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Abstract: Disturbance is a critical ecological process in forested systems, and disturbance maps
are important for understanding forest dynamics. Landsat data are a key remote sensing dataset
for monitoring forest disturbance and there recently has been major growth in the development of
disturbance mapping algorithms. Many of these algorithms take advantage of the high temporal data
volume to mine subtle signals in Landsat time series, but as those signals become subtler, they are
more likely to be mixed with noise in Landsat data. This study examines the similarity among seven
different algorithms in their ability to map the full range of magnitudes of forest disturbance over
six different Landsat scenes distributed across the conterminous US. The maps agreed very well in
terms of the amount of undisturbed forest over time; however, for the ~30% of forest mapped as
disturbed in a given year by at least one algorithm, there was little agreement about which pixels
were affected. Algorithms that targeted higher-magnitude disturbances exhibited higher omission
errors but lower commission errors than those targeting a broader range of disturbance magnitudes.
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These results suggest that a user of any given forest disturbance map should understand the map’s
strengths and weaknesses (in terms of omission and commission error rates), with respect to the
disturbance targets of interest.

Keywords: remote sensing; change detection; Landsat time series; forest disturbance

1. Introduction

Forest ecosystems are strongly influenced by disturbance processes that interact with the climate
and other environmental factors to alter their state and function. For example, in Europe, increases in
insect, wind, and fire disturbances, first noted in the 20th century, have continued into the 21st century
and are thought to be strong contributors to a recently observed saturation of the forest carbon sink [1].
Disturbances can range from high-impact, discrete events (such as fires, windstorms, and deforestation,
all of which dramatically and sometimes permanently alter forest conditions [2]) to subtler and often
gradual and chronic processes that require many years to unfold (such as prolonged droughts that
result in partial reduction in canopy cover and increased insect activity [3,4]). Although high-impact
disturbances can have immediate and profound effects on forest function, especially locally, they are
generally far less common than subtler disturbances that accumulate over time and space, often having
significant aggregate effects on forest function [5,6]. In the context of this inclusive description of forest
disturbance, the goal of this study is to explore the ability of seven different remote sensing algorithms
to map forest disturbance and the consistency among the algorithms in doing so.

Remote sensing has long played an important role in characterizing forest disturbance [7],
and systematically collected, global remote sensing datasets are key to emerging forest monitoring
programs [3,8]. Forest disturbance monitoring benefits greatly from retrospective analyses, as these
help establish historic relationships between human (e.g., land use, forest policy and management)
and natural (e.g., fire, wind, insects and disease) disturbance drivers, disturbance patterns,
and post-disturbance recovery or resilience dynamics [9]. Data from the Moderate Resolution
Imging Spectrometer (MODIS) sensors have played an important role in forest monitoring during the
21st century [10], but the relatively coarse spatial resolution of these data precludes the detection of the
myriad of small and subtle disturbances that are so prevalent across the Earth’s forests [3,11]. Landsat,
with an over-40-year global record of near-30-m resolution data, is thus far the best remote sensing
option for resolving the full range of disturbance occurrences [6,12].

Over the past several years there have been significant advances in disturbance mapping algorithms
that use Landsat data [13], taking advantage of the high-quality data archive that became freely available
in 2008 [14]. Users of forest disturbance maps now have a palette of new products becoming available
to choose from and they need to understand which are best suited to their needs. In this study, we
examine seven specific algorithms that push the frontier of forest disturbance mapping by utilizing
unprecedented numbers of Landsat images. As such, these algorithms perform high temporal density
analyses that have the potential to yield improved temporally and spatially detailed disturbance maps.
Below, we summarize the salient differences among these algorithms; for detailed specifications of the
individual algorithms, refer to the algorithms’ source citations listed in Table 1.

Generally, the algorithms used here differ in their specificity with respect to target populations
(Table 1), detecting discrete, gradual (i.e., trends) or both types of disturbances, having different
sensitivities to disturbance magnitudes based on thresholding, and by limiting analyses to different
land cover types. Those that focused exclusively on forests either targeted a broad range of disturbance
magnitudes (LandTrendr, Landsat-based detection of Trends in Disturbance and Recovery; EWMACD,
Exponentially Weighted Moving Average Change Detection; VeRDET, Vegetation Regeneration and
Disturbance Estimates Through Time) or a more limited range of magnitudes (VCT, Vegetation Change
Tracker). One algorithm targeted a broad range of disturbance magnitudes across forest, woodland,
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and shrub communities (ITRA, Image Trends from Regression Analysis). The others focused on
disturbance across all land cover types, but targeted a more limited range of magnitudes (MIICA,
Multi-index Integrated Change Analysis; CCDC, Continuous Change Detection and Classification).
LandTrendr and VeRDET targeted both discrete events and gradual trends, whereas ITRA targeted
only gradual trends, and VCT, EWMACD, MIICA, and CCDC targeted only discrete events.

Table 1. Algorithms used to derive forest disturbance map products evaluated in this study. See
citations for greater detail.

Algorithm Citations Disturbance Target
Population

Bands/Indices,
This Study Basic Approach

LandTrendr (Landsat-based
detection of Trends in
Disturbance and Recovery)

[15]

Discrete events and gradual
trends; broad range of
disturbance magnitudes;
forests only

NBR
Temporal segmentation of
annual series; pixel as
analysis unit

ITRA (Image Trends from
Regression Analysis) [16]

Gradual trends; broad range
disturbance magnitudes;
all woody vegetation

NDVI
Slope of annual series over
multi-year epochs; pixel as
analysis unit

VCT (Vegetation
Change Tracker) [17]

Discrete events; limited
range of disturbance
magnitudes; forests only

Forestness Index

Multi-year departure of
annual series from
previous year; pixel as
analysis unit

EWMACD (Exponentially
Weighted Moving Average
Change Detection)

[5]
Discrete events; broad range
of disturbance magnitudes;
forests only

NDVI

Multi-year departure from
phenology model based on
every clear observation
from previous years;
pixel as analysis unit

MIICA (Multi-index
Integrated Change Analysis) [18]

Discrete events; limited
range of disturbance
magnitudes; all land
cover types

NBR, NDVI,
Change Vector,

Relative Change
Vector

Bi-temporal differencing of
annual series; pixel as
analysis unit

CCDC (Continuous Change
Detection and Classification) [19,20]

Discrete events; limited
range of disturbance
magnitudes; all land
cover types

Bands 2–5, 7

Multi-year departure from
phenology model based on
every clear observation
from previous years;
pixel as analysis unit

VeRDET (Vegetation
Regeneration and
Disturbance Estimates
Through Time)

[21]

Discrete events and gradual
trends; broad range of
disturbance magnitudes;
forests only

NDMI

Temporal segmentation of
annual series; pixel as
analysis unit (after initial
spatial segmentation)

The algorithms varied in terms of how the spectral, spatial, and temporal domains were
exploited. Most used a single spectral band or index (LandTrendr, ITRA, VCT, EWMACD, VeRDET),
while others used multiple bands or indices (MIICA, CCDC), and all used the pixel as the unit of
analysis (although VeRDET used pre-defined polygons for spectral smoothing, and VCT defined
a forest norming population based on image statistics [17]). Most algorithms used a single spectral
observation per year to construct an annual time series, whereas EWMACD and CCDC used every
clear observation for all years to derive a phenology model. LandTrendr and VeRDET used a temporal
segmentation to define disturbances, ITRA calculated slopes of spectral trends across specific temporal
epochs, VCT sought multi-year departures from the previous years’ values, MIICA used bi-temporal
differencing, and EWMACD and CCDC sought multi-year departures from modeled expectations.

Maps from each of the seven individual algorithms evaluated here have been independently
evaluated for quality and all performed well when compared against unique reference datasets
representing their different target populations (see citations in Table 1). However, to date, there have
been no independent and in-depth inter-comparative analyses of disturbance map products derived
from these algorithms, many of which are pushing the magnitude boundaries of disturbance detection.
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Comparative analyses are important so that potential users understand the limitations and relevance
of these products for specific applications.

Some interesting and important general questions arise in the context of in-depth comparative
analyses among disturbance map products: How much agreement is there among the forest
disturbance maps derived from these algorithms? Is agreement a function of spectral change magnitude
associated with apparent disturbances? How sensitive are the algorithms to the spectral change
magnitudes associated with a full range of disturbance severities? With these broad questions in mind,
we addressed the following specific questions:

1. How do the map products derived from the seven algorithms (Table 1) agree in terms of
aggregate area disturbed over six Landsat scenes distributed across diverse forested regions
of the conterminous US? Similarly, how do these compare with disturbance area estimates
determined from an independent probability sample where disturbance was identified by human
interpretation using the TimeSync-based methodology [22]?

2. How much agreement is there at the pixel level among the map products in their spatial depictions
of forest disturbance over time?

3. Compared to a reference dataset, how do mapped disturbance omission and commission differ
among the map products, and how closely related are these to the spectral change magnitude?

2. Materials and Methods

2.1. Study Scenes

Six areas widely dispersed across the conterminous US were the focus of this study (Figure 1).
These areas were defined as the non-overlapping portions of six individual, Landsat frames,
known as TSAs (Thiessen Scene Areas; [15]), from the second World Reference System (WRS-2)
grid. The six scenes (given by numeric WRS-2 Path/Row) included: 12/28 in northern Maine; 14/32 in
eastern Pennsylvania and New Jersey; 16/37 in coastal South Carolina; 27/27 in northern Minnesota;
35/32 in northwestern Colorado; and 45/30 in western Oregon. The Canadian portion of scene 12/28
was excluded from the study, as was the significant section of the Atlantic Ocean in 16/37. These scenes
were selected to represent a wide range of forest ecosystems, which ensured that a diversity of forest
type groups (Table 2) and forest change processes (e.g., harvest, fire, insects, and urbanization as
depicted in Figure 5 of [23]) were available for comparing map products.

Table 2. Area of forest type groups in each Landsat scene (Path/Row). Data from [24].

Area (ha) per Landsat Path/Row

Forest Type Group 12/28 14/32 16/37 27/27 35/32 45/30 Total

White/Red/Jack Pine Group 644 94 0 35,288 0 0 36,025
Spruce/Fir Group 661,588 19 0 430,213 0 0 1,091,819

Longleaf/Slash Pine Group 0 0 5631 0 0 0 5631
Loblolly/Shortleaf Pine Group 0 163,956 1,069,100 0 0 0 1,233,056

Pinyon/Juniper Group 0 6600 0 0 168,969 8131 183,700
Douglas-fir Group 0 0 0 0 2388 445,938 448,325

Ponderosa Pine Group 0 0 0 0 3119 597,481 600,600
Western White Pine Group 0 0 0 0 0 388 388

Fir/Spruce/Mountain Hemlock Group 0 0 0 0 267,994 401,731 669,725
Lodgepole Pine Group 0 0 0 0 82,356 367,031 449,388

Hemlock/Sitka Spruce Group 0 0 0 0 0 350 350
Other Western Softwood Group 0 0 0 0 94 75 169
California Mixed Conifer Group 0 0 0 0 0 631 631

Exotic Softwoods Group 0 38 0 0 0 0 38
Oak/Pine Group 0 14,231 37,681 38 0 0 51,950

Oak/Hickory Group 0 408,519 41,188 256 0 0 449,963
Oak/Gum/Cypress Group 0 10,625 454,731 0 0 0 465,356

Elm/Ash/Cottonwood Group 81 14,506 10,606 9356 1056 0 35,606
Maple/Beech/Birch Group 673,650 37,350 0 14,581 0 0 725,581

Aspen/Birch Group 24,188 925 0 1,023,113 359,781 231 1,408,238
Alder/Maple Group 0 0 0 0 0 6 6
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Table 2. Cont.

Area (ha) per Landsat Path/Row

Forest Type Group 12/28 14/32 16/37 27/27 35/32 45/30 Total

Western Oak Group 0 0 0 0 120,150 369 120,519
Tanoak/Laurel Group 0 0 0 0 0 19 19

Other Western Hardwoods Group 0 0 0 0 100 0 100
Total Forest Area 1,360,150 656,863 1,618,938 1,512,844 1,006,006 1,822,381 7,977,181

Total Non-Forest Area 121,700 1,407,844 314,000 287,844 1,074,863 164,625 3,370,876
Total Scene Area 1,481,850 2,064,706 1,932,938 1,800,688 2,080,869 1,987,006 11,348,056

Percent Forest 91.8 31.8 83.8 84.0 48.3 91.7 70.3
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Figure 1. Locations within the United States of the six study scenes (WRS-2 Path/Row). Forest type
groups used by the US Forest Service, Forest Inventory and Analysis program are displayed for context
(adapted from [24]).

2.2. Landsat Images, Synthetic Images, and Map Products

All map products were based on a common stack of Landsat time series images for each of the six
scenes. To construct the stacks, all available TM and ETM+ images (1984–2012) in standard L1T format
were downloaded from the archive, after derivation of surface reflectance using LEDAPS [25,26].
Accompanying each image was a LEDAPS-derived cloud mask, and an additional cloud mask derived
for each image with Fmask [27]. For map production, two algorithms used all clear pixels from all
available images (CCDC, EWMACD) and three used annual image composites with a target date of
August 6, based on algorithm-specific techniques (LandTrendr, VCT, VeRDET; see citations, Table 1).
Two algorithms (ITRA, MIICA) used synthetic images generated from all available data in L1T stacks,
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based on the time series model components of the CCDC algorithm [19,20], which is similar to the
harmonic regression basis of EWMACD [5]. The time series model incorporated the seasonality,
trend, and breaks contained in every clear pixel of the Landsat time series for each spectral band.
The predicted images used in this study were for August 6th of every year.

The L1T image stacks and synthetic data were distributed among the algorithm developers,
who each ran their respective algorithms on the selected datasets described above and returned basic
algorithm output (see citations in Table 1) to a central location. Basic output included, depending
on algorithm, multiple discrete disturbances at different times over the time series, and/or multiple
consecutive years of change commonly associated with gradual disturbance. To compare the maps
on a common basis, we extracted information identifying where and for what years disturbances
were detected. For gradual disturbances, all years where consecutive disturbance was identified were
included. We then created an annual set of binary time series disturbance maps, labeling all mapped
pixels as disturbed or not disturbed for each year. The first two (1984, 1985) and last (2012) years
of imagery were used by all algorithms, but as these bounded the time series they were generally
unreliable for disturbance detection. Thus, each disturbance map set (one per algorithm) for each
scene started with 1986 and ended with 2011. The forest type group map from [24] was used to trim
all map sets for each scene to a common forest mask before comparison.

2.3. Reference Data

The TimeSync Landsat time series visualization and change data collection tool [22] was used to
collect change reference data for this study. TimeSync enabled accurate disturbance characterizations
for pixel-level samples of Landsat time series data, relying on human interpretations of change
as viewed in image chip series, spectral index trajectories, high spatial resolution image temporal
snapshots from Google Earth, and other ancillary disturbance products. TimeSync and similar
approaches have been used or recommended in a variety of settings [6,9,15,28–31] and the interested
reader is directed there for more detailed descriptions of the system and its potential usage.

Within each scene, 300 pixels were selected using simple random sampling, without respect
to land cover. Each sampled pixel was interpreted for forest disturbance occurrence, noting for
each occurrence the first year of detection (a year between 1986 and 2011), the duration for gradual
disturbances (in number of years), and the causal agent class (harvest, fire, decline, wind, other).
Disturbance spectral change magnitude was calculated using the Tasseled Cap angle (TCA) index [32],
in relative terms, as the difference between the pre-disturbance and post-disturbance TCA values
divided by the pre-disturbance value [6]. Dividing this result by duration yielded a relative TCA
change per year for each disturbance occurrence. A total of 1303 of the 1800 (300 per scene) sample
pixels were forested at some point within the 26-year time period of observation (as determined with
TimeSync) and were included in this analysis, yielding 33,878 total observations (1 observation per
year per sampled pixel).

2.4. Aggregate Disturbance Rates (Question 1)

Aggregate disturbance rates, across all mapped pixels of all six scenes, were derived from each
algorithm’s annual binary disturbance map set. This involved, for each year, summing the area of
all disturbed forested pixels across scenes and dividing by the total area of forest in the six scenes
(Table 2). To compare the algorithm map products, we plotted the results as annual time series of
disturbance rates (proportion of forest area disturbed) for the six-scene collection from each algorithm’s
disturbance map sets. For comparison with the map-based forest disturbance rates, sample-based
TimeSync forest disturbance rate estimates were plotted on the same graph (with 95% confidence
intervals). For the formulas below, the condition of the pixel as being forest or not was determined from
the reference sample. Likewise, the total forest area for the six scenes was not known (i.e., the forest
type map of [24] was not used here), but was estimated from the sample, creating the need for the ratio
estimator below. Note that the forest area derived from the Reufenacht et al. [24] mask (Table 2) used
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to compare the disturbance map products and the forest area derived from the samples below will be
different; but those differences are expected to be small relative to differences in mapped and estimated
disturbance rates. This is because the correspondence between the forest mask and TimeSync samples
regarding forest versus non-forest was high (i.e., 93%).

To calculate sample-based annual disturbance rate estimates for our population of six scenes,
each scene was considered a stratum, and the inclusion probability for a pixel was nh/Nh,
where Nh = number of US land (i.e., non-ocean) pixels in scene h and nh = 300 is the sample size
in each stratum. The proportion of forest area disturbed was estimated as a ratio R = Y/X, where Y is
the population total of yu,

yu =

{
1 if pixel u is disturbed
0 if pixel u is not disturbed

(1)

and X is the population total of xu,

xu =

{
1 if pixel u is forest
0 if pixel u is not forest

(2)

The parameter R is the total area disturbed divided by the total area of forest (or equivalently,
the total number of pixels disturbed divided by the total number of forest pixels). The combined
ratio estimator denoted R̂ [33] (Section 6.11), was used to estimate R for the stratified random sample
(each of the six scenes being a stratum),

R̂ =
∑6

h=1 Nhyh

∑6
h=1 Nhxh

(3)

where xh is the sample mean of xu in stratum h and yh is the sample mean of yu in stratum h.
The estimated variance of the combined ratio estimator is

V̂(R̂) =
(

1

X̂2

)[ H

∑
h=1

N2
h

(
1 − nh/ Nh)

(
s2

yh + R̂2s2
xh − 2 R̂sxyh/nh

) ]
(4)

where X̂ is the denominator of R̂, s2
yh and s2

xh are the sample variances of yu and xu for stratum h,
and sxyh is the sample covariance for yu and xu for stratum h.

2.5. Map-to-Map Agreement (Question 2)

Direct spatial comparison of the maps at the pixel level required overlaying the original algorithm
disturbance map sets for each scene by year. For example, for 27/27, all seven maps for 1986 were
extracted from the original map sets and overlaid in a single, new stack, a process that was repeated
for each subsequent year. For each pixel, the number of maps having that pixel labeled as disturbance
was determined for a given year and these counts were displayed as an agreement map. As a collection
across years, for a given scene, these new maps are referred to as agreement map sets, where a given
set represents annual series depicting the number of maps that declared a disturbance for each year
at the pixel level. Counts varied from zero to seven, with the former meaning that no map declared
a disturbance for a given pixel in a given year and the latter meaning that all maps declared a disturbance.

Once created, we summarized each agreement map set to derive annual series of disturbance counts.
For each year, the summarization included: (i) calculating unanimous “no disturbance” (count equal to
zero) in terms of proportion of total forest area per scene; (ii) calculating proportions of total forest area
per scene for counts from one to seven; (iii) and relativizing the disturbance counts (from one to seven)
by determining the proportion of total area mapped as disturbed represented by each non-zero count.
Summing the relativized proportions of non-zero counts yields 1, accounting for all pixels mapped as
disturbed by at least one algorithm at the scene level for each year. Because we might expect as much as
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one-year offset in timing of mapped disturbances given specific image dates chosen by algorithms that
use a single growing season observation per year [22], we repeated the analysis declaring agreement
when timing of mapped disturbances was within one year of each other among map sets.

2.6. Map-to-Reference Data Agreement (Question 3)

TimeSync reference data were compared against the original disturbance map sets at the sample
pixel locations to quantify map omission and commission for each map set across scenes and time.
This was based on the proportion of the total number of observations labeled as disturbed by TimeSync
that were not labeled as disturbed by a given map set (omission) and the proportion of total number of
observations labeled as disturbed by a given map set that were not labeled as disturbed by TimeSync
(commission). This was done once for each original disturbance map set, yielding a pair of map
omission and commission values for each map set that we rendered as a scatterplot. To allow
for one-year offset, this analysis was repeated by declaring agreement when timing of mapped
disturbances was within one year of TimeSync observed disturbance. The one-year offset analysis
treated both commission and omission equally.

To examine the relationship between map error and spectral change magnitude we plotted
distributions of relative TCA change derived from the TimeSync reference data for all omitted annual
observations within the set of original disturbance maps. We repeated this for commission observations
after first calculating relative TCA magnitudes for each committed observation from the TimeSync
reference data.

3. Results

3.1. Aggregate Disturbance Rates (Question 1)

Across the six study scenes, aggregate disturbance rates derived from the disturbance map sets were
highly variable over time, as expressed by the different algorithms and the reference data (Figure 2, top).
Algorithms with the lowest mapped disturbance rates included those that targeted the more limited,
higher-magnitude disturbances—MIICA, CCDC, and VCT, with across time average rates of 0.82%, 1.24%,
and 1.42%, respectively. Those algorithms that targeted the broader range of disturbance magnitudes
mapped higher disturbance rates. LandTrendr and EWMACD mapped the highest disturbance rates
(cross-time averages of 15.24% and 12.77%, respectively), with the rates from VeRDET and ITRA being
more moderate (6.74% and 7.52%, respectively). The latter two mapped disturbance rates closest to those
from the reference samples (5.96% per year on average). It should be noted that map products excluding
explicit capture of gradual disturbances (VCT, EWMACD, MIICA, and CCDC) might be penalized in this
analysis where gradual disturbances were observed in the reference data. In some cases, where gradual
disturbances reached (in a given year) a change threshold high enough for detection, these algorithms
might have captured the disturbance as a one-year event, even though the reference data and other
algorithms might have recorded a multi-year event. EWMACD was less likely to be effected in this
way because it targeted a broader range of disturbance magnitudes and was able to represent several
successive years of disturbance associated with gradual change.

3.2. Map-to-Map Agreement (Question 2)

As derived from the agreement map sets, there was agreement among all seven original
disturbance map sets that the majority of the forest area was not disturbed in any given year.
The percentage of forest area where no algorithm detected disturbance ranged from 60.3% (1992)
to 74.8% (2009), with a mean of 67.4% (standard deviation of 4.3%) across time. The complement of
that, 32.6%, is the average annual area mapped as disturbed by at least one algorithm. Not surprisingly,
given the widely varying disturbance rates derived from the disturbance map sets, there was little
correspondence at the pixel level in the map sets themselves (Figure 3). For example, in 27/27 most of
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the pixel-level disturbance for the year 2002 was mapped by just one algorithm, although the specific
algorithm mapping disturbance is highly variable among pixels (data not shown).Forests 2017, 8, 98  9 of 19 
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Figure 3. Example map sections for the year 2002 (middle and bottom rows), from each of the study
scenes (top row), showing agreement among algorithm disturbance products. Boxes in top row show
areas enlarged in middle and bottom rows.
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Of the total amount of disturbance mapped across scenes in any given year, between 66% and 80%
(mean of 71.5% across time) of disturbance was mapped by a single algorithm (Figure 4). On average,
across time, 20.8% of all mapped disturbance was mapped by two algorithms and 4.7% was mapped
by three algorithms at a time. The majority were in agreement about mapped disturbance only
3.0% of the time (1.5%, 0.8%, 0.5%, and 0.2% on average for four, five, six, and seven map sets,
respectively). Allowing for a one-year offset between the maps generally improved the agreement,
but only moderately, with (on average) well over 60% of all mapped disturbances still being mapped
by only one algorithm in any given year.
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mapped by all algorithms.

3.3. Map-to-Reference Data Agreement (Question 3)

TimeSync reference data consisted of 988 unique observed disturbance occurrences (including
gradual, multi-year disturbance occurrences) over time across the six study scenes. The largest
proportion was harvest events (61.5%), followed by decline (17.9%), other (9.0%), wind (6.2%), and fire
(5.4%). All fire and wind occurrences had a one-year duration, as did the vast majority of harvest
occurrences. The class “other” had durations that were mostly one year (64%), with the large majority
of the remaining occurrences having a duration of two years. Decline was unique, representing
a largely gradual change class, with 54% of all occurrences having a duration of five or more years.

Disturbance occurrences had a broad range of TCA change magnitudes (Figure 5). The median
values of per-occurrence relative TCA change for each agent class were −33.8% (fire), −22.1% (harvest),
−21.9% (other), −12.0% (decline), −11.5% (wind), with an overall across-class value of −19.7%. Because
decline was generally a gradual change process, annual change magnitudes for this class were closer to
2% per year. Across the six scenes, harvest was dominant in the first part of the time series until the late
1990s (except for 1990 when wind associated with Hurricane Hugo in 16/37 dominated), when decline
(associated largely with tree mortality in 35/32 and 45/30) became the dominant disturbance agent
(Figure 2, bottom). This result is similar to that from a recent national-level study [6], confirming that
the six scenes used here are representative of national forest type and disturbance regimes.

Relative to TimeSync reference data, map omission ranged from 58.9% (LandTrendr) to 92.6%
(MIICA) and commission from 36.5% (CCDC) to 85.3% (ITRA) among the map sets (Figure 6).
Those algorithms that exhibited the lowest omission rates (LandTrendr, EWMACD, and VeRDET)
also had the highest commission rates. Conversely, those that exhibited the lowest commission rates
also had the highest omission rates (VCT, MIICA, and CCDC). ITRA had relatively high rates of
both omission and commission. Allowing for a one-year offset between the maps and reference data
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reduced omission errors by 3% or less for most map products. Commission errors for three map
sets were reduced more substantially, allowing for the one-year offset—8% for MIICA, 11% for VCT,
and 15% for CCDC—with all other map sets benefitting from commission reductions of 1.4% or less.
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Figure 6. Omission and commission rates for each of the seven map product sets. One-year offset
allows for agreement between map disturbance and reference data to be off by one year.

The relative TCA change magnitudes among map sets for omitted disturbances were generally
quite small, with median values ranging between −5.0% (VeRDET) and −7.0% (MIICA) (Figure 7,
bottom). Similarly, the magnitudes for committed disturbances were also quite low, with median
values ranging from −3.7% (CCDC) to 4.0% (MIICA) (Figure 7, top). The map omission by reference
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data disturbance agent class indicates that the agent classes with the highest TCA change magnitudes
(fire and harvest, Figure 5) were associated with the lowest omission rates (Table 3). Likewise, decline,
which had the lowest (especially on an annual basis) change magnitudes, was also associated with the
highest omission rates.
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Table 3. Map omission by TimeSync disturbance causal agent class.

Harvest Fire Decline Wind Other

Map Omission
(%)

Standard Error
(%)

Omission
(%)

Standard Error
(%)

Omission
(%)

Standard Error
(%)

Omission
(%)

Standard Error
(%)

Omission
(%)

Standard Error
(%)

CCDC 63.6 2.7 66.5 6.1 98.2 0.3 86.9 0.6 83.1 4.9
EWMACD 59.9 7.2 53.7 7.4 80.4 6.1 57.3 2.0 60.2 10.6

ITRA 68.8 7.1 62.8 12.8 93.0 2.5 85.2 0.7 64.9 6.6
LandTrendr 53.3 1.2 40.7 4.2 58.7 6.2 70.4 1.4 61.3 8.2

MIICA 82.0 3.2 66.5 13.0 99.5 0.2 96.7 0.2 84.6 6.6
VCT 58.0 1.9 62.8 8.5 97.6 0.8 83.6 0.8 78.1 7.8

VeRDET 53.3 7.8 44.2 4.3 89.3 3.4 64.1 3.0 60.6 9.1
Mean 62.7 4.4 56.7 8.1 88.1 2.8 77.7 1.2 70.4 7.7

4. Discussion

4.1. Disagreement among Disturbance Maps

The central finding of this study is that maps of forest disturbance derived from seven independent
algorithms using the same basic Landsat dataset were quite different. Although the agreement among
map products was high concerning areas that were not disturbed in a given year (between 61% and
75%), there was little agreement about the timing and location of disturbances. Relaxing the timing
to allow for a one-year offset to be included improved map-to-map agreement, but only by a small
amount. In a preliminary analysis (not reported here), we likewise explored the effect of a one-pixel
offset, which had the effect of only slightly reducing the omission error, while yielding a corresponding
increase in the commission error.

Other studies have compared maps derived with the support of remote sensing and likewise
have found significant differences. Reference [34] compared six different forest biomass maps of
Uganda with results indicating that the map with the highest country-wide estimates of biomass
estimated over six times as much as the map having the lowest estimates. Given the vastly different
methods and datasets used in that study, those observed differences should perhaps be expected.
Reference [35] compared global land cover maps derived from disparate datasets at six Landsat
scene-sized locations distributed across northern Eurasia, and likewise found only fair to moderate
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agreement. That analysis was challenged by the use of different classification systems associated
with land cover. In a pan-tropical study [36], similar remote sensing datasets were used to create
two biomass maps, but specific methods and training data were variable. In that study, although
mapped biomass densities were similar at the pan-tropical level (within 10%), differences increased
dramatically when progressing from the continental scale to a more local scale (where differences of
near 200% were observed).

Unlike variables such as aboveground biomass, which may be defined fairly unambiguously,
the term “disturbance” leaves substantial room for interpretation. This ambiguity is likely an important
factor in our results. Independent validation for each of the algorithms (cited in Table 1) has
shown a good ability to detect the kinds of change targeted in algorithm development. Our use
of an inclusive (TimeSync) definition of disturbance—ranging from the subtlest and/or most gradual
changes perceptible with high-resolution and repeat Landsat imagery to those with high severity—is
not necessarily aligned with the disturbance definitions built into each algorithm. For example,
References [37,38] targeted stand-replacing disturbances, explicitly excluding other disturbances.
Despite good performance when tested against only stand-replacing changes, these efforts would most
certainly show high levels of omission if tested against the TimeSync reference data used in this study.
This does not invalidate the original error assessment; instead, it points to the importance of defining
disturbance a priori.

If the algorithms tested here showed high internal accuracies, yet disagreed frequently with each
other and with TimeSync, it is reasonable to conclude that the algorithms are searching for different
kinds and/or magnitudes of disturbance. Also, many of the disturbance occurrences observed
with TimeSync are not likely resolvable with automated algorithms and may in fact be completely
unresolvable using just Landsat data. Our use of Google Earth temporal snapshots, an intentional
multi-dimensional view of spectral response over time, and human interpretation of every sample
pixel were quite important factors in identifying many of the subtler observed disturbances. It is also
worth noting that the seven algorithms examined here have different levels of maturity, with some
having little previous exposure to the specific forest systems included in our six scenes. The algorithms
were run across these six scenes without substantive calibration for extant conditions within those
scenes. This perhaps points to a need for a more thorough examination of the algorithm performance
for each new forest system encountered.

4.2. Disturbance Magnitude

Magnitude of forest disturbance is highly variable, with effects from concentrated tree mortality
(or clearcutting) to minor adjustments in community structure and organization [3,39]. Although
for a given, local disturbance, high-magnitude occurrences are very important, lower-magnitude
disturbances are much more ubiquitous and can have a cumulative effect that is considerably
greater [5,6,40]. This is particularly true in the era of climate change, where forest health is
declining in many regions around the world [8,10]. Landsat data are at an appropriate spatial
resolution for monitoring forest disturbance [7,13,41], and with major improvements in the quality
and free availability of Landsat data over the past decade [14], a large number of advanced
algorithms have begun to take advantage of dense Landsat time series to characterize and map
forest disturbance (e.g., Table 1). However, it remains challenging for many of these algorithms to
capture lower-magnitude disturbances, as demonstrated elsewhere (e.g., [22,29]) and in this study.

Our TimeSync reference data revealed a distribution of observed disturbances across the six study
scenes that was skewed towards lower spectral change magnitudes (Figure 5), a result consistent with
a more thorough, recent study across the conterminous US [6]. Further, we demonstrated here that
the large majority of omitted disturbances in the maps derived from all the evaluated algorithms
was associated with lower-magnitude disturbances (Figure 7, bottom). Based on this set of findings,
it follows that there should be a relationship between the number of map sets that agreed with TimeSync
disturbance observations and the magnitude of those observations, which was indeed the case (Figure 8).
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Figure 8. Relative magnitude distributions for disturbance occurrences when no map (0) agreed with
reference data, and for occurrences where between one and seven maps agreed.

By plotting omission rates as a function of magnitude, we can learn if there is commonality
among the maps examined here, in terms of a magnitude threshold below which omission rates
increase. Although omission rates were highly variable among the maps, their magnitude profiles
were quite similar, with sharp declines from very low magnitudes (near zero) to about 50% relative
TCA change magnitude, depending on the map set evaluated (Figure 9). This suggests quite notably
that disturbances having relative TCA magnitudes below 50% are the more challenging ones for
algorithms to capture and map. This is likely due to the fact that Landsat time series can be noisy
because of imperfections in georeferencing, atmospheric correction, and calibration coefficients over
time. For magnitudes below 50%, there may be a cost, in terms of commission error, to any given
algorithm trying to exploit low-magnitude disturbance signals in Landsat time series data. This is
somewhat obvious from the fact that most committed errors had very low spectral change magnitude
distributions (Figure 7, top), not unlike the magnitude distributions of omitted errors.
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Prior to the recent proliferation of algorithms designed to exploit subtle signals in Landsat time
series data, the common forest disturbance mapping target was almost exclusively higher-magnitude
(i.e., stand replacement) disturbances. Maps that represented only high-magnitude disturbances
were compared against reference datasets that represented the same magnitude of disturbance.
The definitions of disturbance were essentially the same in both the map and the reference data,
only high-magnitude disturbances were targeted, and mapping errors were relatively low. In this
new era of dense time series mapping, we have expanded our target population to include subtle
disturbances, and to differing degrees the newer crop of algorithms digs deeper into the time series
noise to extract disturbance signals. Relative to the inclusive reference dataset in our study, this had
the effect of decreasing omission while increasing commission.

Because we used a very broad, inclusive definition of disturbance and evaluated all map products
against this high standard, we have learned two important lessons. First, when an independent error
assessment using such a highly inclusive reference dataset is conducted, we should expect higher
mapping errors than those reported in earlier published results which are based on only subsets of the
full range of disturbance magnitudes. Accordingly, mapping projects should clearly define disturbance
in terms of either the spectral change magnitude or the percent tree cover affected. This will help map
users better understand how to relate the error matrix to the map by taking into consideration the
definition of disturbance employed.

Second, using an algorithm with current spatiotemporal densities of freely available remote
sensing datasets to extract information about forest disturbances having spectral change magnitudes
below a certain threshold (in terms of relative TCA magnitude, that is ~50%) will likely remain
challenging and will be attended by increased levels of commission. However, there may be advantages
to the use of multiple algorithms that reach into the realm of noise to extract change signals, if the
different target populations and approaches are variable. For example, although the algorithms
examined here had mixed success in detecting lower-magnitude disturbance, those successes
were often non-overlapping, i.e., the majority of detected subtle changes were mapped by one or
two algorithms for a given pixel. Despite this commission error (that might be considered the cost of
sensitivity), these algorithms show that the Landsat archive does record somewhat subtle ecosystem
changes. Thus, a new direction in change detection is the possibility of capitalizing on the collective
sensitivities of innovative new algorithms by incorporating them into a learning ensemble (such as
Random Forests [42]) using a training dataset (e.g., from TimeSync).

4.3. Why Are the Maps So Different?

Given the very different maps and summary disturbance results derived from the algorithms
examined in this study, we now consider the factors that are likely responsible for such differences,
including: (i) the basic algorithm logic; (ii) the density of Landsat observations; (iii) the magnitude
threshold; (iv) the lack of training or calibration; and (v) the spectral dimensions utilized.

For the algorithms examined, there was a difference in the fundamental algorithm logic that likely
had profound effects on the disturbance maps produced. Most algorithms were designed to discover
anomalies in data trends over time. The classic example of this was the use of bi-temporal differencing,
as represented by MIICA, where annual series of data were compared two sequential years at a time to
determine whether a change had occurred in a given pixel over a given two-year period. Although not
technically bi-temporal differencing, VCT, CCDC, and EWMACD (as implemented in this study) all
specified change in terms of an anomalous departure from a trend in the spectral response over time.
This logic for detecting forest change, almost by design, precluded the discovery of slowly trending
spectral responses if there was never an observed departure from the overall trend in terms of a more
sudden, dramatic disturbance representative of an anomaly. In contrast, ITRA was designed to seek
gradual trends in the time series spectral response over approximately 10-year epochs. However,
given that the characterization of a trend was based on the slope of a regression line over the epoch
under consideration, it was highly likely that an observed trend was also influenced by anomalies.
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LandTrendr and VeRDET, by conducting an explicit temporal segmentation of the time series, were
designed to discover both anomalies and trends in the data. In contrast to ITRA, these two algorithms
let the data themselves dictate where to identify breaks in the time series, with anomalies lasting as
little as one year and trends lasting as long as the full time-series length.

Density of Landsat observations was a critical difference in the algorithms’ approaches to
disturbance characterization. LandTrendr, VeRDET, ITRA, MIICA, and VCT all used one Landsat
observation per year, while CCDC and EWMACD used all available clear observations. To fill in for
masked clouds and shadows, LandTrendr, VeRDET, and VCT all used image compositing rules with
a logic that sought a consistent timing for observations among years, e.g., the peak of the growing
season. ITRA and MIICA used synthetic, predicted data for 6 August of each year, based on the
time series trend component of the CCDC algorithm. Using all available clear observations enabled
CCDC and EWMACD to track phenology and seek anomalous departures from seasonal trends.
This approach should be expected to discover changes in trends that occurred at any time of the
year, as opposed to discovering only changes that were observable in the peak of the growing season.
In theory, this should also have facilitated the detection of more subtle, anomalous changes, as many
subtle changes are ephemeral.

Perhaps the most important difference among the algorithms examined here was the use of
the spectral change magnitude thresholds. The application of a magnitude threshold to identify
change (e.g., two standard deviations’ departure from a forest norming population for VCT) is
a straightforward means for distinguishing between a change signal and the ubiquitous low-level
spectral noise in a temporal series of Landsat data. Each algorithm used one or more thresholds to
identify change, with the selected thresholds being associated with experience gained by algorithm
developers during the application of their algorithms. One way to gauge the effect of the threshold
on the results in this study was the comparative errors in omission and commission among maps.
For example (Figure 2, top), evidence of higher thresholds for change can be found in the lower rates
of disturbance mapped by VCT, CCDC, and MIICA. Lower thresholds for change were evident in the
higher rates of disturbance associated with LandTrendr and EWMACD.

Calibrating an algorithm can be critical in the pursuit of accurate mapping results. Each algorithm
used here, prior to this study, has had a different application domain, with some being limited to a few
Landsat scenes from a given forested region of the US, whereas others have been much more widely
applied. Regardless of the specific prior application domain, none of the algorithms were specifically
calibrated for most of the six scenes used here. The high mapping errors observed during this study
suggest strongly that to achieve low error rates, a given algorithm needs to be calibrated for the specific
sets of forest type and disturbance regime conditions the algorithm will encounter. Moreover, given the
levels of omission and commission observed, one might argue that beyond calibration, more explicit
training of an algorithm, where the parameters of an algorithm are tuned to a training dataset, might
be advantageous.

Another important consideration is the spectral band or index used by the algorithms. Several
of the algorithms use only one spectral band or index (e.g., LandTrendr, EWMACD), whereas
others (CCDC, MIICA) used multiple bands or indices. The expression of forest disturbance is
band-dependent [15–22], and, regardless, no single band or index will likely optimize omission and
commission, because forest disturbance has a multispectral expression.

5. Conclusions

This study tested seven modern change detection algorithms designed to use higher volumes of
Landsat data than algorithms of the past. In this context, we compared their forest disturbance map
products against a reference dataset that consisted of a highly inclusive set of disturbance observations.
From this exercise, several conclusions emerged:

• Spectral change magnitudes associated with forest disturbance are highly variable, with a
population likely to be skewed towards lower-magnitude occurrences. Such disturbances are
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challenging to map because they are often difficult to distinguish from spectral noise common in
temporal trajectories of spectral signals.

• Landsat disturbance maps derived from automated algorithms are likely to be quite dissimilar.
This is true both of the maps themselves and of aggregate rates of disturbance mapped over time.

• Maps from different algorithms are more likely to agree with each other about the location and
timing of forest disturbance as the change magnitude becomes greater.

• Algorithms that target a broader set of disturbance magnitudes are likely to have more commission
and less omission errors than algorithms that target mostly greater magnitude disturbances.

• A spectral change magnitude threshold (~50% relative TCA) was identified; for changes
with a magnitude smaller than this threshold, the omission error increases. Algorithms that
attempt to detect these lesser-magnitude disturbances are likely to exhibit greater levels of
mapping commission.

• Users of forest disturbance maps now have choices among several maps, each derived from
different algorithms. Given the strengths and weaknesses of each map with respect to the
omission and commission errors and target disturbance populations, a user should be cautious
and endeavor to understand how well these maps will suit their needs. It would be irresponsible
to assume a given map is by default highly accurate and to not consider how errors might
influence use in a variety of contexts.
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