that comprise 3 steps: (i) individual tree detection, crown delineation, and
tree-level-based metrics computation from LiDAR-derived CHM; (ii) automatic matching of LiDAR-derived trees and field-based
trees for a regression modeling step using a novel algorithm; and (iii) RF k-NN imputation modeling for estimating tree-level Ht,
BA, and V and subsequent summarization of these metrics at the plot and stand levels. RMSDs for tree-level Ht, BA, and V were
2.96%, 58.62%, and 8.19%, respectively. Although BA estimation accuracy was poor because of the longleaf pine growth habitat,
individual-tree locations, Ht, and V were estimated with high accuracy, especially in low-canopy-cover conditions. Future efforts
based on the findings could help improve the estimation accuracy of individual-tree-level attributes such as BA.

Résumé. Le lidar a démontré son potentiel pour l’inventaire forestier à l’échelle de l’arbre. Le but de cette étude était de prédire
la hauteur individuelle des arbres (Ht; m), la surface terrière (BA; m2), et le volume des tiges (V; m3) en utilisant une imputation
basée sur la méthode des forêts aléatoires et des k plus proches voisins (RF k-NN; Random Forest k-nearest neighbor) et de mesures
à l’échelle de l’arbre extraites à partir d’un modèle de la hauteur de la canopée (MHC) dérivés du lidar dans une forêt de pins
des marais (Pinus palustris Mill.) dans le sud-ouest de la Géorgie, aux États-Unis. Nous avons développé un nouveau cadre pour
la modélisation des attributs forestiers à l’échelle de l’arbre composé de trois étapes: (i) la détection des arbres individuels, la
délimitation des couronnes et le calcul de paramètres à l’échelle de l’arbre à partir de modèles MHC obtenus à partir du lidar;
(ii) la mise en correspondance automatique entre les arbres obtenus à partir du lidar et les arbres observés sur le terrain pour
une étape de modélisation de régression en utilisant un nouvel algorithme; et (iii) l’imputation par modélisation en utilisant RF
k-NN pour estimer la Ht, la BA, et le V à l’échelle de l’arbre et la synthèse ultérieure de ces mesures à l’échelle de la parcelle et du
peuplement. Les REQM pour la Ht, la BA, et le V à l’échelle de l’arbre étaient de 2,96 %, 58,62 % et 8,19 %, respectivement. Bien
que la précision de l’estimation de la BA fût faible en raison du port et du mode de croissance des pins des marais, l’emplacement
des arbres individuels, la Ht et le V ont été estimés avec une grande précision, en particulier dans des conditions de faible couverture
de la canopée. Les efforts futurs basés sur ces résultats pourraient aider à améliorer la précision de l’estimation des attributs à
l’échelle de l’arbre comme la BA.
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INTRODUCTION
Longleaf pine (Pinus palustris Mill.) was once one of the

most ecologically important tree species in the southern United
States (Oswalt et al. 2012). Historically, longleaf pine forests
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spanned an estimated area of 92 million acres (Frost 2006) and
were among the most extensive ecosystems in North America
(Landers et al. 1995). Today, only 4% of these longleaf pine
forests remain (Franklin 2008).

Fire is one of the dominant forces that shape the longleaf
pine landscape (Dobbs 2011). Longleaf pine is dependent on
fire for successful regeneration and for suppressing hardwood
growth (Loudermilk et al. 2011). However, due to fire suppres-
sion, much of the remaining longleaf pine forest is in poor or
degraded condition. As a result, there has been tremendous inter-
est in longleaf pine conservation, management, and restoration
(Brockway 2005).

Successful management of these forests can have sustainable
results, because longleaf pines can produce quality wood prod-
ucts when grown in a variety of densities (Franklin 2008). Accu-
rate measures of forest attributes such as tree density (tree/ha),
and attributes such as height (Ht), basal area (BA), and stem
volume (V) that are used at the tree, plot and stand levels, are
essential to management and conservation practices in longleaf
pine forests. The most accurate method of estimating these at-
tributes is to physically sample them in the field. However,
individual tree field measurements over large areas are limited
by budgets and time, making them impractical.

Airborne Light Detection and Ranging (LiDAR) systems
have become the dominant remote sensing technique for plot-
and stand-level forest inventory, mainly because this technology
can quickly provide highly accurate and spatially detailed infor-
mation about forest attributes across entire forested landscapes
(Silva et al. 2014). Increased interest, dataset availability, and
technological improvements have greatly expanded the use of
LiDAR technologies in forestry over the past decade (Saremi
et al. 2014; Hudak et al. 2006, 2009, 2014; Hansen et al. 2015).

The use of airborne LiDAR to retrieve forest attributes at the
tree level is promising, however, not as widely studied as plot-
or stand-level approaches. In a tree-level-based modeling ap-
proach, individual-tree attributes are usually predicted through
3 steps: (i) individual tree detection and metrics extraction, (ii)
LiDAR- and field-based tree matching, and (iii) modeling and
prediction. The accurate prediction of tree-level attributes is
highly dependent on the methods used to detect and extract
individual-tree metrics and forest structure as well (Kankare
et al. 2015).

A LiDAR-derived Canopy Height Model (CHM) can be
used for detecting individual trees, delineating tree crowns,
and subsequently estimating biophysical attributes such as
biomass and stem volume (Popescu et al. 2003; Popescu,
2007; Falkowski et al. 2008; Falkowski et al. 2009; Vauhko-
nen et al. 2012; Hu et al. 2014; Duncanson et al. 2014; Dun-
canson et al. 2015; Kankare et al. 2015). There are a va-
riety of approaches used to detect and delineate individual
trees from LiDAR-derived CHMs. These include identifying
local maxima (Popescu et al. 2003; Weinacker et al. 2004;
Falkowski et al. 2008; Falkowski et al. 2009) for tree detec-
tion, as well as region growth (Hyyppä et al. 2001; Solberg

et al. 2006; Pang et al. 2008),valley following (Leckie et al.
2003), and watershed (Chen et al. 2006; Jing et al. 2012) for
delineation.

In addition to the individual-tree detection method and for-
est structure, the accurate prediction of forest attributes at the
tree level is also highly dependent on the modeling technique
applied (Vauhkonen et al. 2010). Examples of the existing meth-
ods for modeling forest attributes at the tree-level from LiDAR
data are both parametric (Chen et al. 2007) and nonparametric
(Breidenbach et al. 2010; Vauhkonen et al. 2010; Vauhkonen
et al. 2012). Saarinen et al. (2014), Vastaranta et al. (2015) and
Kankare et al. (2015) have recently tested k-nearest neighbor (k-
NN) imputation for forest inventory modeling at the tree level.
In most cases however, k-NN imputation, as a nonparametric
method, has commonly been used to predict forest inventory
attributes at the plot or stand levels (Falkowski et al. 2010; Hu-
dak et al. 2014; Racine et al. 2014; McRoberts et al., 2015).
For example, Hudak et al. (2008) evaluated 9 k-NN imputation
methods and LiDAR data for imputing plot-level BA and tree
density (TD) of 11 conifer species occurring in mixed-conifer
forests of north central Idaho, USA. Racine et al. (2014) used
LiDAR data and k-NN imputation to estimate plot age across
a managed boreal forest in Quebec, Canada, and Fekety et al.
(2015) used repeated field and LiDAR survey data to assess the
feasibility of predicting forest inventory attributes across space
and time in a conifer forest in northern Idaho, USA.

The aforementioned studies integrated LiDAR and field data
in an area-based k-NN imputation to predict forest attributes at
the plot or stand levels. However, accurate characterization of
the forest at the individual-tree level not only enhances con-
ventional and LiDAR area-based forest inventory, but also ex-
tends its applications into disciplines where greater detail is
valued, such as ecology, wildlife habitat, or biodiversity appli-
cations (Goetz et al. 2007; Hinsley et al. 2002; Vierling et al.
2008).

Given that only a fraction of the historic longleaf pine forest
ecosystem range remains today, accurate characterization and
spatial distribution of individual trees are critical for sustainable
forest management and for ecological and environmental pro-
tection in longleaf pine forests. Our goal in this study was to pre-
dict individual-tree-level attributes using k-NN imputation and
individual-tree LiDAR-based metrics in a longleaf pine forest in
southwestern Georgia, in the United States. Our first aim, there-
fore, was to evaluate the ability of LiDAR to accurately detect
individual trees and determine treetop height (HMAX, m) and
crown area (CA, m2) that are subsequently used for predicting
tree attributes. Our second aim was to predict individual tree Ht
(m), BA (m2), and V (m3) attributes from HMAX and CA metrics
using k-NN imputation and evaluate its accuracy and precision.
This investigation is based on the hypothesis that LiDAR tech-
nology and a k-NN imputation modeling approach can feasibly
provide precise and accurate estimates of these tree attributes in
the open canopy structure that is typical of healthy longleaf pine
forests.
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FIG. 1. Longleaf pine forest location: A, B, and D, and profile picture at Ichauway in southwestern Georgia, USA. NW: Northwest;
CNT: central and NE: Northeast stands.

MATERIAL AND METHODS

Study Area
The study area for this project is located at Ichauway, an

11,700 ha reserve of the Joseph W. Jones Ecological Research
Center in southwestern Georgia, USA (Figure 1). The area is
characterized by a humid subtropical climate (Christensen 1981)
with a mean annual precipitation of 131 cm fairly evenly spread
throughout the year. Mean daily temperatures range from 21 ◦C
to 34 ◦C in the summer and 5 ◦C to 17 ◦C in the winter (Louder-
milk et al. 2011). Elevation ranges from 6.23 m to 33.66 m, and
the soils are characterized as paleudults, kandiudults, and hap-
ludults with some localized quartzipsamments (Kirkman et al.
2004). The Ichauway reserve has an extensive tract of second-
growth longleaf pine managed with low-intensity, dormant-
season-prescribed fires at a frequency of about 1–3 years since
1945 (Loudermilk et al. 2011).

In this study, vegetation structure is characterized by an open
canopy longleaf pine forest (Figure 1 a, b) and a wiregrass-
dominated ground cover maintained under a high-frequency fire
regime (Figure 1 c). Maintaining a high-frequency fire regime
through repeated application of prescribed fire is a top manage-

ment goal at Ichauway, with occasional individual-tree selection
harvesting for management and research purposes in the natural,
second-growth longleaf forests (Palik et al. 2003).

Field Data Collection
The field measurements were carried out from March 2009

to July 2009. A total of 15 rectangular plots (about 4 ha each)
were established in 3 stands: CNT, NE, and NW (Figure 1 D).
All plots were georeferenced with a geodetic GPS with differ-
ential correction capability (Trimble Nomad) with an external
Hemisphere Crescent A100 antenna, and all had a horizontal
accuracy of < 0.6 m with differential GPS (DGPS) and < 2.5 m
without DGPS in open canopy, and 1 m–2 m accuracy with
DGPS under forest canopy. All trees were measured for DBH
using calipers (two perpendicular measurements at right angles,
averaged) or a steel diameter tape, and for Ht using a LaserTech
Impulse 200. We also geolocated (UTM E, N) them using the
GPS mentioned, and, from these measures, a field-stem map was
created. In a few instances, DGPS was not able to resolve lo-
cations of multiple small trees in areas with high stocking, and
tree locations were recorded by establishing a known DGPS
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TABLE 1
Statistical summary of tree measurements attributes at the sample plots

Tree Density (N/ha) DBH (cm) Ht (m)

Stand N◦ Plots min max mean sd min max mean Sd min max mean Sd

NE 7 201 204 202 2 10.00 60.00 30.66 12.11 6.20 31.40 23.01 5.12
CNT 6 126 194 147 25 10.00 74.60 33.21 13.77 6.10 33.30 23.24 4.77
NW 2 77 203 131 61 9.50 71.30 36.29 14.02 8.50 32.10 22.75 4.75

TABLE 2
Statistical summaries of tree basal area (BA) and stem volume (V) at sample plots

BA (m2/Tree) V (m3/tree)

Stand min max mean sd min max mean sd

NW 0.01 0.40 0.12 0.08 0.04 2.44 0.94 0.47
CNT 0.01 0.44 0.10 0.07 0.01 2.73 1.01 0.50
NE 0.01 0.28 0.09 0.06 0.01 2.28 0.99 0.52

point and then measuring the distance (3 cm–5 cm accuracy)
and azimuth (± 0.3 degree accuracy) to those trees with the
Impulse 200 and MapStar Compass module, respectively. The
mean longleaf pine tree Ht and DBH measured in our study area
was 22.95 (±4.88) m and 32.87 (±13.30) cm, respectively, and
the number of trees per hectare (N/ha) was approximately 147
(±29) trees. A statistical summary of the tree density, Ht, and
DBH field measurements are presented in Table 1.

The outside-bark V was obtained via a longleaf pine allo-
metric equation according to Gonzalez-Benecke et al. (2014)
(Equation 1). The equation has a coefficient of determination
(R2) of 0.78 and absolute and relative root mean square error
(RMSE) of 0.17 m3 and 38.21%, respectively.

ln(V) = − 9.944543 + 3.123691∗ln(Ht). [1]

In addition to V, tree-level BA was also computed. Statistical
summaries of the reference BA and V calculations are presented
in Table 2.

LiDAR Data and Preprocessing
LiDAR data were acquired using an Optech GEMINI Air-

borne Laser Terrain Mapper (ALTM) mounted in a twin-engine
Cessna Skymaster (Tail Number N337P). The survey was car-
ried out on March 5, 2008. LiDAR flight parameters are pre-
sented in Table 3.

LiDAR preprocessing was performed using US Forest Ser-
vice FUSION/LDV 3.42 software (McGaughey 2015) and LAS-
tools (Isenburg 2015). The workflow is graphically shown in
Figure 2a. First, in FUSION/LDV, the quality of the LiDAR
dataset was visually evaluated, and a simple report using the
Catalog tool was generated. A filtering algorithm based on

Kraus and Pfeifer (1998) was applied to differentiate between
ground and nonground returns. Digital Terrain Models (DTMs)
were generated using the classified ground points with a spa-
tial resolution of 1.0 m, using the GridSurfaceCreate function.
The CanopyModel tool was then used to interpolate vegetation
points and to generate Digital Surface Models (DSMs) with a
spatial resolution of 0.5 m. Afterward, the ClipData tool was
applied with the height and dtm switches to normalize heights
and to assure that the z coordinate for each point corresponded
to the height above ground and not the orthometric elevation
of the single point. The PolyClipData tool was then used to
make a subset of the LiDAR points within each of the 15 in situ
measured test plots. The CloudMetrics tool with a height and
cover thresholds of 1.37 m (Nilsson 1996) were used to com-

TABLE 3
LiDAR flight parameters

LiDAR Survey Parameters

Scan Frequency 45 Hz
Scan Angle +/− 20 deg
Scan Cutoff +/− 4.0 deg
Scan Offset 0 deg
System PRF 125 kHz
Swath Width 344.64 m
Flying Altitude 600m AGL
Down Track Resolution 0.75 m
Points per square meter 5.06
Horizontal Datum NAD83
Vertical Datum NAVD88 (GEOID 03)
Projection UTM Zone 16N
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FIG. 2. Flowchart of the LiDAR data processing.

pute the canopy cover (COV,%), within sample plots. COV was
calculated as the number of LiDAR first returns above 1.37 m,
divided by the total number of first returns. Such LiDAR-derived
CHM often contain height irregularities within individual-tree
crowns—so-called data pits—which reduce accuracy in tree
detection and subsequent extraction of biophysical parameters
(Gaveau and Hill 2003, Shamsoddini et al. 2013). Therefore,
the pit-free algorithm, developed by Khosravipour et al. (2014)
was used to generate a pit-free CHM at 0.5-m spatial resolu-
tion though a workflow implemented in LAStools (Isenburg
2015).

Individual Tree Detection and HMAX Extraction
Individual tree detection was performed in R (R Develop-

ment Core Team 2015) using the FindTreesCHM function from
the rLiDAR package (Silva et al. 2015). The FindTreesCHM
function uses a local maximum algorithm to search for tree-
tops in the CHM through a moving window with a fixed tree-
top window size (TWS; Wulder et al. 2000). To achieve op-
timal tree detection, we tested 3 TWS (3 × 3, 5 × 5, and
7 × 7 pixels) first on an unsmoothed CHM, and then on a
CHM smoothed by a mean smooth filter with fixed smooth-
ing window size (SWS) of 3 × 3 and 5 × 5 pixels. Even

when the smoothed CHM option was used to find trees, the
treetop heights (HMAX) were extracted from the unsmoothed
CHM.

A total of 15 test subplots (30 m × 30 m) were randomly
situated within each of the 15 plots (1 subplot per plot), and
the number of trees detected (NTD) per subplot from LiDAR
were manually compared with field-based data and evaluated in
terms of true positive (TP, correct detection), false negative (FN,
omission error) and false positive (FP, commission error). The
accuracy of the detection was further evaluated for recall (r),
precision (p) and F-score (F) according to Li et al. (2012), using
the following equations (Goutte and Gaussier 2005; Sokolova
et al. 2006):

r = TP
TP + FN

. [2]

p = TP
TP + FP

. [3]

F = 2 ∗ r ∗ p

r + p
. [4]

Note that recall is inversely related to omission error and
represents the tree-detected rate. Precision is inversely re-
lated to commission error and describes the rate of correct
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FIG. 3. Illustration of the individual tree crown delineation algorithm. T = trees. (A) treetops; (B) buffer search area of 10 m
maximum radius; (C) Centroidal Voronoi Tessellation delineation; (D) buffer and Centroidal Voronoi Tessellation overlaid area;
(E) CHM clipping; (F) crown delineation.

detections. F-score is used to represent the harmonic mean
of recall and precision, which takes both commission and
omission errors into consideration. Hence, a higher F-score in-
dicates that both commission and omission errors are lower
(Li et al. 2012). Recall, precision, and F-score ranges from 0
to 1, and the F-score will become higher with higher p and r
values.

Individual Tree Crown Delineation and Crown Area
Computation

Tree-crown delineation was also performed in R, using the
ForestCAS function from the rLiDAR package (Silva et al.
2015). Inputs to this process were the smoothed CHM in addi-
tion to the tree-location output described in the previous steps.
The algorithm implemented in the ForestCAS function is shown
in Figure 2c and Figure 3, and follows the example presented
in the figure illustrating 5 hypothetical trees (Figure 3a). The
algorithm starts by applying a variable radius crown buffer (Fig-
ure 3b) to delimit the initial tree crown area. In this study, the
variable radius was calculated for each tree by multiplying the
LiDAR-derived tree height by 0.6, because preliminary field ob-
servation revealed that the tree crown radius typically was not
larger than 60% of the LiDAR-derived tree height. After deter-
mining the merged tree polygon using the first area delimitation

(Figure 3b), we then split the data using the centroidal voronoi
tessellation approach (Aurenhammer and Klein 1999) to isolate
each individual-tree polygon (Figure 3c,d). After isolating each
tree polygon, we clipped them from the CHM and excluded the
grid cells with values below 30% of the HMAX in each specific
detected tree (Figure 3e) to eliminate the low-lying noise. Fi-
nally, the tree-crown delineation and crown area (CA, m2) were
computed by delimiting the boundary of grid cells belonging to
each tree (Figure 3f).

rSTree: Searching for the LiDAR and Reference Trees
Forest inventory and modeling of individual trees using field

and LiDAR data is a highly desirable approach. However, to
develop this type of modeling approach, the challenge is to
match LiDAR-delimited trees with reference trees measured in
the field. In many cases, the tree-location reference measured in
the field is inaccurate (often due to GPS error), complicating the
individual-tree-level modeling approach. Instead of manually
moving reference tree locations to match with the tree loca-
tions detected from LiDAR, we developed a novel approach for
matching LiDAR and field trees automatically (Figure 4). The
proposed rSTree algorithm uses the acceptable maximum Eu-
clidian distance (MED) and minimum height difference (MHD)
computed between LiDAR and field-based data, in terms of
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FIG. 4. rSTree algorithm: searching for the LiDAR and reference trees. MED = maximum Euclidian distance, MHD = minimum
height deference, HD = height difference.

tree location and height, respectively, as the imputed parame-
ters. The algorithm processes a single match tree at a time, and
it starts with the first detected LiDAR tree. The user-defined
MED parameter is then used to buffer a search area for a possi-
ble matching tree. In this study, we used 10 m, because, given
the GPS errors, we are assuming that the reference tree is within
a radius of 10 m. The field-based trees located inside the search
area are selected. Trees with height difference (HD) ≤ MHD are
then selected for the next step as target trees. In this study, we
used MHD = 1.5 m, because most of the literature for conifer
LiDAR versus field stems have reported a RMSE in height of
∼1 m–2 m (e.g., Vastaranta et al. 2014). In an open canopy
forest such as longleaf pine presented herein, we are assum-
ing that the error in LiDAR height would not exceed 1.5 m.

If more than one reference field-based tree has HD ≤ MHD,
the trees are ranked by HD and the tree with the smallest HD
is selected. If 2 or more field-based trees have a perfect match
in terms of smallest HD and distance to the detected tree, we
randomly selected one as the target field-based tree to match
with the LiDAR tree. After all interactions, the LiDAR and ref-
erence trees are combined, added, and exported as a table for
the individual-tree-level attributes modeling approach.

Imputation Modeling Development
In this study, because the height–diameter allometry for lon-

gleaf pine breaks down after reaching a diameter of ∼25 cm,
when height growth asymptotes at ∼25 m (Gonzalez-Benecke
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et al. 2014), we believed that a nonparametric modeling tech-
nique to predict forest attributes at tree level would be more ap-
propriate than a parametric model. Therefore, k-NN imputation,
a nonparametric technique, was conducted using the yaImpute
(Crookston and Finley 2008) package in the R statistical soft-
ware (R Core Team 2015). Many imputation methods can be
used for associating target and reference observations, however,
recent studies have shown that the Random Forest (Breiman
2001) approach generally produces better results compared to
other imputation methods (Hudak et al. 2008; Nelson et al.
2011;Waske et al. 2012). For this study, we used Random Forest-
based k-NN (RF k-NN) to characterize the relationships between
predictor (HMAX and CA) and response (Ht, BA, and V) vari-
ables used for imputation. The number of neighbors was set to
one (k = 1) to maintain the original variance in the data (Hudak
et al. 2008). The dataset for the modeling process was randomly
split into subsets with 75% for training and 25% for testing,
and a total of 1,000 regression trees were fitted in the RF k-NN
model.

Model Assessment
Accuracy of the imputation model was assessed by calculat-

ing the absolute and relative root mean square distance (RMSD,
RMSD%) and bias (BIAS, BIAS%) between imputations and
observations (Stage and Crookston 2007), computed for a single
response variable as follows:

RMSD =
√∑n

i=1 (Ii − Oi)2

n
, [5]

BIAS = 1

n

n∑
i=1

(Ii − Oi) [6]

where I is the imputed value of a variable, O is the observed
value, and n is the number of reference observations. The RMSD
is analogous to the RMSE used to assess regression model ac-
curacy (Stage and Crookston 2007). The relative RMSD and
BIAS are computed by dividing absolute RMSD and BIAS by
the mean of the variable computed over the reference obser-
vations and multiplied by 100. We defined acceptable model
precision and accuracy as a relative RMSD and Bias of ≤15%
to have a model precision and accuracy higher than or equal to
the conventional forest inventory standard in the longleaf pine.

We also employed statistical equivalence tests to assess
whether the imputed tree attributes are statistically similar (i.e.,
equivalent) to the field-based attributes (Robinson et al. 2005).
According to Smith et al. (2009), statistical equivalence tests are
used to test the null hypothesis of “no substantial difference”
between 2 sample populations (H0: the sample populations are
different; H1: the sample populations are equivalent). We em-
ployed a regression-based equivalence test to test for intercept
equality (i.e., the mean of imputed tree attribute is equal to the
mean of the field-based attribute) and slope equality to 1 (i.e.,

if the pairwise, imputed and observed, attributes are equal, the
regression will have a slope of 1). A description of equiva-
lence tests can be also found in the “equivalence” package in R
(Robinson, 2015), and examples of equivalence plots in LiDAR
studies can be found in Falkowski et al. (2008), Smith et al.
(2009), Hudak et al. (2012), and Silva et al. (2014).

Stand-Level Imputation of Tree Attributes
According to Falkowski et al. (2008), tree-detection accuracy

decreases with increasing COV. An adaptive approach using
COV as a constraint to select the best parameters of TWS and
SWS for tree detection was developed in this study. Therefore,
we tiled the normalized point cloud using a grid-layer of 200 m ×
200 m square plots, and for each single tile we computed COV,
which was calculated by the number of LiDAR first returns
above 1.37 m, divided by the total number of first returns. A
buffer of 30 m was applied over each single square layer to
remove the edge effect of the individual tree detection. As the
parameters of the tree detection at stand level was dependent
on the results from the test plots, our hypothesis was that small
TWS would provide better results in close canopy area, and
vice versa. In the buffer overlaid areas, after tree detection using
the FindTreesCHM function from the rLiDAR package (Silva
et al. 2015), 1 of 2 trees detected was automatically removed
to avoid overdetection. Afterward, tree-crown delineation was
performed across the entire stand, using the ForestCAS function
from the rLiDAR package (Silva et. al 2015). The RF k-NN
imputed model based in the test plots was then applied, and the
tree attributes Ht, BA, and V were estimated for each single tree
across all stands.

RESULTS

Stand-Level Characterization from Field Data and
Lidar-Based Plot Metrics

According to the LiDAR-derived HMAX value, canopy
height of the longleaf pine forest was similar across the 3 stands
(Figure 5a). LiDAR-derived COV indicated a decrease in per-
cent canopy cover from the NW to CNT and NE stands, whereas
COV variance increased (Figure 5b). Although the stands are
similar in height, they are different in terms of field-measured
tree density. As observed in the description of the sites in the
material and methods section, the NW stand had highest tree
density and the NE stand had the lowest, whereas the variance
in tree density showed the opposite trend in COV (Figure 5c).

Individual-Tree Detection
The individual-tree detection results from the test plots are

shown in Table 4. The TWS and SWS combination were sensi-
tive parameters in terms of tree detection. The TWSs that provide
better results were 5 × 5 and 7 × 7 pixels, with a tree detec-
tion overall improvement of 58.25% and 34.59% compared to
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FIG. 5. LiDAR-based plot (A) HMAX and (B) COV; and (C) tree density measured in the field at the longleaf pine test plots.
Error bars indicate standard deviations.

the 3 × 3, respectively. The relationship between SWS and the
NTD from LiDAR was inversely proportional. Smaller TWSs,
such as 3 × 3 pixels, detected more trees compared to large
TWSs, such as 7 × 7, causing an overestimation of NTD. In
general, TWS of 3 × 3 for the CHM smoothing provided better
results.

Although different combinations of TWS and SWS param-
eters might provide a better performance in each test plot, we
identified a positive and strong nonlinear relationship between
the number of reference trees and LiDAR-derived COV (Fig-
ure 6a). Therefore, in an effort to be consistent and replicable,
we decided to use the adaptive approach already cited in the

TABLE 4
Individual tree detection in the test subplots

TWS

3 × 3 5 × 5 7 × 7

SWS SWS SWS

Ref. (N) Stand COV Ref. (N) NF 3 × 3 5 × 5 NF 3 × 3 5 × 5 NF 3 × 3 5 × 5

1 NW 68.39 803 4675 1112 587 1246 702 478 620 507 413
2 75.63 815 4725 1156 586 1312 674 480 639 514 410
3 CNT 70.40 519 4063 893 467 1028 515 393 485 399 340
4 70.96 503 4346 939 490 1079 548 410 526 425 370
5 71.47 572 4256 1021 536 1131 632 437 570 467 381
6 72.62 543 4208 953 505 1096 584 426 550 440 385
7 73.17 777 4222 1052 577 1110 622 449 552 452 383
8 75.53 621 4723 1050 573 1221 620 465 609 483 410
9 NE 60.13 321 2994 684 346 750 373 272 344 275 243
10 61.75 306 3222 701 363 771 414 283 374 300 250
11 63.85 366 3366 750 393 852 427 319 414 323 292
12 63.96 338 3319 743 370 849 396 292 411 318 265
13 72.24 737 4006 940 510 1018 563 405 521 436 368
14 74.50 810 4379 1012 547 1119 612 437 530 463 385
15 75.56 797 4357 1023 561 1145 620 452 567 454 391

The highlighted gray color represents the best results, which were determined by comparing the number of trees detected (NTD) to the field-based
tree inventory number (N). The closest values of NTD compared with N were selected as the best results.
Ref.: reference number of tree per test plot (N); TWS: fixed treetop windows size; SWS: fixed smoothing windows size; NF: no filter applied;
NE: Northeast stand; CNT: Central stand and NW: Northwest stand.



VOL. 42, NO. 5, OCTOBER/OCTOBRE 2016 563

FIG. 6. LiDAR-derived COV versus number of reference trees (N) measured in the field (A), and LiDAR-derived versus reference
tree densities.

methods section, in which the COV is used as an auxiliary vari-
able to select the TWS in each test plot. For the sample plots
with COV > = 70%, the 5 × 5 TWS was selected and in plots
with COV < 70% the 7 × 7 TWS was selected. Additionally,
the SWS of 3 × 3 pixels was selected to be applied across all
test plots, because it in general provides more accurate results
(Table 4).

The relationship between the reference and LiDAR-derived
number of trees per test plot according to the adaptive approach
mentioned is shown in Figure 6b. Our method slightly underesti-
mates the number of trees, especially in the test plots with COV
> 70%. However, the correlation between reference and NTD

per hectare (N/ha) is relatively strong, displaying a correlation
coefficient of 0.90.

The accuracy assessment results for individual-tree detection
in the 15 test subplots is shown in Table 5. The recall varies from
0.74 to 1, with the overall value of 0.82; the value of p varies
from 0.71 to 1, with the overall value of 0.85; and the F-score,
which considers both of these last 2 factors, varies from 0.74 to
1, with the overall value from all the plots of 0.83. There are 185
reference trees in our test subplots, and only 177 (81.6%) trees
were detected. In summary, the algorithm missed 34 (14.1%)
trees, and falsely detected 26 (18.1%) trees, with underdetection
outweighing overdetection (Table 5 and 6).

TABLE 5
Accuracy assessment results of LiDAR-based individual tree detection according to recall (r), precision (p) and F-score (F)

statistics parameters

Number of Trees Detected (NTD)

Subplots COV (%) LiDAR Reference FP FN TP r p F

1 46.21 13 16 1 4 12 0.75 0.92 0.83
2 46.87 16 18 2 4 14 0.78 0.88 0.82
3 50.66 8 6 2 0 6 1.00 0.75 0.86
4 56.55 5 5 0 0 5 1.00 1.00 1.00
5 60.31 4 4 0 0 4 1.00 1.00 1.00
6 63.02 4 4 0 0 4 1.00 1.00 1.00
7 64.71 9 8 1 0 8 1.00 0.89 0.94
8 67.13 7 5 2 0 5 1.00 0.71 0.83
9 71.41 16 17 3 4 13 0.76 0.81 0.79
10 71.45 18 21 2 5 16 0.76 0.89 0.82
11 74.33 20 23 4 7 16 0.70 0.80 0.74
12 76.93 11 10 2 1 9 0.90 0.82 0.86
13 80.56 23 27 3 7 20 0.74 0.87 0.80
14 85.58 15 13 3 1 12 0.92 0.80 0.86
15 83.48 8 8 1 1 7 0.88 0.88 0.88
Overall 66.41 177 185 26 34 151 0.82 0.85 0.83



564 CANADIAN JOURNAL OF REMOTE SENSING/JOURNAL CANADIEN DE TÉLÉDÉTECTION

TABLE 6
Accuracy assessment results for the individual-tree detection as a function of LiDAR-derived COV

Number of Trees Detected (NTD)

COV (%) LiDAR Reference FP FN TP r p F

≤ 70 60 53 9(17.0) 2(3.8) 51(96.2) 0.96 0.85 0.90
>70 117 132 17(12.9) 32(24.2) 100(75.8) 0.76 0.85 0.80
Overall 177 185 26(14.1) 34(18.1) 151(81.6) 0.82 0.85 0.83

FP: False positive; FN: False negative; TP: True positive; r: recall; p: precision and F: F-score.

The strongest results were obtained in test subplots with
COV < 70%, with 96% of the trees detected, commission and
omission errors limited to 17.0 and 2% and an F-score of 0.90.
When considering test subplots with COV > 70%, the algo-
rithm detected 76% of trees with commission and omission
errors of 13% and 24%, respectively (Table 6). The relation-
ship between the F-score and COV is shown in Figure 7. The
correlation is relatively strong, with a correlation coefficient of
0.91.

The LiDAR-derived HMAX ranged from 5.24 m to 31.91 m
with mean and standard deviation (SD) of 24.39 m and 3.18 m,
respectively. The LiDAR-derived CA ranged from 3.0 m2 to
204.5 m2, with mean and SD of 50.2 m2 and 24.74 m2, respec-
tively. The distributions of HMAX and CA are shown in the
Figure 8.

Imputation Modeling Estimates at Tree Level at the Test
Plots

The rStree algorithm matched 4,242 detected trees to field-
based trees (48.0%). From this total, 3181 (75%) trees were
used as training and 1061 (25%) trees were used as testing data
for imputation modeling.

The HMAX and CA metrics were better predictors of Ht
and V than BA. The imputed training model produced a relative
RMSD of 2.56%, 57.33% and 7.49%; relative BIAS of 0.08%,

FIG. 7. Relationship between LiDAR-derived COV and F-score
in the 15 test subplots.

−0.50% and 0.22%, and pseudo-R2 of 0.96, 0.22, and 0.95 for
the Ht, BA, and V attributes, respectively.

The imputed and observed Ht and V attributes from the vali-
dation dataset were statistically equivalent at the 25% rejection
region (Figure 9a,c). However, the imputed and observed BA

FIG. 8. Distribution of LiDAR-derived (A) HMAX and (B) CA values. The black line representsd a fitted distribution.



VOL. 42, NO. 5, OCTOBER/OCTOBRE 2016 565

FIG. 9. Equivalence test graphs for the imputed and observed longleaf pine tree attributes. (A) Tree Height Ht (m); (B) Tree Basal
Area - BA (m2); (C) Tree Stem Volume - V (m3), N = 1061. The equivalence plots design presented herein are an adaptation of
the original equivalence plots presented by Robinson (2015). The grey polygon represents the ± 25% region of equivalence for the
intercept, and the red vertical bar represents a 95% confidence interval for the intercept. The imputed tree attributes are equivalent
to the reference attributes when the red bar is completely within the grey polygon. If the grey polygon is lower than the red vertical
bar, the imputed attributes are biased low; if it is higher than the red vertical bar, the imputed forest attributes are biased high. The
grey dashed line represents the ± 25% region of equivalence for the slope, and the red vertical bar is contained completely within
the grey dashed line, the pairwise measurements are equal. A bar that is wider than the region outlined by the grey dashed lines
indicates highly variable predictions. The gray dots are the pairwise measurements, and the solid line is a best-fit linear model for
the pairwise measurements. The black dashed line represents the 1:1 line.

values were not statistically equivalent at the 25% rejection re-
gion (Figure 9b). The Ht and V imputation models produced
estimates that were strongly (r > 0.97) correlated with the vali-
dation inventory dataset, whereas the BA imputation model pro-
duced estimates of BA that were weakly correlated (r = 0.42)
with the validation data. The RMSD and BIAS values were rela-
tively low, whereas pseudo-R2 values were high for the Ht and V.
On the contrary, the RMSD and BIAS was relatively high, and
the pseudo-R2 relatively low, for the BA estimates. The distribu-
tions of imputed and observed forest attributes across all stands
from the testing dataset are shown in the Figure 10. In general,
the similarity between the observed and imputed attributes is
high.

Stand-Level Forest Attributes Estimates
The N of trees detected in the stands ranged from 35,980 to

52,184; mean tree Ht ranged from 21.10 to 23.17 m; mean tree
BA ranged from 0.09 to 0.10 m2 and mean tree V ranged from
0.79 to 0.96 m3, as presented in Table 7 Mean stand-level BA
was 10.73 m2/ha (SD = 2.69 m2/ha) and mean stand-level V was
99.94 m3/ha (SD = 26.25 m3/ha). We also graphed histograms
of imputed values for each stand and the shape of these distri-
butions (Figure 11). The distributions show that the NW stand
is the most mature, the NE stand has the highest proportion of
smaller trees, and the CNT stand has an intermediate structure.
These distributions provide more information that is subsumed
within the Ht, BA, and V mean and standard deviation trends
between stands, as summarized in Figure 5.

DISCUSSION

Individual Tree Detection
Accurate individual-tree attributes are critical for forest as-

sessment and planning. This study presents a simplified frame-
work for automated, LiDAR-based individual-tree detection and
modeling procedure for estimating tree attributes. The results
presented herein demonstrate that the total number of trees can
be derived with satisfactory accuracy.

We found that the successful identification of tree locations
using the local maximum technique depends on the careful se-
lection of the TWS. If the TWS is too small or too large, errors
of commission or, respectively, omission occur, as was also re-
ported by Wulder et al. (2000). Tree-detection accuracy was
greatly affected by the different TWS and SWS combinations
tested (Table 4). TWS was inversely proportional to the number
of trees detected in general. Because COV is directly propor-
tional to tree density in general, larger TWS is generally more
appropriate in open canopy forest structures. In this study, 70%
COV was the threshold chosen as the TWS; this is substan-
tially higher than the 50% threshold reported in previous stud-
ies (Falkowski et al. 2008) and represents a significant advance
in our ability to extract individual-tree attributes from denser
coniferous forest canopies. Even though different combination
of TWS and SWS would provide high accuracies in certain lo-
cal areas, a consistent TWS parameter is also advantageous for
automated tree detection across large spatial extents, and there-
fore, we employed the COV variable as a criterion for adapting
the TWS.
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FIG. 10. Imputed and observed tree attributes distribution from the testing dataset. (A), (B) and (C) represent Ht, BA, and V
distribution across the 3 stands. The numbers 1 and 2 represent the imputed and observed values. The black line represents a fitted
distribution, and the dashed vertical line represents the mean.

Smoothing is a common technique applied to LiDAR-derived
CHMs for individual tree detection purposes. In this study, we
tested the mean smoothing filter as a smoother. Khosravipour
et al. (2014) reported that the performance of individual-tree
detection was better using pit-free CHMs instead of a standard

smoothed Gaussian CHM (in a coniferous plantation forest in
Barcelonnette basin, southern French Alps, France). We ob-
served the same improvement, but then further applied the 3 ×
3 pixels SWS over the pit-free CHM to produce even more accu-
rate results. Applying the 3 × 3 pixels SWS the irregular crown
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TABLE 7
Estimated tree attributes summarized at the stand level

Ht (m) BA (m2) V (m3)

Stands NTD Mean Sd Mean Sd Total Mean Sd Total

NW 36958 23.17 4.14 0.10 0.07 3824.11 0.96 0.40 35658.33
CNT 52184 21.26 5.34 0.09 0.07 4478.04 0.80 0.49 42114.29
NE 35980 21.10 5.42 0.09 0.07 3119.95 0.79 0.49 28564.40

NTD = Number of Trees Detected

shapes that typify longleaf pine tree crowns (compared to other
conifers, which tend to have a more regular, conical shape),
thus eliminating spurious local maxima caused, for example, by
longleaf pine tree branches that were not already removed by
the pit-free CHM itself. Filter sizes and the conditions for filter-
ing the CHM must be carefully tested and selected for different
forest types (Lindberg and Hollaus 2012).

The tree-detection results from this study are comparable to
the results obtained in other studies using both point cloud and
raster-based approaches. Li et al. (2012), using a new method
for segmenting individual trees from the LiDAR point cloud in
a mixed conifer forest on the western slope of central Sierra
Nevada Mountains of California, USA, showed that the al-
gorithm detected 86% of the trees (“recall”), and 94% of the
trees were segmented correctly (“precision”), with an overall
F-score of 0.90. Vega et al. (2014), using the PTrees algorithm
to segment individual trees in a conifer plantation in south-
western France, reported overall recall, precision, and F-score
of 0.93%, 0.98%, and 0.95, respectively. Khosravipour et al.
(2014), comparing the accuracy of individual-tree detection
from the LiDAR-derived Gaussian smoothed and pit-free CHMs
in mixed forest in southern French Alps in France, achieved
an overall accuracy of 70.6% and 74.2%, respectively, from
high-density LiDAR, and 35.7% and 67.7%, respectively, from
artificially thinned, low-density LiDAR data. Lähivaara et al.
(2014), using a Bayesian approach to tree detection based on
LiDAR data, reported an accuracy of 70.2% for 2751 trees mea-
sured across 36 different field plots in a managed boreal forest
in Eastern Finland. Maltamo et al. (2004), in state-owned forest
located in Kalkkinen, southern Finland, using local maximum
and segmentation techniques, detected only 39.5% of all trees,
although the proportion of detected dominant trees was as high
as 83.0%.

In this study, the accuracy of individual-tree detection mea-
sured by the F-score, as expected, was inversely proportional
to forest COV. Overall, commission errors were more prevalent
in less dense test plots, and omission errors were more com-
mon where crowns overlapped. Previous research has shown
that tree-detection accuracy decreases with increasing canopy
cover (Falkowski et al. 2008). As also reported in Falkowski
et al. (2008), the influence of GPS error is also an unquantifi-
able source of uncertainty in the current study. Popescu (2007)
reported that treetop positions might be determined with higher

accuracy using a CHM image rather than error-prone measure-
ments derived from differential GPS in the field. Even though we
collected at least 20 GPS positions at each tree and performed
a differential correction, it can be argued that the field GPS
tree location is less accurate than the treetop location detected
from LiDAR, especially in high-canopy-cover conditions that
can degrade field GPS accuracy (Wing et al. 2008). For exam-
ple, in Figure 12, the reference tree location represented by the
black point (Figure 12a) and vertical black line (Figure 12b,c)
are located far away from the treetop location (white point, Fig-
ure 12a) and the point cloud peaks (Figure 12b). This leads to
a less accurate stem map in areas with high COV, ultimately
making it very difficult to objectively determine if a sample
tree had actually been detected in high-canopy-cover situations.
Moreover, the irregular shape of longleaf pine tree crowns likely
further reduces tree detection accuracy compared to most other
conifer species with more regular conical crowns.

Imputing Forest Attributes at Tree Level
In this study, we used an individual tree detection and crown

delineation approach to compute HMAX and CA, which were
subsequently employed as predictors to estimate tree-level met-
rics such as V and BA in a modeling framework (RF k-NN
imputation). This is the first study to detect individual trees and
model tree-level attributes using such an approach in longleaf
pine forest.

In the modeling process, before building the tree-level RF k-
NN imputation model, it was necessary to match individual trees
detected from the LiDAR-derived CHM with the associated
reference trees measured in the test plots. The rSTree was able
to match up 48.0% of all reference trees. Most of the missed trees
occurred in test plots with COV conditions over 70%. However,
even though an ideal situation (i.e., matching all the LiDAR and
reference trees) was not achieved, the rStree algorithm proposed
herein is still appropriate for tree matching when GPS errors in
the field-based stem map are an issue.

Error in estimating Ht, BA, and V came disproportionately
from young trees, although these comprised only 1.9% of the
total number of stems. Additional error could be attributed to
the 1-year difference between the LiDAR acquisitions (2008)
and field measurements (2009). Nevertheless, the accuracies of
the RF k-NN imputation model for imputing Ht and V were
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FIG. 11. Distribution of imputed tree attributes (Ht, BA, and V) across the 3 stands in the study area. The numbers from 1 to 3
represent the attributes Ht, BA, and V, respectively. The letters from (A) to (D) represent the NE, CNT, and NW, and all stands,
respectively. The black line represents a fitted distribution and the dashed vertical line represents the mean.

satisfactory, with RMSD in the cross-validation ranging from
2.96% to 8.19%, clearly surpassing the stated goal of less than
15%. However, the adjusted model was not able to accurately
model BA. However, the primary contributor to the high BA
estimation error is that the height–diameter allometry for lon-
gleaf pine breaks down after reaching a diameter of ∼25 cm,
when height growth asymptotes at ∼25 m (Gonzalez-Benecke
et al. 2014). The addition of crown-dimension attributes to a
biometric model can help, but in this study it did not explain
much BA variance.

The use of airborne LiDAR to retrieve forest attributes such
as Ht, V, and BA at tree level has been not widely studied, how-
ever, some previous studies have shown the great potential of this
technology to provide it. For example, Maltamo et al. (2009),
using LiDAR-based metrics and k-Most Similar Neighbor (k-
MSN) imputation for predicting tree-level characteristics from a
reference dataset comprising 133 trees, reported relative RMSEs
of 1.95%, 5.6%, and 11.0% for the Ht, DBH, and V attributes
estimation in 14 Scots pine (Pinus sylvestris L.) plots located
in the Koli National Park in North Karelia, eastern Finland.
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FIG. 12. Illustration of individual tree detection and crown delineation under different COV conditions. (1) COV = 90.96%; (2)
COV = 76.79%, and (3) COV = 58.66%. (A) 2D visualization of the tree location and crown delineation over the CHM. (B) 3D
visualization of the LiDAR point cloud and reference trees measured in the field. (C) 3D visualization of the LiDAR virtual forest,
and the reference tree locations.

Vauhkonen et al. (2010), working in mixed conifer mixed for-
est dominated mostly by Scots pine and Norway spruce (Picea
abies L. Karst.) in southern of Finland, employed k-MSN and
RF imputation methods simultaneously for estimating stem di-
mensions using LiDAR-based variables, and reported relative
RMSEs of 3%, 13% and 31%, for Ht, DBH, and V, respectively.
Vastaranta et al. (2014) using a multisource single-tree inventory
(MS-STI) in a broad mixture of forest stands located in Evo, Fin-
land, reported RMSEs ranging from 4.2% to 5.3%, from 10.9%
to 19.9% and from 28.7% to 43.5%, for Ht, DBH, and saw log
volume, respectively. Our accuracies were not higher than those
reports in Maltamo et al. (2009) and Vauhkonen et al. (2010).

However, it is difficult to compare these results with ours owing
to methodological and site differences.

Lindberg and Hollaus (2012) reported estimates of individual
tree BA that were more accurate based on the regression models
than those derived from identifying tree tops from local maxima
in the CHM in hemi-boreal forest in the southwest of Sweden.
Furthermore, Vauhkonen et al. (2010) reported that the variation
in RMSEs of 11%–15% for individual-tree BA estimation was
due to the type of method (k-MSN or RF), value of k, and
the set of predictor variables applied in the modeling process.
In another study, also in Evo, Finland, Kankare et al. (2015)
verified that the DBH accuracy was inversely proportional to
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tree density, where DBH accuracy decreased when tree density
increased.

Our BA results might be improved by optimizing k or adding
more individual tree metrics as predictors, such as canopy vol-
ume (Chen et al. 2007, Vauhkonen et al. 2010). Even though it is
time consuming, individual tree segmentation directly from the
LiDAR point cloud methods as presented by Reitberger et al.
(2009), Ferraz et al. (2012) and Yao et al. (2013) are considered
alternatives to increase the number of individual-tree metrics to
be derived from the LiDAR point cloud data, as can be accom-
plished with the rLiDAR package (Silva 2015). We have tested
the rLiDAR algorithms for individual-tree detection and crown
delineation on a CHM derived from airborne LiDAR at plot
and stand levels; the rLiDAR package is not designed to ingest
large LiDAR datasets, due to inherent memory limitations of
R compared to specialized LiDAR processing software such as
FUSION/LDV and LAStools.

Stand-Level Forest Attributes Characterization
The longleaf pine forest attributes estimates reported in this

study represent useful information for the study and manage-
ment of the longleaf pine forest at the Ichauway site. The spa-
tially detailed information such as the number, location, spacing,
size, Ht, BA, and V distribution of individual trees as available
in map form (not shown) helps managers achieve greater man-
agement and conservation efficiency. Forestry studies often pro-
duce estimates of the stand-level forest attributes and how they
change over time (Gonzalez-Benecke et al. 2014). Therefore,
distributions of forest structure attributes (Fig. 11) are relevant
for forest management and planning.

CONCLUSIONS
In this study, we investigated the use of LiDAR and RF k-

NN imputation for individual tree detection and forest attributes
modeling in longleaf pine forest. Overall, our method detects
individual trees with high accuracy in areas with < 70% COV.
The precision and accuracy of LiDAR in retrieving Ht and V
parameters at an individual-tree level using the framework pre-
sented was clearly demonstrated through a relative RMSE and
BIAS less than 15%. Even though the desired accuracy of BA
was not fully attained, the framework presented herein can serve
as a useful methodology, and the result will ultimately support
further study and management of longleaf pine forest ecosys-
tems in the study area. We hope that the promising results for
individual-tree-level forest-attribute modeling in this study will
stimulate further research and applications not just in longleaf
pine but other forest types.
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Maltamo, M., Mustonen, K., Hyyppä, J., Pitkänen, J., and Yu, X. 2004.
“The accuracy of estimating individual tree variables with airborne
laser scanning in a Boreal Nature Reserve.” Canadian Journal of
Forest Research, Vol. 34(No. 9): pp. 1791–1801.

Maltamo, M., Peuhkurinen, J., Malinen, J., Vauhkonen, J., Packalén,
P., and Tokola. P. 2009. “Predicting tree attributes and quality char-
acteristics of scots pine using airborne laser scanning data.” Silva
Fennica, Vol. 43(No. 3): pp. 507–521.

McGauchey, R.J. 2015. FUSION/LDV: Software for LiDAR
Data Analysis and Visualization. Forest Service Pacific
Northwest Research Station USDA, Seattle, accessed Oct.
15 2015, <http://http://forsys.cfr.washington.edu/fusion/ FU-
SION manual.pdf>.

McRoberts, R.E., Næsset, E., and Gobakken, T. 2015. “Optimizing
the k-nearest neighbor technique for estimating forest aboveground
biomass using airborne laser scanning data.” Remote Sensing of
Environment, Vol.163: pp. 13–22.

Nelson, M.D., Healey, S.P., Moser, W.K., Maser, J.G., and Cohen,
W.B. 2011. “Consistency of forest presence and biomass predictions
modeled across overlapping spatial and temporal extents.” Mathe-
matical and Computational Forestry & Natural Resource Science,
Vol. 3(No. 2): pp. 102–113.

Nilsson M. 1996. “Estimation of tree heights and stand volume using
an airborne LiDAR system.” Remote Sensing of Environment, Vol.
56: pp. 1–7.

Oswalt, C.M., Cooper, J.A., Brockway, D.G., Brooks, H.W., Walker,
J.L., Connor, K.F., Oswalt, S.N., and Conner, R.C. 2012. History and
Current Condition of Longleaf Pine in the Southern United States.
Report No. 166. Southern Research Station, Asheville, NC, USA. >
US Department of Agriculture Forest Service.

Palik, B., Mitchell, R.J., Pecot, S., Battaglia, M., and Pu, M. 2003.
“Spatial distribution of overstory retention influences resources and
growth of longleaf pine seedlings.” Ecological Applications, Vol. 13:
pp. 674–686.

Pang, Y., Lefsky, M., Andersen, H.E., Miller, M.E., Sherrill, K., 2008.
“Validation of the ICEsat vegetation product using crown-area-
weighted mean height derived using crown delineation with dis-
crete return LiDAR data.” Canadian Journal of Remote Sensing,
Vol. 34(No. 2): pp. 471–484.

Popescu, S.C. 2007. “Estimating biomass of individual pine trees us-
ing airborne LiDAR.” Biomass and Bioenergy, Vol. 31(No. 9): pp.
646–655.

Popescu, S.C., Wynne, R.H., and Nelson, R.F. 2003. “Measuring indi-
vidual tree crown diameter with LiDAR and assessing its influence
on estimating forest volume and biomass.” Canadian Journal of
Remote Sensing, Vol. 29(No. 5): pp. 564–577.

R Core Team. 2015. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Aus-
tria, accessed Oct. 15 2015, <http://www.R-project.org≥.

Racine, E.B., Coops, N.C., St-Onge, B., and Begin, J. 2014. “Esti-
mating forest stand age from LiDAR-derived predictors and nearest
neighbor imputation.” Forest Science, Vol. 60(No. 1): pp. 128–136.
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nen, H., Hyyppä, J., Hyyppä, H. 2014. “Multisource single
tree inventory in prediction of tree quality variables and log-
ging recoveries.” Remote Sensing, Vol. 6(No. 4): pp. 3475–
3491.

Vauhkonen, J., Ene, L., Gupta, L., Heinzel, L., Holmgren, J., Pitkãnen,
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