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Abstract

Context Multispecies and multiscale habitat suit-

ability models (HSM) are important to identify the

environmental variables and scales influencing habitat

selection and facilitate the comparison of closely

related species with different ecological requirements.

Objectives This study explores the multiscale rela-

tionships of habitat suitability for the pine (Martes

martes) and stone marten (M. foina) in northern Spain

to evaluate differences in habitat selection and scaling,

and to determine if there is habitat niche displacement

when both species coexist.

Methods We combined bivariate scaling and maxi-

mum entropy modeling to compare the multiscale

habitat selection of the two martens. To optimize the

HSM, the performance of three sampling bias correc-

tion methods at four spatial scales was explored.

HSMs were compared to explore niche differentiation

between species through a niche identity test.

Results The comparison among HSMs resulted in the

detection of a significant niche divergence between

species. The pine marten was positively associated with

cooler mountainous areas, low levels of human distur-

bance, high proportion of natural forests and well-

connected forestry plantations, and medium-extent

agroforestry mosaics. The stone marten was positively

related to the density of urban areas, the proportion and

extensiveness of croplands, the existence of some scrub

cover and semi-continuous grasslands.

Conclusions This study outlines the influence of the

spatial scale and the importance of the sampling bias

corrections in HSM, and to our knowledge, it is the
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first comparing multiscale habitat selection and niche

divergence of two related marten species. This study

provides a useful methodological framework for

multispecies and multiscale comparatives.

Keywords HSM � Scale dependency � Sampling

bias � Niche divergence � Maxent � Pine marten � Stone

marten

Introduction

Habitat suitability models (HSM, Girvetz and Greco

2009; Koreň et al. 2011; Bellamy et al. 2013), also

referred as species distribution models (SDM, Kramer-

Schadt et al. 2013; Syfert et al. 2013; Fourcade et al.

2014) or environmental (or ecological) niche models

(ENMs, Warren et al. 2010; Warren and Seifert 2011),

have become a fundamental tool in ecology and

biogeography as they correlate the presence of species

at multiple locations with relevant environmental

covariates to estimate habitat preferences and/or predict

species distributions (Elith et al. 2011). The identifica-

tion of the factors constraining species presence is

central to identify the most suitable areas for a

particular taxa, to infer relative probability of occur-

rence in areas where no systematic surveys have been

conducted (Fourcade et al. 2014), to assess the potential

expansion of invasive species (e.g. Elith et al. 2010;

Jiménez-Valverde et al. 2011) or to estimate future

ranges under different climate change scenarios (e.g.

Khanum et al. 2013). HSMs can also be particularly

useful to explore the environmental characteristics

conditioning several species’ overlapping ranges in

order to quantitatively estimate the niche divergence in

related species and to infer the roles of competitive

interaction (e.g. Wellenreuther et al. 2012). This

application is particularly interesting as a species’

realized niche could be restricted by competition with

sympatric congeners (Anderson et al. 2002).

Most species records are only available in the form

of presence-only datasets (PO), which provide solid

information regarding the species’ presence but no

direct data regarding absences (Pearson et al. 2007).

Thus, in recent decades, there has been an increasing

focus on developing methods to work with this

information (reviewed in Yackulic et al. 2013).

MAXENT (Phillips et al. 2006) is one of the most

commonly used HSM techniques dealing with PO data

(Elith et al. 2006, 2011; Syfert et al. 2013). All PO

based HSM methods work under the assumption that

the entire area under study has been systematically and

randomly sampled (Elith et al. 2011). Yet, most

datasets include spatially biased presence records.

Lately, the effect of sampling bias in model perfor-

mance has increasingly been acknowledged and

several correction methods have been proposed to

improve model accuracy (Anderson and Gonzalez

2011; Kramer-Schadt et al. 2013; Syfert et al. 2013;

Brown 2014). Consequently, Fourcade et al. (2014)

recommended evaluating several types of corrections

before choosing the final correction method based on

(a) their effect in classical model evaluation metrics

(e.g. AUC) and (b) the adequacy of the produced

habitat suitability map to a priori knowledge of a given

species distribution.

To produce a realistic HSM, habitat features must be

measured at spatial resolutions that are relevant to the

organism being modeled based on its ecological

adaptations and life-history strategy, as species use

habitats differently at widely divergent scales (Johnson

1980; Cushman and McGarigal 2004; Graf et al. 2005).

Even when the correct variables are employed, the

incorrect specification of the scale at which scale-

dependant characteristics operate could lead to a

dramatically different interpretation of which factors

are actually influencing the occurrence of a given

species (e.g. Thompson and McGarigal 2002; Girvetz

and Greco 2009; Bellamy et al. 2013; Shirk et al. 2014).

Nevertheless, there is no a priori way to infer the grain

and extent at which each environmental predictor is

most strongly related to species presence (Shirk et al.

2012). Therefore, habitat suitability modeling has

shifted from models based exclusively in expert’s

opinion to increasingly complex multiscale models to

reveal the true grain at which species respond to the

landscape. Multiscale HSMs allow more accurate

predictions of species occurrence based on the system-

atic variation of the scale of analysis of each variable to

find the dominant scale at which they operate to build

the models (e.g. Shirk et al. 2012). In this context,

recent studies conducted on mammals (e.g. Wasserman

et al. 2012; Bellamy et al. 2013; Mateo-Sánchez et al.

2013; Shirk et al. 2014) have demonstrated the

effectiveness of multiscale approaches.

The European pine marten (Martes martes) and the

stone marten (Martes foina) are two closely related
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mustelids living sympatrically over a wide area of

Europe (Proulx et al. 2004), and the northern Iberian

Peninsula represents both the southern limit of the pine

marten distribution and the southernmost area of

sympatry in southwestern Europe (Fig. 1). These

species share similar biological characteristics (e.g.

body-size, trophic niche or activity patterns) making it

challenging to reliably determine differences in

distribution based on observational data (Proulx

et al. 2004). The application of molecular methods

on non-invasively collected faecal samples has proven

to be a cost-effective way to reliably verify and

monitor these elusive species’ presence (e.g. Ruiz-

González et al. 2013) and thus, also useful to build PO

dataset for HSM purposes.

Recent studies have revealed that the pine marten is

not as obligately dependent on forest habitats as

previously believed (Virgós et al. 2012) and may be

capable of colonizing agricultural landscapes contain-

ing highly fragmented woodland and forest patches

(Mergey et al. 2011; Balestrieri et al. 2015). However,

the pine marten is either threatened or rare in many

countries, while the stone marten’s geographic range

has expanded due to its behavioral plasticity, broader

habitat niche and less vulnerability to anthropogenic

impacts (Proulx et al. 2004; Goszczyński et al. 2007;

Herr et al. 2009). Despite their extensive overlapping

range, few studies addressing the differences in the

pine and the stone marten habitat associations have

been conducted (e.g. Goszczyński et al. 2007;

Posłuszny et al. 2007; Larroque et al. 2015) and

currently no in-depth studies have been published on

their multiscale habitat selection (Virgós et al. 2012).

The goal of this paper is to compare and contrast

pine and stone marten multiscale habitat selection in a

sympatric area of northern Spain by investigating how

different environmental characteristics, measured at

varying spatial scales, shape the distribution of each

species. Subsequently, we compared the performance

of three methods of sampling bias correction (Four-

cade et al. 2014) to improve the predictions of the final

habitat suitability maps. Finally, the resulting HSMs

were compared to explore niche differentiation among

the species. To our knowledge, this is the first study

comparing multiscale habitat selection of two sym-

patric marten species to clarify their habitat prefer-

ences and niche divergence when coexisting.

Materials and methods

Study area

The study area comprises the regions of the Basque

Country and Navarre and the surrounding territories of

Cantabria, Castille and Leon and La Rioja (northern

Spain, Fig. 1). The area is located in the southern

range limit of the pine marten where it occurs

sympatrically with the stone marten. The study area

is 31,500 km2 with forest covering 31.3 %, non-

Fig. 1 Map of the study area showing the distribution of the pine and stone marten records used to build the models. Each land cover

type is shaded in a different color. The inset presents the species ranges and overlap in Europe. (Color figure online)
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forested mountains 27.3 %, cultivated lands 26.8 %

and urban, infrastructure and remaining land cover

types 14.6 % of the territory, respectively. Elevation

ranges from sea level to 2017 m (Mount Ori, Pyre-

nees). Three biogeographic regions converge in the

area, including Atlantic, Mediterranean and Alpine,

roughly corresponding to three sections with varying

landscape compositions: the northern Basque Coun-

try, mainly covered by forestry plantations and highly

fragmented natural forests; the north-eastern Navarre,

dominated by continuous natural forest systems; and

extensive cultivated lands and urban areas located

primarily in the southern areas of both provinces

(Fig. 1).

Marten presence data: combining long-term non-

invasive genetic sampling and species records

from different field data sources

Two main sources of PO data were used in this study to

accurately assess the spatial distribution of both

species. First, we used faecal sampling to collect

non-invasive genetic samples from both species across

the study area between 2005 and 2012. Martens and

other carnivores use forest roads and frequently

defecate on them as a way of visual-scent marking

(Birks et al. 2004). Thus, sampling was conducted

opportunistically along linear features, such as forest

trails and/or rural paths, to increase sampling proba-

bility. As Martes sp. faeces cannot be distinguished

from each other visually and can also be easily

confused with those of other carnivores (Davison et al.

2002; Ruiz-González et al. 2008), we applied a

mtDNA molecular method that effectively identifies

the species (Ruiz-González et al. 2008). Additionally,

we included unequivocal species records from road-

killed, live-trapped, hair-trapped (confirmed by

genetic identification and morphological characteris-

tics of hairs) and/or camera-trapped individuals

obtained in the framework of different carnivore

surveys funded by regional or national administrations

(Spanish Ministry of Environment, Regional Govern-

ments of Navarre and Basque Country and Alava and

Bizkaia Provincial Councils; Table S1 in Online

Appendix). The locations of the genetically identified

faeces and those from different sources were com-

bined to build a single PO dataset for each study

species (Table S1 in Online Appendix).

Environmental layers

The environmental variable set comprised a total of 40

variables belonging to five categories (Table 1). All

variables were resampled to a UTM projection

(ETRS89) with a 30 m cell size. Nine land cover

types were derived from the land use information

obtained in vector format from the Spanish Forest Map

at scale 1:50,000 (Spanish Ministry of Agriculture,

Food and Environment 2006). FRAGSTATS software

v 4.2 (McGarigal et al. 2012) was used to calculate

(a) five landscape level metrics characterizing land-

scape composition, configuration and edge contrast,

and (b) four class composition and configuration level

metrics (Table 1). Elevation data was obtained from a

25 m resolution Spanish Digital Elevation Model

(Spanish Geographical National Institute; CNIG

2008) to calculate the Focal Mean Elevation (ELEV),

Compound Topographic Index (CTI) and Roughness

(ROUGH) using the Surface Gradient and Geomor-

phometric Modeling tool (Evans et al. 2014) in

ArcGIS v.10.0 (ESRI). The density of highways

(HWS), national (NAT) and autonomic roads

(AUT), were assessed separately derived from the

1:25,000 scale spatial products developed by CNIG to

incorporate the anthropogenic disturbance. To test the

influence of temperature in each marten distribution

the mean annual temperature (Iberian Climate Atlas;

AEMET 2011) was included among the analyzed

variables.

Each variable (Table 1) was independently tested at

6 scales using circular windows with radii of 1, 2, 4, 8,

16 and 32 km (i.e. a univariate HSM for each variable/

scale combination. See step 1 below). This analysis is

multi-scale because it evaluated the relationships

between marten occurrence environmental variables

across six spatial scales of environmental data. The

scales were defined in space, but not time, as we

employed nested circular windows applied to a

common set of GIS layers derived at the same

temporal scale. We chose a range of six spatial scales

of focal neighborhood extent (1–32 km) since they

span the range of scales that martens can plausibly

interact with across their lifetime movements (from

within home range habitat use to patterns of popula-

tion connectivity affected by dispersal), and these

ranges of scales have previously been found to explain

habitat selection in the pine marten (e.g. Zalewski

et al. 2004), the stone marten (Herrmann 1994) and
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other marten species (e.g. Wasserman et al. 2012;

Shirk et al. 2014). HWS, NAT, AUT, ELEV, ROUGH

and CTI were additionally tested at high-resolution

scale (125, 250 and 500 m).Our analysis only varied

focal neighborhood extent and not grain of the

underlying spatial data. In our analysis we used an

empirical optimization using the MAXENT statistical

procedure to identify the best scale for each predictor

variable.

Marten HSMs

Habitat selection is hierarchical (Johnson 1980) and

occurs at multiple spatial scales (Wiens et al. 1987).

Our analysis was effectively single-level correspond-

ing roughly to Johnson’s (1980) level 2 habitat

selection of home ranges within the species range or

study area, even though our unit of observation was

individual detections rather than home ranges. The

critical factor in this regard was our use of the study

area as the basis for defining availability.

The main methodological steps followed to build

the marten HSMs, and to explore the ecological niche

divergence among them, were summarized in a

workflow (Fig. 2), while details of the steps are

reported bellow.

Step 1: variable pre-selection: bivariate scaling

and variable pruning

We conducted an initial bivariate scaling step to test at

which scale each variable was most strongly related to

the species presence (Fig. 2, Step 1). In this step, each

variable (Table 1) at each scale was run independently

for each species in MAXENT (Phillips et al. 2006), the

most widely used HSM software for predicting species

distributions from PO data and a set of environmental

variables (Fourcade et al. 2014). MAXENT is a

presence-background algorithm that compares occur-

rence localities with a sample of background pixels to

create a prediction of suitability which, according to

Elith et al. (2010), produces robust results with sparse,

irregularly collected occurrence records, and minimal

Table 1 The set of 40 independent variables considered for analysing multiscale martens habitat suitability

Variable type Metric Abbreviation

Human pressure Highways density HWS

National road density NAT

Autonomic roads density AUT

Topographic Focal mean of elevation ELEV

Roughness ROUGH

Compound Topographic Index CTI

Climatic Mean annual temperature TEMP

Landcover (landscape-level metrics) Aggregation index AI

Contrast-weighted Edge Effect CWED

Edge density ED

Patch density PD

Shannon Diversity Index SHDI

Landcover (class-level metrics) Patch density PD_(Nat, Fp, Ag, Pa, Scr, Cr, Urb)

Area-weighted mean AREAam_(Nat, Fp, Ag, Pa, Scr, Cr, Urb)

Gyrate_am GYR_(Nat, Fp, Ag, Pa, Scr, Cr, Urb)

Percentage of landscape PLAND_(Nat, Fp, Ag, Pa, Scr, Cr, Urb)

Variables are grouped into five categories (Human pressure, topographic, climatic, and landcover landscape-level and class-level

metrics). The four class level variables (PD, AREAam, GYR, PLAND were calculated for each of the seven land cover types

considered. All layers were produced at six different spatial scales (1, 2, 4, 8, 16 and 32 km) except for HWS, NAT, AUT, ELEV,

ROUGH, CTI that were additionally analyzed at high-resolution scale (125, 250 and 500 m)

In landcover class-level metrics: Nat natural forest, Fp forestry plantations, Ag agroforestry mosaics, Pa pastures, Scr scrublands, Cr

crops, Urb urban areas
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location errors (Elith et al. 2006). Thus, all models

were computed in MAXENT v.3.3 using the following

parameters as described in Mateo-Sánchez et al.

(2013): 20,000 background points, a maximum of

5,000 interactions linear and quadratic functional

relations (LQ). We selected LQ only as they prevent

locally idiosyncratic responses that can result from

incorporating higher-order polynomials, and are easier

to interpret from an ecological perspective (Syfert

et al. 2013). A random subsample of 75 % of the

species occurrence points were used to fit the model

(‘‘train’’) and the remaining 25 % to assess model

performance (‘‘test’’). We used the AUC values (Area

Under the receiver operating characteristic Curve,

Fielding and Bell 1997) to compare the performance

of the single variable models, selecting the scale at

which the variable showed the highest AUC value and

discarding the rest (e.g. Mateo-Sánchez et al. 2013).

We used AUC (Phillips et al. 2009; Aguirre-Gutiérrez

et al. 2013) as the scaling criterion as it is the most

commonly used metric for model quality assessment

(Kramer-Schadt et al. 2013). MAXENT performs well

in the presence of correlated variables; however, it

remains desirable to remove highly inter-correlated

variables in multivariate analysis to avoid multi-

collinearity (Mateo-Sánchez et al. 2013). Hence, the

candidate set of variables was pruned, discarding the

variable (at the best performing scale) with the lowest

AUC of each variable pair presenting a Pearson

correlation coefficient C 0.7 (Bellamy et al. 2013).

Step 2: multivariate model building

Only those variables remaining after the bivariate

scaling and variable pruning steps were included in the

multivariate models. 300 HSMs per species were

constructed, each containing a different set of five

randomly selected predictors (Mateo-Sánchez et al.

2013), including variables belonging exclusively to

the same category and combinations of two or more

categories (Table 1). The main reason for combina-

tions of sets of five variables was to avoid overfitting

by adding spurious variables. Besides, by having all

models with the same total number of variables it

ensures that they are comparable in terms of number of

parameters, which is related to variance explained.

Multivariate HSMs, built combining five variables,

were run in MAXENT with the same parameters used

in the bivariate scaling step.

To evaluate model performance, each species’

multivariate models were ranked according to their

AUC values while the relative predictive power of

each variable was assessed based on the jackknife

measure of test AUC. Then, we explored the 10 top

performing models for each species (i.e. those show-

ing the highest AUC values) to compare the incidence

of the environmental predictors and select the best raw

Fig. 2 Study workflow including the input files used and the

consecutive steps done to build the HSMs and to test martens’

niche divergence. *Optimized HSM for each species. **Opti-

mized model combination
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multivariate HSM for each species (models run

without any bias correction; i.e. Mm_rA and Mf_rA).

Finally, to estimate how the scale optimization

affected the predictive performance of the HSMs, we

compared the best performing multiscale models

(Mm_rA and Mf_rA) with those built with the same

variables but measured at each single scale (i.e. 1, 2, 4,

8, 16 and 32 km).

Step 3: sampling bias correction methods

One limitation of HSMs, especially when occurrence

localities are derived from opportunistic observations

rather than representative surveys, is the presence of

sampling bias, where some areas in the landscape (i.e.

easily accessible areas, near roads or towns) are

sampled more intensively than others (Phillips et al.

2009). This geographic sampling bias can strongly

affect the reliability of HSMs when important areas of

the environmental space suitable for species are

missing, poorly represented, or overrepresented, lead-

ing to spurious results and inappropriate management

decisions (Kramer-Schadt et al. 2013; Fourcade et al.

2014). When information quantifying sampling effort

exists, it can be used to correct for sampling bias.

However, in empirical studies this information is often

unknown (Fourcade et al. 2014). Thus, we imple-

mented three of the correction methods applied in

Fourcade et al. (2014), to address the most plausible

sources of sampling bias in our dataset. We used SDM

toolbox v.1.1 (Brown 2014) for ArcGIS v.10.0 (ESRI

2014) to: (a) rarefy the species occurrence data (SR);

(b) to produce sampling probability maps (GK); and

(c) to restrict the background area (DP) at four spatial

scales.

(a) SR With the aim of eliminating the influence of

spatial clusters of localities, the spatially rarefy

occurrence data tool was used to reduce the

locality records to a single point within the

specified Euclidian distance. The resulting

datasets for each marten, with filtered locations

at 1, 2, 4 and 8 km radii, were later used as each

species’ presence records. Then, we ran MAX-

ENT to produce four HSMs per species com-

bining the spatially rarefied locations and the

environmental predictors included in the best

HSMs.

(b) GK We produced a bias grid that up-weighted

PO data points with fewer neighbors in the

geographic landscape using the Gaussian Ker-

nel Density of sampling localities tool. This

sampling probability surface (showing values of

1 to reflect no bias and higher values represent-

ing increasing bias) was computed including

both marten species’ locations to focus on the

widespread spatial sampling biases as the

probability of detecting either species is, a

priori, the same. Each derived Gaussian Kernel

map (at 1, 2, 4 and 8 km) was implemented in

the bias file option in MAXENT together with

the environmental predictors included in each

marten best HSMs.

(c) DP To prevent using background data from

environmental conditions outside the range

sampled we used the sample by distance from

observation point tool which tells MAXENT to

sample background points within a maximum

buffer size of 1, 2, 4 and 8 km from known

occurrences. Each background restriction mask

was implemented in the bias file option in

MAXENT.

Ten replicates per model (both raw and 12 corrected

HSMs per species) were built following a resampling

method, randomly selecting a subsample of 25 % of

observation records for model validation in each

replicate.

To compare and evaluate the corrected HSM’s fit,

we employed two threshold-independent and one

threshold-dependent metrics. First, to assess differ-

ences in the general model fit we used the AUCTEST

which, although criticized (Lobo et al. 2008; Warren

and Seifert 2011), is appropriate for comparison of

models produced with different settings but for the

same species in the same study region, as in this case

(Lobo et al. 2008; Anderson and Gonzalez 2011).

Then, to quantify overfitting, we employed AUCDIFF,

the difference between AUC values based on training

(AUCTRAIN) and test (AUCTEST) localities (Warren

and Seifert 2011). As a final test of model performance

we assessed the spatial patterns of the presences

predicted as present and the presences predicted as

absent of the HSMs. For this purpose, we chose as

probability threshold MAXENT’s maximum training

sensitivity plus the specificity logistic threshold

(MTR), which has been shown to produce accurate
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predictions (Jiménez-Valverde and Lobo 2007; Sven-

ning et al. 2008). Then, models were converted to

binary maps (presence/absence) selecting the MTR of

each model as a cut-off, where values above the

threshold are predicted as a presence and values below

as an absence (Syfert et al. 2013). Additionally, raw

and corrected HSMs were visually examined and

evaluated based on expert knowledge on the distribu-

tion of each species and the habitat types in with they

are known to occur to ensure reliability and to identify

the best performing final HSMs (e.g. Brown 2014;

Radosavljevic and Anderson 2014).

Step 4: marten niche divergence

First, to explore spatial niche separation, we calculated

and visually examined the spatial difference between

relative probability of occurrence values of the two

species’ for the different HSMs: (a) raw HSMs, and

(b) the corrected HSMs according to two different

criteria (i) those outperforming the raw in all afore-

mentioned criteria and, (ii) those HSMs with the

lowest percentage of presences predicted as absent

(Fig. 2, step 4).

Further, to statistically test if models produced for

each species were more different than expected by

chance, we computed an identity test in ENMtools

v.1.4 (Warren et al. 2008, 2010), for the aforemen-

tioned three comparisons, by comparing the observed

measure of niche overlap (Schoener’s D and Hellin-

ger’s I metrics) to a null distribution calculated with

100 replicates, in which the null hypothesis of niche

identity is rejected when the empirically observed

value is significantly different from the pseudo-

replicate data set (Warren et al. 2010).

Results

Marten presence data

From the 972 faecal samples collected, we selected

899 samples that were the freshest and highest quality

for genetic analysis. 754 were genetically identified as

one of the two marten species (Table S1 in Online

Appendix). Thus, unequivocal species identification

was possible in 83.87 % of the samples. In the

remaining 16.12 %, the DNA extracted was not

amplified by the primers used. The results of non-

invasive genetic sampling together with the combina-

tion of unequivocal species records obtained in the

framework of different carnivore surveys (n = 532),

resulted in a PO dataset with 541 pine marten and 745

stone marten locations to build the HSMs.

Bivariate scaling and variable pruning

The predicted relative habitat suitability, for each

environmental variable at each scale and species,

revealed high sensitivity of habitat relationships to the

scale at which habitat variables were measured

(Table S2 in Online Appendix). Comparisons among

different scales revealed that most metrics were most

strongly related to marten’s habitat suitability at

broad-scales (16–32 km, 48.75 %), including all three

categories of road density and the majority of land-

cover class-levels metrics across cover types. A clear

difference between the stone and the pine marten was

found regarding landcover landscape-level metrics

(AI, CWED, ED and PD). While variables measured at

broad scale performed best for the pine marten,

variables at medium-scales (4–8 km) did better for

the stone marten. Patch density (PD) for six of the

seven landcover classes (except for patch density of

natural forest, PD_Nat) had best performance at fine-

scales (1–2 km) in both species. The CTI was the only

metric selected at a high-resolution scale (125–

500 m). After pruning, 22 variables remained from

the initial set of 40, 18 of which were shared by both

species at diverse scales and four were unique to each

species (Table S2 in Online Appendix).

Performance of multivariate HSMs

Among the 10 best performing multivariate models for

each species (Table 2) the HSMs produced for the

pine marten showed substantially higher discrimina-

tion ability, as measured by AUC (AUC = 0.818–

0.835) than those for the stone marten (AUC =

0.720–0.724). The best predictions of both species’

habitat suitability were produced using variables

measuring human-pressure (NAT, AUT, HWS), land-

cover metrics (SHDI, PLAND_Nat, Scr, Cr, Urb;

PD_Fp, Ag, Pa, Cr, Urb; AREAam_Cr) and climatic

(TEMP) metrics. Topographic variables (Rough and

CTI) were not included in any high-performing

models.
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The most important predictor of both species’

occurrence was the percentage of urban areas

(PLAND_Urb). The density of urban patches

(PD_Urb) was also an important predictor. The

influence of the human impact was further evidenced

by the inclusion of both the percentage and the density

of crops patches in all the stone marten models

(PLAND_Cr, PD_Cr) and the correlation length of

agroforesty mosaics (GYR_Ag) in nine out of 10 pine

marten models. Although to a lesser extent, the three

types of road density metrics (HWS, AUT and NAT)

were also included. The percentage of natural forested

areas (PLAND_Nat) and patch density of forestry

plantations (PD_Fp) were highly related to pine

marten habitat suitability. Temperature was present

in each of the pine marten’s best performing models,

whereas the area covered by scrublands (PLAND_Scr)

was associated with the presence of the stone marten.

We found substantial differences in predictive

performance between the multiscale HSMs with the

highest AUC (Mm_rA and Mf_rA, Table 2) and the

corresponding single-scale models at 1, 2, 4, 8, 16 and

32 km (Fig. S1 in Online Appendix). Multiscale

models showed higher discrimination ability, as

evidenced by larger AUC values. Among the single-

scale models, those including all variables measured at

1 km showed the weakest performance in the pine

(AUCMM = 0.790) and the stone (AUCMF = 0.653)

marten. The maximum performance for a single scaled

model was archived at 8 km for the pine marten

(AUCMM = 0.810) and at 32 km for the stone marten

(AUCMF = 0.702), but were weaker than the opti-

mized multiscale HSMs (AUCMM = 0.835;

AUCMF = 0.724, Fig. S1 in Online Appendix).

Bias correction methods in marten HSMs

No correction method (GK, SR, DP) or scale (1, 2, 4,

8 km) ranked best based on the three evaluation criteria

(AUCTEST, AUCDIFF, % presences predicted as absent;

Table 3) for both martens. For the pine marten, only

corrected models run with the Gaussian Kernel bias files

(Mm_cGK) presented higher AUC values than the raw

model. Mm_cGK and Mm_cDP presented lower over-

fitting (AUCDIFF), in contrast to what was observed for

the Mm_cSR models. Regarding model sensitivity (%

of actual presences correctly predicted), the best results

were obtained for Mm_cGK and Mm_cSR models,

while no Mm_cDP model showed higher values than the

raw model. Only Mm_cGK2 outperformed the raw

model in all pine marten comparisons, presenting higher

AUC, smaller AUCDIFF values and slighter presences

predicted as absent rate. Within the stone marten

models, only corrections with Mf_cGKs improved the

predictive performance and reduced the overfitting. The

proportion of presences predicted as absent was reduced

in almost all Mf_cDP and Mf_cGK models but not in

any Mf_cSR model. Mf_cGK1 and Mf_cGK2 were the

only models outperforming the raw model in all

comparisons.

The distributions of presences predicted as present

(PP) and presences predicted as absent (PA) of (a) raw

HSMs (Mm_rA and Mf_rA), (b) corrected HSMs

(i) outperforming the raw HSMs in all aforementioned

criteria (Mm_cGK2 and Mf_cGK2) and (ii) corrected

HSMs with the lowest percentage of PA (Mm_cGK8

and Mf_cGK4) were visually explored (Fig. S2 in

Online Appendix). Overall, correcting for geographic

sampling bias led to a drop in the actual locations that

were predicted as absences (%PA, Table 3) and an

increase in the area available for each species

(%AREA, Table 3). In the pine marten models, no

significant increase in %PA was found in the Basque

Country area (Fig. S2 in Online Appendix). In Navarre

(n = 134), however, PA were reduced by 21.6 %

(Mm_cGK2) and 74.7 % (Mm_cGK8). Correcting for

sampling bias also resulted in a smaller decease in PA

in the stone marten (3.6 %, Mf_cGK2 and 17.8 %

Mf_cGK4).

Raw and corrected multiscale HSMs

Three final habitat suitability maps are presented for

the pine marten (Fig. 3). The first is the raw Mm_rA,

built with PLAND_Urb, PLAND_Nat, Temperature,

GYR_Agr and PD_Fp variables at the best performing

scale (Table 2) without spatially rarefying occurrence

records or applying any bias file. Based on this model,

we can clearly distinguish a region of mostly contin-

uous natural forested area and forestry plantations

from 800 to 1500 m showing the highest probability of

presence for the pine marten. A smaller patch on the

west was also identified as an area of elevated

probability. The optimal area of the pine marten was

well-delimited with the probability decreasing sharply

(Fig. 3). The second and third maps correspond to the

corrected Mm_cGK2 and Mm_cGK8 models, built

using the same variable set, but including a bias file
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with sampling probabilities based on Gaussian Kernels

at 2 and 8 km, respectively. Accounting for sampling

bias resulted in an increase in the percentage of

optimum area available for the species (Mm_cGK2:

24.65 %; Mm_cGK8: 39.32 %) and a homogenization

of the differences in probability. This resulted in the

recognition of the Pyrenean range (near the French

border) as a very suitable area for the pine marten,

accurately reflecting the known pattern of occurrence.

Thus, the Mm_cGK8 model was selected as the optimal

pine marten HSM due to its more realistic predictions.

Stone marten HSMs showed, on average, lower

predictive performance than the pine marten and no

areas of AUC[ 0.8 were identified (Table 3). Stone

marten models were built with PLAND_Urb,

PLAND_Cr, PLAND_Bus, AREAam_Cr and PD_Pa

variables at the best performing scale. Habitat suit-

ability values decreased gradually showing a wide

gradient from very optimal (0.7–0.8) to optimal

(0.5–0.7) and suboptimal conditions (\0.35).

Although to a lesser extent, accounting for sampling

bias also resulted in an increase in the suitable range

for the stone marten (Table 3). As a result, based on

the Mf_cGK4 model, the species could be more likely

found in an extensive and continuous central region

(Basque Country and north-western Navarre). Only

Table 3 Performance of three correction methods (DP distance to points, GK Gaussian kernel, SR spatial rarefaction at four scales

for the pine (Mm_c) and the stone marten (Mf_c)

SP Model N AUCTEST AUCDIFF MTS %PA %PP %AREA

Pine marten Mm_cDP1 541 0.698 0.012 0.4759 34.38 65.62 35.00

Mm_cDP2 541 0.735 0.013 0.4444 34.01 65.99 31.49

Mm_cDP4 541 0.770 0.007 0.4380 33.83 66.17 24.55

Mm_cDP8 541 0.798 0.005 0.4542 35.49 64.51 20.96

Mm_cGK1 541 0.813 0.004 0.4832 32.90 67.10 19.37

Mm_cGK2 541 0.807 0.004 0.4937 29.21 70.79 24.65

Mm_cGK4 541 0.801 0.005 0.4931 26.06 73.94 29.2

Mm_cGK8 541 0.772 0.006 0.4339 19.22 80.78 39.32

Mm_cSR1 322 0.755 0.011 0.4447 32.61 67.39 29.54

Mm_cSR2 241 0.743 0.013 0.4177 19.92 80.08 36.55

Mm_cSR4 138 0.702 0.032 0.3942 23.19 76.81 43.26

Mm_cSR8 62 0.670 0.055 0.4542 33.87 66.13 38.44

Mm_rA 541 0.804 0.011 0.4234 31.42 68.58 19.04

Stone marten Mf_cDP1 745 0.586 0.004 0.4840 35.03 64.97 53.15

Mf_cDP2 745 0.601 0.013 0.4546 22.42 77.58 60.09

Mf_cDP4 745 0.645 0.022 0.4372 23.89 76.11 50.06

Mf_cDP8 745 0.706 0.005 0.4324 23.76 76.24 43.61

Mf_cGK1 745 0.722 0.002 0.4517 23.36 76.64 39.84

Mf_cGK2 745 0.720 0.008 0.4700 24.70 75.30 42.67

Mf_cGK4 745 0.682 0.022 0.4879 21.07 78.93 45.90

Mf_cGK8 745 0.641 0.011 0.4922 30.60 69.40 47.01

Mf_cSR1 466 0.694 0.003 0.4502 30.47 69.53 40.37

Mf_cSR2 355 0.663 0.012 0.4551 28.45 71.55 44.39

Mf_cSR4 232 0.652 0.014 0.4595 33.19 66.81 44.57

Mf_cSR8 99 0.583 0.081 0.4909 49.49 50.51 36.37

Mf_rA 745 0.718 0.009 0.4294 25.64 74.36 38.77

‘‘SP’’ refers to the species, ‘‘N’’ to the number of samples included in the model and ‘‘MTRS’’ to the Maximum training sensitivity

plus specificity logistic threshold from MAXENT, ‘‘%PA’’ to the percentage of presences predicted as absent, ‘‘%PP’’ to the

percentage of presences predicted as present and ‘‘%AREA’’ to the percentage of area above the threshold. (e.g. Mm_cDP1 refers to

the corrected HSM for the pine marten using distance to points method at 1 km scale). Values outperforming those for the raw

models are reported in bold
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few localities bordering the study extent are predicted

to be non-suitable for the stone marten. The Mf_cGK4

model, which presented the lowest PA rate and which

showed the highest consistency with existing knowl-

edge of the stone marten distribution, was selected as

the stone marten optimized HSM.

Environmental predictors of marten’s occurrence

Based on the top performing corrected HSM for the

pine marten (Mm_cGK8) the most important variable

(31.2 % contribution) was the proportion of the

landscape covered by urban areas measured at

32 km, showing a unimodal relationship peaking at

13 % cover by urban land uses (Fig. 4). Other

important predictors were the percentage of natural

forests and temperature (26.1 and 20.3 %, respec-

tively). Relative probability of occurrence increased

until the area occupied by natural forest reached its

maximum (100 %, based on an area with a radius of

2 km) revealing a clear preference for this cover type.

The temperature curve showed the opposite, depicting

a dramatic drop in probability of occurrence as

temperature rose. GYR_Agr provided a measure of

landscape continuity of the agroforestry mosaics, and

was positively correlated to the species presence at

fine scales (200–800 m) and contributed 18.6 % to the

model. The contribution of the patch density of

Fig. 3 Habitat suitability maps produced by MAXENT for the

pine and the stone marten for three model combinations (raw

models: Mm_rA-Mf_rA, and corrected models: Mm_cGK2-

Mf_cGK2 and Mm_cGK8-Mf_cGK4) averaged across 10

replicates. The Mm–Mf comparisons display the relative

probability of each marten presence calculated from the

subtraction of the stone marten probability of occurrence to

the corresponding pine marten’s model. These maps are

represented in a gradient from the maximum probability for

the pine marten (in green) to the maximum probability for the

stone marten presence (in purple). (Color figure online)

cFig. 4 Response curves as estimated from MAXENT showing

log response of each marten to five environmental predictors.

Probability of presence (logistic output) is shown on the y-axis

while the range of the environmental predictor is shown in the

x-axis. To prevent that the interaction of variables affect the

relationship modeled, the response curves are based on

univariate models. Mean response of the 10 replicates is shown

in red while the standard deviation is shaded in blue. (Color

figure online)
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forestry plantations (PD_Fp) at wide scale (32 km)

was slight (3.8 %) but positively related to the pine

marten occurrence up to intermediate values.

The most important variable (contribution of

39.2 %) in the best corrected HSM for the stone

marten, (i.e. Mf_GK4), was the percentage of land-

scape covered by urban areas measured at 32 km, with

the response curve showing suitable areas between 7

and 24 % and with maximum probability at 15 %

(Fig. 4). The second variable in terms of importance

(18.6 %) was the percentage of crops at 4 km

(PLAND_Cr) with probability maximal at 20 %. The

stone marten was more likely to be found in areas with

a very low density of scrublands (\6 %; PLAND_Scr)

and in areas dominated by moderately large cropland

patches (with an optimum size around 0.035 km2;

AREAam_Cr) both at the broadest scale evaluated

(32 km; Fig. 4). Stone marten occurrence was addi-

tionally influenced (7.5 %) by the patch density of

pastures (PD_Pa), with relative probability of occur-

rence decreasing as the density of pasture patches

increased at fine-scale (2 km).

Marten niche divergence

The spatial differences in the relative probability of

occurrence values for the two species revealed their

divergence in habitat selection (Fig. 3). All three com-

parative maps revealed similar patterns, with the greener

areas indicating a higher probability of finding pine

martens than stone martens, and declining gradually with

the growth in the likelihood of stone marten presence,

shown in purple (Fig. 3). The pine marten occurrence is

predicted to be concentrated in the forests and scrublands

of the western part of the study area, in the large and

continuous natural forested area of northern Navarre and

in the forested mountain ranges along the Cantabric-

Mediterranean watershed boundary. On the other hand,

the stone marten primarily selects the forestry plantations

and valleys in the northern Basque Country and the

extensive croplands in the south. The species was also

found close to the cities where the probability of the pine

marten was negligible. However, the stone marten is the

only marten recorded in the natural forested areas of the

more temperate southern region.

The Identity test further highlighted that the pine and

stone marten niches were significantly different

(p\ 0.01) as indicated by the disparity between the

null distribution (Fig. 5) and niche overlap values of

both metrics observed for the comparative of the

optimized HSMs (Mm_cGK8-Mf_cGK4; D = 0.786

and I = 0.859). The niche dissimilarity between

martens was also detected for the Mm_rA-Mf_rA

(D = 0.709 and I = 0.809) and Mm_cGK2-Mf_cGK2

(D = 0.770 and I = 0.851; Fig. 5) combinations.

Discussion

Effect of scale in marten’s habitat selection

Habitat selection of both pine and stone marten were

determined by habitat predictors at divergent spatial

scales. Fisher et al. (2013) found that the spatial scale

of habitat selection of a species was related to body

Fig. 5 Result for the niche identity test according to a Schoener’s

D metric. b Hellinger’s I metric. Martens measured niche overlap

between species for the Mm_rA-Mf_rA, Mm_cGK2-Mf_cGK2

and Mm_cGK4-Mf_cGK8 HSMs combinations are reported with a

simple,double and adashedarrow respectively while thehistogram

in white illustrates the distribution of overlaps from the

pseudoreplicates
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size in 12 terrestrial mammals. The bigger the species,

the larger the distance at which an animal would

perceive landscape elements (i.e. its perceptual range).

In this study, each of the evaluated scales (1–32 km)

was represented among the most predictive variable/

scale combination. Most variables were selected at

32 km (32.5 %), indicating that martens respond to

most landscape features at larger scales than predicted

based on body size alone.

Interestingly, road density metrics (evaluated at 9

scales) improved their predictive performance at

medium and high scales (8–32 km) despite what

could have been expected if the inclusion of road

casualties was biasing the predictive performance of

the species HSMs. The strongest predictor for both

species (PLAND_Urban) showed a very similar

response (13–15 %), a result that has to be carefully

interpreted. Using circular windows of 32 km, most of

the territory holds similar percentages of urban areas

due to the heterogeneous configuration of the territory,

with a number of scattered small villages and isolated

houses and barns spread across the area. Thus, the

similar values obtained in both mustelids are

explained by the high availability of urban habitats

at the explored scale.

The multiscale approach outperformed the single-

scale multivariate HSMs for both species, further

supporting the scale dependence of the pine and stone

marten habitat selection and corroborating previous

studies conducted on martens (Martes spp. Bissonette

and Broekhuizen 1995; Martes americana, Shirk et al.

2012, 2014; Wasserman et al. 2012) and other

mammals, such as the brown bear (Ursus arctos,

Mateo-Sánchez et al. 2013) and several bat species

(Bellamy et al. 2013).

Environmental predictors shaping marten’s

occurrence

The optimized HSM for the pine marten (i.e.

MmcGK8), which showed that the species was posi-

tively associated with cooler areas with a small degree

of human disturbance, a high proportion of natural

forests, well-connected forestry plantations and med-

ium-extent of agroforesty mosaics, is highly consistent

with ecological knowledge about the species. For

example, forested habitats are key features for all

Martes species (Buskirk and Powell 1994; Zalewski

and Włodzimierz 2006). Forest offer the best

combination of abundant food resources, low risk of

predation and well insulated denning sites (reviewed in

Virgós et al. 2012). In a recent study conducted in Italy,

the distribution and density of pine marten scats

(confirmed by DNA analysis) revealed their preference

for woodlands (Balestrieri et al. 2015) while its

abundance was found to be related to the structure

and degree of fragmentation of residual woods.

In our study, as expected, both the percentage of

natural forests (PLAND_Nat) and the presence of

continuous forestry plantations (PD_Fp) were among

the best predictors of the pine marten occurrence. The

species was closely associated with natural forests,

selecting the best preserved and connected mountain-

ous forested regions. Brainerd and Rolstad (2002)

found that forest structure was a more important

determinant of the pine marten habitat selection than

forest composition and age. Concordantly, presence

was also related to connectivity between woodlands

(in this case, composed by plantation forests), with

relative probability of occurrence higher in unbroken

patches than in fragmented forestry landscapes.

The pine marten has been persistently considered to

be a forest specialist. Yet, recent studies indicate

greater habitat flexibility, and it has been found in

agricultural and fragmented landscapes (Balestrieri

et al. 2010; Mergey et al. 2012; Virgós et al. 2012;

Ruiz-González et al. 2014; Balestrieri et al. 2015). In

this study, the extent of agroforestry mosaics was

among the variables most related to the species’

occurrence. This finding is in agreement with Ruiz-

González et al. (2014) where, in addition to wood-

lands, pine marten gene flow was facilitated by

agroforestry mosaics, which represent a transition

from forest to agriculture. One possible explanation is

that, in fragmented landscapes of temperate regions,

the diversity of a wide range of habitat patches

promotes higher diversity of food resources than

continuous forests (Rosalino and Santos-Reis 2009).

This ‘‘habitat-diversity’’ hypothesis has been shown to

be related to elevated bird species diversity in

moderately fragmented landscapes (e.g. Cushman

and McGarigal 2004).

The optimized HSM for the stone marten (i.e.

Mf_cGK4) clearly showed that the species’ presence

was conditioned by the density of urban areas, the

proportion and extensiveness of croplands, the exis-

tence of some scrub cover and the availability of semi-

continuous grasslands. In a recent study, the stone
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marten was more often detected in rural areas (74.8 %)

than in forested habitats (25.2 %; Santos and Santos-

Reis 2010). We also found a tendency of the species to

select human associated environments, mostly exten-

sive agricultural areas with a high density of villages.

However, in the Iberian Peninsula the stone marten is

not as synanthropic (Delibes 1983; Santos and Santos-

Reis 2010) as in other parts of Europe (e.g. Germany,

Luxemburg or Poland), where it is very common in

suburban and urban areas, often denning and resting in

buildings and barns and causing damage to roofs,

insulation and car engines (Proulx et al. 2004;

Tikhonov et al. 2008; Herr et al. 2009). The less

synantropic behavior of the Iberian stone marten was

observed by the greater influence of the density of

urban areas at the highest scale (32 km) that at the

lowers, as expected in a more urban-associated

carnivore. In addition to urban environments, med-

ium-sized croplands and small scattered pastures

together with some shrub cover, which provide food,

shelter and areas of lower predation risk (Buskirk and

Powell 1994; Herrmann 1994), were the main determi-

nants of stone marten habitat selection. Thus, its

presence was better explained by the simultaneous use

of different human dominated landcover types. This

result is in concordance with those reported by Barri-

entos and Virgós (2006) and Santos and Santos-Reis

(2010), where individuals followed a complementa-

tion/supplementation strategy with a temporal segrega-

tion of food resources, corroborating the importance of

mosaic habitats for stone martens compared to strict

forest habitats (Virgós et al. 2000; Virgós and Garcı́a

2002; Santos and Santos-Reis 2010).

Importance of bias correction methods in HSMs

building

All datasets derived from opportunistic samplings are

likely to suffer from geographic bias, which can

strongly affect the predictive performance of the

HSMs (Fourcade et al. 2014). In addition, when

dealing with common and widespread species, obser-

vations are frequently under-reported (Fourcade et al.

2014). However, such data are often the only data

available for many species, and must be used with

caution, employing the most appropriate sampling

bias correction.

To date, no consensus exists regarding the most

appropriate metrics and thresholds for selecting from a

candidate set of models (Lobo et al. 2008; Warren and

Seifert 2011; Kramer-Schadt et al. 2013). In the raw

HSMs, the areas predicted as the most suitable for each

species tightly matched those with the highest density

of species records, indicating effects of sampling bias.

The application of GKs reduced overfitting due to the

clumped locations, increased the AUC, halved the PA

in the pine marten HSMs, decreased error rates up to

20 % in the stone marten, and improved the predictions

of the raw models in the Pyrenean region (NE

Navarre), tightly matching the areas where the pine

marten has been documented to occur. Thus, GKs led

to the most realistic potential ranges for these mustelids

based on the knowledge of their distribution and the

climatic and landcover variables in the area.

Unexpectedly, SR, identified as the most effective

sampling bias correction method in recent papers

(Kramer-Schadt et al. 2013; Boria et al. 2014;

Fourcade et al. 2014), performed poorly across all

criteria and spatial resolutions and, in most cases,

produced poorer HSMs than the raw ones. DP

corrections were also among the less efficient correc-

tion methods, in congruence to results reported by

Fourcade et al. (2014). Based on the evidence, we

strongly recommend evaluating several correction

methods and choosing the one that suits each partic-

ular species, sampling scheme and objective best.

Niche divergence in sympatric martens

Even if both mustelids are widespread through the area

and can coexist locally in some forested regions, the

optimized intraspecific HSM comparison (Mm_cGK

8-Mf_cGK4) showed well-delimited distribution pat-

terns and a clear spatial segregation and niche

divergence, which was further supported by the results

of the niche identity test. Several factors are known to

affect the niche segregation among martens enabling

coexistence, such as differences in habitat selection,

diet, thermoregulation and competitive interactions

(Goszczyński et al. 2007; Posłuszny et al. 2007;

Virgós et al. 2012; Larroque et al. 2015; Wereszczuk

and Zalewski 2015). In agreement with previous

studies (Delibes 1983; Rosellini et al. 2008; Ruiz-

González et al. 2008, 2015) we observed that the pine

marten in northern Spain was most frequently found in

forested landscapes whereas the stone marten was

often associated with agricultural and suburban land-

scapes, showing clear niche segregation. The observed
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pattern could be a product of the interspecific compe-

tition among martens, favoring the slightly bigger pine

marten, with the stone marten occupying higher

quality forests when pine marten is absent and

expressing niche displacement away from preferred

pine marten habitats when co-occurring (Delibes

1983; Virgós and Garcı́a 2002; Virgós et al. 2012).

The smaller extent of high probability areas of the

pine marten occurrence could be s a consequence of

both the direct persecution during recent decades and

the increasing effects of forest fragmentation and loss

(López-Martı́n 2007; Ruiz-González et al. 2015). The

stone marten, which shows a greater behavioral

plasticity, would likely have colonized areas previ-

ously inhabited by the pine marten, increasing the

isolation of its subpopulations (Ruiz-González et al.

2015).

In this study, conducted on the south-western edge

of a Eurosiberian species range, temperature played an

important role in driving pine marten distribution,

which showed a clear preference for cooler and higher

elevation environments. The pine marten, which

occurs further north, is morphologically better adapted

to harsh winters with hairy feet and a denser fur than

the stone marten (Wereszczuk and Zalewski 2015).

Hence, temperature can be considered a limiting factor

determining the southwesternmost pine marten distri-

bution across the area, constraining the species

southward expansion and shaping the differences in

habitat selection of the two species. The stone marten,

however, is less influenced by temperature and could

find suitable habitats across the whole temperature

range of the study area. Consequently, the actual

distribution of the pine marten is likely to be further

reduced under a climate change scenario, while an

increase in temperature could benefit the more ther-

mophilic stone marten.

In this study we described how these species can co-

occur in certain areas but how each species is

influenced by a different set of variables explaining

their distribution. A comparison conducted in central

Poland showed how these closely related species can

coexist by differentiating in the use of three-dimen-

sional space in forests and their response to open areas

and transformed habitats (Goszczyński et al. 2007). A

telemetry based study revealed how the species

differed in resting patterns (pine martens rested almost

exclusively in forest while stone martens rested in

open zones in the proximity of urban areas) and thus in

habitat use, which enables coexistence in the same

macrohabitat (Larroque et al. 2015). Additionally,

Wereszczuk and Zalewski (2015) found that the pine

and stone marten utilized different habitats in central

Europe and almost completely separated their habitat

niches. Certainly, the fine resolution (pixel size) of the

environmental variables employed was essential to

explore the preferences of each marten species in a

landscape of highly intermixed small patches, and to

detect the significant niche divergence found among

martens that otherwise may remain unknown. Overall,

the spatial niche segregation between pine and stone

marten described in this work seems to facilitate the

pine and the stone marten coexistence in the Iberian

Peninsula.

Conclusions

Our results emphasize the importance of analyses

conducted at appropriate spatial scales, providing

additional support for the need of HSM that account

for the scale at which each environmental character-

istic is measured. In addition, the incorporation of the

Gaussian Kernel method for sampling bias correction

led to a robust prediction of each species distribution,

and was more accurate than raw models and the two

alternative bias correction methods. Based on these

results we recommend that all PO based HSMs should

account for sampling bias.

Overall, the pine marten was positively associated

with cooler areas with a small degree of human

disturbance, a high proportion of natural forests, well-

connected forestry plantations and medium-extent of

agroforesty mosaics. On the other hand, the stone

marten presence was conditioned by the density of

urban areas, the proportion and extensiveness of

croplands, the existence of some scrub cover and the

availability of semi-continuous grasslands.

The high resolution sampling grain selected

resulted in the inclusion of small but important

landscape elements and patches, particularly decisive

in a fragmented and heterogeneous area, which

allowed the detection of the significant niche diver-

gence found in the closely related marten species co-

occurring in northern Spain. To our knowledge, this is

the first study comparing multiscale habitat selection

and niche divergence of two related marten species.

Further, this study provides a useful methodological
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framework for multispecies and multiscale

comparisons.
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