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Spruce beetle (Dendroctonus rufipennis (Kirby)) outbreaks cause widespread mortality of Engelmann
spruce (Picea engelmannii (Parry ex Engelm)) within the subalpine forests of the western United States.
Early detection of infestations could allow forest managers to mitigate outbreaks or anticipate a response
to tree mortality and the potential effects on ecosystem services of interest. However, the subtle changes
in the foliage of infested spruce make early detection difficult. An experiment was conducted in southern
Colorado to determine important wavelengths for detecting early-stage (i.e. recently infested) spruce
beetle infestation in Engelmann spruce. Spectral reflectance from non-infested and recently infested
spruce needles were obtained using the ASDi Field-Spec Pro spectroradiometer. After pre-processing, ran-
dom forest analysis was used to identify hyperspectral bands and aggregations of hyperspectral bands
corresponding to Landsat TM bands and vegetation indices that effectively discriminated between
non-infested and infested trees. Results show that the shortwave infrared region of the electromagnetic
spectrum was a key area for detecting early stages of spruce beetle infestation, likely due to the effects of
beetle infestation on water transport within Engelmann spruce. The strong discriminability of bands in
the shortwave infrared region indicates a potential for this spectral region to be used to detect early-
stage spruce beetle infestation over larger areas using multispectral satellite imagery. In a preliminary
trial, we found that a time series of reflectance in Landsat TM band 7 (shortwave infrared) was strongly
correlated with the progression through time of a spruce beetle outbreak in southern Wyoming. These
findings suggest that multispectral indicators of early-stage spruce beetle outbreak can be developed.
These indicators are needed to better understand spatiotemporal dynamics of spruce beetle outbreaks,
and can be used by forest managers to detect early stages of spruce beetle infestation and to potentially
mitigate some spruce mortality.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The spruce beetle (Dendroctonus rufipennis (Kirby)) is an impor-
tant mortality agent of spruce species (Picea spp.) throughout the
western United States and Canada (Bentz et al., 2010). Within
the subalpine forests of the southern Rocky Mountains, its primary
host is Engelmann spruce (Picea engelmannii (Parry ex Engelm))
(Bebi et al., 2003; Schmid and Frye, 1972). Historically, spruce
beetle infestations, along with fire, have been the most important
natural disturbances shaping forest structure and function in sub-
alpine forests, and both of these agents are anticipated to increase
under a warming climate (Bentz et al., 2010; DeRose and Long,
2012; Hart et al., 2014; Veblen et al., 1991; Westerling et al.,
2006). Bark beetle outbreaks have caused widespread tree mortal-
ity across the US and Canada in the last several decades, especially
in Colorado (Bentz et al., 2009; Berg et al., 2006). In a Colorado out-
break lasting from 1939 to 1952, spruce beetles affected over
290,000 ha of the landscape (Anderson et al., 2010; Veblen et al.,
1991), and an ongoing outbreak in Colorado has affected over
638,000 ha between 1996 and 2015 (USFS, 2016). These
landscape-scale mortality events modify the size structure and
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species composition of forests, especially in terms of basal area,
average tree height, and stem density (Derderian et al., 2016;
Hawkins et al., 2012; Humphreys and Safranyik, 1993). Biogeo-
chemical cycling in forests is also affected by bark beetle out-
breaks, through reduction in stomatal conductance and canopy
transpiration (Edburg et al., 2012; Frank et al., 2014), increases in
leaf litter and coarse woody debris (Edburg et al., 2012; Meddens
et al., 2012), and changes in the carbon balance of the forest
(Brown et al., 2012; Edburg et al., 2012; Kurz et al., 2008).

Detection and monitoring of bark beetle outbreaks is crucial to
forest management and to deciphering the ecological effects of
these organisms. The effects of beetle infestations may be miti-
gated through various management techniques such as clearing
of wind thrown trees, selective thinning, pheromone trapping,
and burning (Hansen et al., 2010; Humphreys and Safranyik,
1993; Kautz et al., 2011), especially if these infestations are
detected early on in the outbreak cycle (DeRose and Long, 2012;
Jenkins et al., 2014). Perhaps more importantly, the relative suc-
cess of forest treatments as well as the mechanisms and environ-
mental characteristics that lead to outbreaks can be investigated
through detection and monitoring of infestation stage and extent
(Walter and Platt, 2013).

Aerial detection surveys are often used to assess mortality
trends caused by bark beetles (USFS, 2016). Bark beetle-killed trees
change in coloration as they desiccate, from green to yellow-green,
and with some species to a bright red, and this color change is used
as an indicator to map tree mortality. However, this visual detec-
tion is not possible in the early (i.e. green) stages of infestation,
potentially too late to be helpful for effective management tech-
niques (Franklin et al., 2003). In the case of the closely related
mountain pine beetle (Dendroctonus ponderosae (Hopkins)), which
in the Rocky Mountains infests several Pinus species, the foliage of
infested trees changes to bright red within one year of being
attacked (White et al., 2007). The foliage of spruce beetle-
infested Engelmann spruce, however, remains green to yellow-
green and photosynthesizing (albeit only slightly) for two or more
years after the initial infestation (DeRose et al., 2011; Frank et al.,
2014; Schmid, 1976). This several year window of green-stage
spruce beetle attack when beetle populations are growing, but
detection is difficult, may allow for spruce beetle outbreaks to
reach unmanageable levels. Additionally, while aerial surveys are
relatively cost-effective for the amount of forest health character-
istics that they can provide, and are useful for portraying trends
in insect and disease activity, the information is generally at a
coarse spatial scale, and may have low positional accuracy (Hall
et al., 2016; Wulder et al., 2006c).

In comparison to aerial surveys, remote sensing may allow for
more extensive, consistent, and finer-resolution mapping of bark
beetle damage, as well as early detection of beetle infestation. To
be useful for effective and timely management planning and
ecosystem response studies, however, pertinent areas of the elec-
tromagnetic spectrum for detecting early-stage spruce beetle
infestations must be determined. Many studies have used remote
sensing instruments to detect red-stage, and to a lesser extent,
green-stage mountain pine beetle outbreaks across a broad range
of its hosts, but with varying conclusions on the best waveband
or vegetation index to use (Coops et al., 2006a; Franklin et al.,
2003; Hall et al., 2016; Meddens and Hicke, 2014; Niemann
et al., 2015; Skakun et al., 2003; White et al., 2007, 2005; Wulder
et al., 2006a, 2006b). Goodwin et al. (2008) were able to identify
red-stage infestation across a large study area (�1.5 million ha)
in British Columbia, Canada using Landsat imagery and the nor-
malized difference moisture index (NDMI). Coops et al. (2006a)
and Hicke and Logan (2009) both used high spatial resolution
QuickBird imagery to accurately map red-attack mountain pine
beetle damage using the red-green index (RGI). In contrast,
White et al. (2007) found that the moisture stress index (MSI)
had the strongest relationship with proportion of red-attack dam-
age using QuickBird and Hyperion imagery.

Much of the success in detecting and monitoring mountain pine
beetle outbreaks in broad-scale remote sensors can be attributed
to the strong red signature associated with a mountain pine beetle
infestation. In contrast, the success of spruce beetle monitoring
studies has been more limited. Foliar changes in infested Engel-
mann spruce are more subtle, and Engelmann spruce typically
occurs in mixed spruce-fir stands, unlike generally mono-specific
pine stands. The few existing studies on outbreak detection using
multispectral remote sensing have been restricted to large-scale
outbreaks, or to detecting outbreaks two years or longer into the
infestation (DeRose et al., 2011; Frank et al., 2014; Hart and
Veblen, 2015; Makoto et al., 2013). DeRose et al. (2011) and Hart
and Veblen (2015) utilized multispectral imagery to detect gray-
stage spruce beetle infestation with high accuracy using the distur-
bance index (DI), red-green index (RGI), blue-red index (BR), and
normalized difference vegetation index (NDVI). However, spruce
trees at the gray stage have already been infested for at least two
years (Schmid, 1976), and have started to drop their needles, a
point in the outbreak cycle which may be too late for a manage-
ment response. This difficulty in detecting early-stage spruce bee-
tle infestations suggests a need for higher-sensitivity remote
sensors to identify pertinent wavebands for detecting and studying
early-stage spruce beetle outbreaks.

Following a spruce beetle infestation, Engelmann spruce close
their stomata, resulting in decreased canopy conductance and
canopy evapotranspiration (Frank et al., 2014). These and other
changes to the foliage of infested spruce may be observable in
fine-scale hyperspectral data (Asner et al., 2015; Fassnacht et al.,
2014), promising improved algorithms for determining the loca-
tion and extent of a spruce beetle infestation. Biochemical pro-
cesses in plants, such as photosynthesis, respiration, and
transpiration, are inherently linked to the concentrations of the
biochemicals involved in them (Curran et al., 2001). As such,
changes initiated by stress, drought, or other factors result in a
change in the foliar chemistry of plants. These foliar chemistry
changes are often observable in hyperspectral sensors, which
detect spectral reflectance in narrow wavebands of the electro-
magnetic spectrum (Hall et al., 2016; Kokaly and Clark, 1999).
Many studies have had success using aerial and ground-based
hyperspectral sensors to detect differences in spectral reflectance
between leaves with varying pigments, vegetation stress, and bark
beetle damage (Carter, 1994; Carter and Knapp, 2001; Delalieux
et al., 2009; Fassnacht et al., 2014; Masaitis et al., 2013; Naidu
et al., 2009; Santos et al., 2010; Smith et al., 2004). Näsi et al.
(2015) used a hyperspectral sensor onboard an unmanned airborne
vehicle to detect various stages of European spruce bark beetle (Ips
typographus) infestation in Norway spruce (Picea abies (L. Karst.)).
Niemann et al. (2015) and Cheng et al. (2010) both used high spec-
tral resolution sensors to distinguish between healthy and green-
stage mountain pine beetle attack, finding the near infrared and
shortwave infrared regions to be the most useful. Ahern (1988)
also found evidence for detection of green-stage mountain pine
beetle infestation using lab spectroscopy, and a study by Carter
and Knapp (2001) found significant differences in the 500–
700 nm range between lab-derived spectra of healthy and
nitrogen-stressed radiata pine (Pinus radiata (D. Don)). The success
of these studies at using hyperspectral sensors to detect subtle
foliar changes due to vegetation stress lends support to the use
of hyperspectral data to detect green-stage spruce beetle infesta-
tion in Engelmann spruce.

It is clear that hyperspectral remote sensing, with its fine spec-
tral and often fine spatial resolution, can provide detailed biophys-
ical information on canopy properties such as moisture, leaf



A.C. Foster et al. / Forest Ecology and Management 384 (2017) 347–357 349
nitrogen content, leaf pigment, and tree stress level (Asner et al.,
2011; Calderón et al., 2013; Carlson et al., 2007; Kokaly et al.,
2009; Underwood et al., 2003). These properties make hyperspec-
tral sensors ideal tools for detecting subtle foliar changes in
response to disturbances such as bark beetle infestations. How-
ever, the use of aerial and ground-based hyperspectral instruments
is expensive and time-consuming, especially when considering
large forest landscapes. Multispectral imagery is much more read-
ily available and has a large enough spatiotemporal coverage to
monitor yearly or sub-yearly changes in large areas. Thus, freely
available broadband imagery is best suited for monitoring whole
forest landscapes over time, producing actionable data that forest
managers can use to mitigate and predict the spread of insect out-
breaks. Yet the low spectral resolution of broadband sensors hin-
ders the process of discovering wavelengths and wavebands
important to detecting infestations. These issues present a need
for information about such pertinent wavebands to be garnered
in local-scale, hyperspectral studies such that they may be scaled
up for use in broad-scale monitoring campaigns.

In this study, we use ground-based hyperspectral measure-
ments from the needles of recently infested and non-infested
Engelmann spruce to determine areas of the electromagnetic spec-
trum that could be used to detect early stages of spruce beetle
infestation. We use the information garnered from this high spec-
tral and spatial resolution experiment to develop a case for detec-
tion of early-stage spruce beetle outbreaks in broad-scale remote
sensors (i.e. Landsat, Hyperion, EO-1).
2. Methods

2.1. Study area

This study was conducted at Monarch Pass, a high-elevation site
within the spruce-fir (Picea engelmannii and Abies lasiocarpa) zone
of the southern Rocky Mountains (Fig. 1). Monarch Pass (38� 300

10.0800N, 106� 200 8.159400; 3442 m) is located in the Sawatch Range
of the Rocky Mountains, Grand Mesa-Uncompahgre-Gunnison
National Forests, near Salida, CO. This site contains Engelmann
spruce trees in various stages of infestation (non-infested, recently
infested, and beetle-killed trees). Annual precipitation in the area is
60 cm, and mean monthly temperatures are 14 �C and �5 �C for
July and January, respectively (NCDC, 2016).

2.2. Hyperspectral data collection

The ASDi FieldSpec Pro (Analytical Spectral Devices, Inc; Boul-
der, CO) is a handheld spectroradiometer capable of measuring
Colorado 

Fig. 1. Location of the study site Monarch Pass in central Colorado.
spectral response over 366 bands, covering wavelengths from
350 to 2500 nm. The spectral resolution of the FieldSpec Pro is
3 nm for wavelengths between 350 and 1000 nm and 10 nm for
wavelengths between 1000 and 2500 nm. In order to collect this
full wavelength range, the FieldSpec Pro contains three separate
spectroradiometers: VNIR (visible and infrared), and SWIR-1 and
SWIR-2 (shortwave infrared). Data from this instrument can thus
provide information on the spectral properties of leaves in the vis-
ible, near infrared, and shortwave infrared regions of the electro-
magnetic spectrum.

Engelmann spruce trees were first identified as non-infested or
recently infested. Spruce beetles infest their hosts by boring into
the bark and laying eggs in the phloem of infested trees (DeRose
and Long, 2012). Eggs hatch after a few days and the larvae feed
on the tree’s phloem. Newly infested trees were identified by the
presence of boring dust at bark crevices and the base of the tree,
pitch tubes or resin exudation from the bole, and newly con-
structed egg galleries in the phloem. The flight period when new
trees are attacked by spruce beetles reaches its highest point
towards the end of July (Negron, unpublished data). As our sam-
pling took place in early September, measurements collected from
infested trees took place about 8 weeks after infestation.

Field spectra were collected from 30 spruce trees (15 non-
infested, and 15 recently infested) during early September 2014
using the point of contact (POC) method. In this method, the POC
probe is placed in direct contact with the sample using a foliage
clip, such that no light escapes the POC and no external light is able
to affect the sampling. This method uses an internal light source (a
quartz-halogen lamp), so sun angle and cloudiness do not affect
sampling. Three spectral subsamples were taken from the needles
of two branches per tree: one at about 2 m, and a second branch at
about 6 m in height (i.e. a total of 90 subsamples for each infesta-
tion type). Two branches from each tree were tested to determine
if height on the tree had any effect on the spectral signal for spruce
beetle infestation. Coloration changes in infested Engelmann
spruce trees occur first in the branches of the upper crown
(Schmid and Frye, 1977). Because we collected reflectances from
branches in the lower canopy, spectral differences between
infested and non-infested Engelmann spruce found in this study
may be somewhat conservative.

The branches used were clipped from the spruce trees and
immediately sampled so as to reduce error associated with being
detached from the tree for an extended time period. Each of the
three samples per branch was measured using different needles
on the branch, and care was taken to only collect spectral signa-
tures from green needles. Each sample involved measuring reflec-
tance of several spruce needles at once. The needles of each sample
were arranged on the POC clip so as to maximize the amount of
reflected surface area, but minimize overlap and shadowing of nee-
dles. Instrument optimization and white reference calibration
were conducted after each branch was sampled to correct for
atmospheric, temperature, and other changes that may have
affected sampling.

2.3. Hyperspectral data processing

First, splice corrections were conducted on all reflectance spec-
tra subsamples. This process reduces discontinuities arising from
the three separate detectors (VNIR, SWIR-1, SWIR-2) used to col-
lect the full 350–2500 nmwavelength range. The three subsamples
per branch were then averaged. These initial processing methods
were all conducted using ViewSpec Pro Software (Analytical Spec-
tral Devices, Inc; Boulder, CO).

Continuum removal was then performed on the 30 branch spec-
tra using ENVI version 5.2 (Exelis Visual Information Solutions;
Boulder, CO). Continuum removal reduces spectral changes due
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to non-foliar influences such as instrument drift (Kokaly and Clark,
1999). First, a convex hull (or continuum) is fitted over the top of
each spectrum that connects local spectral maximums. The
continuum-removed reflectance is then calculated by dividing
the reflectance values in the original spectrum by the reflectance
values of the continuum. This allows for absorption pits to be
enhanced and noise due to instrument or other errors to be
reduced (Underwood et al., 2003). Finally, it was determined that
branch height had no statistical effect on the spectral signals of
infested and non-infested trees (see Fig. S1 in the Supplementary
Material; p > 0.05), so the spectral signatures of high and low
branches were averaged for each tree.
Fig. 2. Average continuum-removed spectral reflectance for infested (solid) and
non-infested (dashed) Engelmann spruce trees along with 95% confidence intervals
for both spectra (CI = �x� 2:14SE�x). Colored bars represent the wavelength location
of Landsat bands. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
2.4. Hyperspectral statistical analyses

In order to determine important wavelengths for differentiating
between infested and non-infested trees, a random forest
(Breiman, 2001) regression was implemented in R (R Core Team
2014) using the package ‘randomForest’ (Liaw and Wiener, 2002).
Measures of variable importance are an increasingly popular
method for variable reduction and for determining which variables
best predict the response variable in question (Breiman, 2001;
Strobl et al., 2007). In the case of analyzing hyperspectral data,
thousands of variables (i.e. reflectance in different wavebands)
are collected, and it is imperative that redundant bands are
removed and the most important variables for the study at hand
are determined (Thenkabail et al., 2012a). The random forest algo-
rithm creates multiple, uncorrelated decision trees using different
random subsets of the data and different predictor variables (i.e.
different wavelengths). The use of multiple decision trees increases
the classification accuracy of the algorithm. Variable importance is
then based on the number of times each variable is chosen by dif-
ferent individual decision trees in the random forest and how
much each variable contributes to the overall accuracy of the
model (Strobl et al., 2007).

Next, the most important wavelengths determined by the ran-
dom forest were chosen and receiver operator characteristic
(ROC) curves were generated on predictions of infested vs. non-
infested from classification trees using each of the important vari-
ables individually. ROC curves, which plot the rate of true positives
against the rate of false positives, can be used to visualize a predic-
tor variable’s ability to correctly predict the response variable (i.e.
infested or non-infested). The area under the curve (AUC) of an
ROC curve represents the probability of the predictor variable
accurately choosing the positive case when given a positive and
negative test case, and is a widely used test of classification algo-
rithms (Eng, 2005). An AUC of 0.50 is equivalent to random chance.
We also generated a confusion matrix (a table for visualization of
Table 1
Vegetation indices and Landsat bands used to detect spruce beetle infestation in Engelman
corresponding to Landsat TM bands.

Vegetation index or band name Equation or wavelength range

RGI Red/Green
MCARI [(R700nm � R670nm) � 0.2(R700nm � R550nm)] ⁄ (R700nm

WI R900nm/R970nm

TCWET Blue ⁄ 0.0315 + Green ⁄ 2.201 + Red ⁄ 0.3102 + NIR ⁄
TCGRE Blue ⁄ �0.1603 � Green ⁄ 0.281 � Red ⁄ 0.4934 � N

+ SWIR1 ⁄ 0.0002 � SWIR2 ⁄ 0.1444
TCBRI Blue ⁄ 0.2043 + Green ⁄ 0.458 + Red ⁄ 0.5524 + NIR ⁄
DI TCBRI � TCWET � TCGRE
NDVI (NIR � Red)/(NIR + Red)
NDMI (NIR � SWIR1)/(NIR + SWIR1)
RVSI (R714nm + R752nm)/2 � R733nm

Landsat band 5 1550–1750 nm
Landsat band 7 2080–2350 nm
model performance; Fawcett, 2006) for each wavelength, and from
each matrix calculated the overall accuracy, false positive rate, and
false negative rate of each wavelength. Next, t-tests were con-
ducted to determine if differences between non-infested and
infested spruce in spectral reflectance over the eight selected
wavelengths were statistically significant. ROC curves, confusion
matrices, and t-tests were also conducted for several vegetation
indices commonly used for vegetation studies and for averages of
wavelengths representing Landsat wavebands (Table 1). This was
done to determine if an index or a particular waveband in Landsat
could also identify early spruce beetle infestation in Engelmann
spruce. We chose vegetation indices commonly used to detect bark
beetle infestations (Coops et al., 2006a; DeRose et al., 2011;
Meddens et al., 2011) as well as those used to detect vegetation
stress in general (Calderón et al., 2013; Naidu et al., 2009;
Roberts et al., 2012).
3. Results

Much of the average, continuum-removed spectral signatures
from infested and non-infested Engelmann spruce overlap
(Fig. 2). However, there is divergence in the absorption pit around
1440 nm and across the shortwave infrared region between 1900
and 2480 nm. The spectral reflectance from infested spruce is
higher in these regions than that of the non-infested spruce,
though this difference is somewhat small (Fig. 3). The random
forest regression found several important wavelengths for
n spruce. Blue, green, red, NIR, SWIR1, and SWIR2 were calculated using wavelengths

Reference

Coops et al. (2006a)
/R670nm) Daughtry et al. (2000)

Penuelas et al. (1997)
0.1594 + SWIR1 ⁄ 0.6806 � SWIR2 ⁄ 0.6109 Crist (1985)
IR ⁄ 0.7940 Crist (1985)

0.5741 + SWIR1 ⁄ 0.3124 + SWIR2 ⁄ 0.2303 Crist (1985)
DeRose et al. (2011)
Tucker (1979)
Gao (1996)
Merton and Huntington (1999)
USGS (2016)
USGS (2016)



Table 2
Area under the curve (AUC), accuracy, false positive rate, and false negative rate for
the eight wavelengths with highest variable importance from the random forest test,
and for the vegetation indices and Landsat bands from Table 1 (ordered by accuracy
and wavelength). Contingency tables used to calculate error rates can be found in
Table S1 in the Supplementary Material.

Wavelengths chosen from
random forest test (nm)

AUC Accuracy False
positives

False
negatives

1062 0.93 0.93 0.13 0
1061 0.93 0.93 0.067 0.067
1059 0.93 0.93 0.067 0.067
862 0.93 0.93 0.067 0.067
861 0.93 0.93 0.067 0.067
764 0.93 0.93 0.13 0
368 0.93 0.93 0 0.13
1056 0.9 0.9 0 0.2

VIs and Landsat bands
Landsat band 7 0.83 0.83 0.26 0.067
NDVI 0.8 0.8 0 0.4
RGI 0.8 0.8 0.3 0.067
WI 0.8 0.8 0.067 0.33
Landsat band 5 0.77 0.77 0.13 0.53
DI 0.77 0.77 0.2 0.267
NDMI 0.77 0.77 0.13 0.33
TCBRI 0.77 0.77 0.067 0.4
TCGRE 0.77 0.77 0 0.467
RVSI 0.67 0.67 0.13 0.53
MCARI 0.63 0.63 0.2 0.53
TCWET 0.63 0.63 0.2 0.53

Table 3
T-test (n = 30) results for the eight wavelengths with highest variable importance
from the random forest test, and the chosen vegetation indices and Landsat band 7.
Wavelengths and aggregated indices/wavebands ordered by difference between
infested and non-infested spectra.

Wavelengths chosen
from random forest
(nm)

Difference between
infested and non-infested
(nm)

t-statistic p-value

368 0.09513 �4.86 7.11E�05
1056 0.0051 �5.43 5.56E�05
1059 0.00466 �5.28 8.12E�05
1061 0.00433 �5.1614 1.03E�04
1062 0.00411 �5.053 0.00013
861 0.00023 5.91 4.09E�06
862 0.00021 5.98 1.95E�06
764 9E�05 4.7132 1.80E�04

VIs and Landsat bands
Landsat band 7 0.06435 �3.6487 1.60E�03
RGI 0.03237 �3.031 5.59E�03
NDVI 0.03685 2.8429 8.77E�03
WI 0.011 2.799 1.08E�02
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Fig. 3. Average continuum-removed spectral difference between infested and non-
infested Engelmann spruce trees (difference = infested � non-infested). Shaded bar
represents 95% confidence intervals (CI = �x� 2:14SE�x).
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determining infestation in the Engelmann spruce spectra; most of
these are in the far near infrared to shortwave infrared regions
(Table 2). We chose the top eight wavelengths to generate classifi-
cation trees and ROC curves because wavelengths chosen by the
random forest algorithm after these eight contributed minimally
to overall accuracy. Many of these important wavelengths had high
AUC and accuracy values, and low overall error rates (Table 2).

Vegetation indices and averaged Landsat bands derived from
the field spectra had lower AUCs and accuracies than did individual
hyperspectral bands (Table 2; see Table S1 in the Supplementary
Material for contingency matrices). Of these, the red-green index
(RGI), water index (WI), NDVI, and Landsat band 7 yielded the
highest accuracies. We chose to conduct t-tests comparing the
reflectance of infested/non-infested samples on the top eight
important wavelengths and vegetation indices/Landsat bands with
accuracy values above 0.80. The results of these t-tests are consis-
tent with the results of the classification trees (Table 3).
4. Discussion

Early detection of spruce beetle outbreaks may allow forest
managers to mitigate an infestation before it turns into a devastat-
ing outbreak. A study by DeRose and Long (2012) found evidence
for multiple nascent spruce beetle infestations across the study
landscape, which the authors posited could only be slowed during
the early stages of the outbreak. Once an infestation is identified,
managers can potentially reduce the growth rate of spruce beetle
populations and limit the severity and extent of growing outbreaks
through removal of individual infested trees or downed logs
(Hansen et al., 2010). These mitigation techniques would be best
applied in areas with high recreational or ecological value and
should be applied before infestations reach outbreak levels, during
the early, or green stages of beetle infestation. By the time spruce
beetle-attacked trees have reached the gray stage, the insects have
long since abandoned the tree and initiated new infestations, con-
tributing to the growing outbreak (Schmid and Frye, 1977). Detect-
ing and removing early-stage attacked trees may prevent some of
the beetles still within the trees from infesting others, possibly
mitigating some mortality. Thus, in order to successfully monitor,
manage, and study these important disturbance agents, forest
managers and researchers would benefit from an early-stage indi-
cator of spruce beetle infestation. Such an indicator would be made
even more useful if it could be applied in sensors with broad spa-
tial coverage and whose data are readily available, such as that of
the Landsat series. Until now, remote sensing studies have been
focused on detecting gray-stage or later spruce beetle infestations
(DeRose et al., 2011; Frank et al., 2014; Hart and Veblen, 2015).
This study has the capacity to bridge this knowledge gap and pro-
vide insight into what wavebands and indices should be used to
detect early-stage spruce beetle infestation.

In this study, we identified several wavelengths and vegetation
indices that have potential as indicators of early-stage spruce bee-
tle infestation at the branch and needle level. Of these, several
wavelengths in the shortwave infrared region may be most useful
(Table 2; Fig. 2). Though reflectances at 368 (ultraviolet) and 764,
861, and 862 (NIR) nm differed between non-infested and infested
vegetation and had high overall accuracy values (Tables 2 and 3),
the mean differences between infested and non-infested reflec-
tances at these wavelengths, while significant, were quite small.
These small differences, manifested in such narrow, specific wave-
lengths, may be difficult to detect in coarser resolution sensors
such as Landsat or QuickBird. These results point to the SWIR
region as a better indicator of spruce beetle infestation, especially
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as the area of divergence between non-infested and infested spruce
in this region overlaps well with multispectral SWIR bands such as
Landsat band 7 (Fig. 2).

Overall, the individual chosen hyperspectral wavelengths were
better predictors of early-stage spruce beetle infestation than were
the vegetation indices/Landsat bands (Table 2). Although we focus
on a different stage of infestation, our findings are similar to those
of Hart and Veblen (2015), who also found differences between RGI
and NDVI for healthy and infested trees. Also in agreement with
Hart and Veblen (2015) and DeRose et al. (2011), the disturbance
index had a good AUC, at 0.77. However, DI was not the best metric
in our case, possibly because we detected green-stage infestation,
rather than gray-stage or later. Landsat band 7 also had the lowest
error rates of all the calculated indices (Table 2). While commission
errors (i.e. false positives) should be avoided, choosing an indicator
with a moderate false positive rate, but a low false negative rate
would avoid missing infestations altogether.

The higher reflectance of infested spruce in the shortwave infra-
red region (Fig. 2) can be explained by the underlying physiology of
a spruce beetle attack. When a spruce tree is successfully infested
by spruce beetles, it receives damage in the form of cambium and
phloem consumption by spruce beetle larvae as well as infection
with blue-stain fungus, which is vectored by the spruce beetle
(Paine et al., 1997; Schmid and Frye, 1977). Frank et al. (2014)
found that while canopy conductance of infested Engelmann
spruce trees is significantly lower than that of healthy spruce, there
is no difference in photosynthesis between rehydrated branches of
either class. This suggests that infested spruce trees are tightly reg-
ulating their stomatal conductance in response to the hydraulic
impacts of the blue stain fungus, while maintaining leaf biochem-
istry (Frank et al., 2014). Thus, in the early stages of a spruce beetle
infestation, Engelmann spruce are slowly losing water due to the
decreased canopy conductance, which results in an increase in
reflectance in the shortwave infrared region, a primary area for
radiation absorption by water (Thenkabail et al., 2012b; Ustin
et al., 2004).

A natural extension of these findings would be to evaluate the
feasibility of using the wavebands and spectral indices identified
in this fine-scale, hyperspectral study as indicators of stand-level
early-stage spruce beetle outbreaks in broad-scale imagery, thus
providing a more useful and accessible monitoring tool for forest
managers. However, several factors complicate extrapolation of
these findings. Scaling up from field spectra to broad-scale multi-
spectral imagery such as that of Landsat is complicated by the dif-
ferences in spectral, spatial, and radiometric resolutions, as well as
the differences in the amount of non-foliar reflectance captured in
either type of sensor (Coops et al., 2006a; Hall et al., 2016;
Lillesand et al., 2000). Of these, non-foliar influences and radiomet-
ric resolution are likely to be the least limiting. Non-foliar influ-
ences present in broadband pixels can be amended through
adequate image selection, classification into vegetated vs. non-
vegetated surfaces, and by a number of atmospheric and topo-
graphic corrective techniques (Bhandari et al., 2012; Hall et al.,
2016; Riano et al., 2003). Additionally, we found fairly strong dif-
ferences broadly across the SWIR region (Fig. 2); thus radiometric
resolution differences between the FieldSpec Pro and broadband
satellites are also not likely to be problematic, especially given
the high radiometric resolution of newer satellites (e.g. with the
16-bit Landsat OLI).

Decreasing spectral resolution is a large hindrance associated
with scaling from hyperspectral to broad-scale sensors (Coops
et al., 2006b). Nonetheless, we found evidence for increased reflec-
tance in infested spruce foliage across a broad range of the short-
wave infrared region (�1900–2400 nm; Figs. 2 and 3), indicating
that multispectral bands in this region (i.e. Landsat band 7) may
be useful for detection of early spruce beetle infestation in broad-
band imagery. The high accuracy and relatively low error rates
associated with the averaged Landsat band 7 from the field spectra
(Tables 2 and 3) also support its utility in detecting early infesta-
tions. We additionally found high accuracy with NDVI and RGI
(Table 2), which can also be calculated using broad wavebands
(Table 1).

Spatial resolution is also important to consider when conduct-
ing vegetation change studies with remote sensing (Coops et al.,
2006b; Hall et al., 2016). Sensors with high spatial resolution can
detect changes at the scale of single trees or branches, as with
the ASDi FieldSpec Pro. However, high spatial resolution typically
comes at the expense of low spatial extent and high cost (monetary
and time/effort) per unit of information (Coops et al., 2006b; Hall
et al., 2016). In our case, the FieldSpec Pro can only sample one
branch at a time, and it is not feasible to sample a whole landscape
this way. More moderate spatial resolution sensors such as Landsat
and Hyperion (each with 30 m pixels) can detect changes at the
level of a forest stand (Coops et al., 2006b; Goodwin et al., 2008;
Walter and Platt, 2013), cover large areas, and have return times
on the order of several days, thereby allowing for identification
of stressed stands undergoing early signs of beetle infestation as
well as monitoring of infestations through time.

To assess whether the wavelengths identified in our hyperspec-
tral analysis could be used to discriminate spruce beetle infestation
in broad-scale multispectral imagery, we conducted a preliminary
assessment of Landsat imagery of a recent spruce beetle outbreak
in southern Wyoming. The USFS/AmeriFlux site Glacier Lakes
Ecosystem Experiments Site (GLEES; in the subalpine zone of the
southeastern WY Rocky Mountains) underwent an extensive
spruce beetle outbreak between 2005 and 2010 (Frank et al.,
2014). Frank et al. (2014) investigated whether they could detect
the early stages of this infestation using the MODIS green leaf area
product, however, evidence for the outbreak was not observable in
MODIS data until about two years after the peak of the outbreak
had already occurred. MODIS has a fairly low spatial resolution
(250–1000 m) compared to the Landsat series (30 m). Through
the use of a finer spatial resolution satellite, and the wavebands
identified in our hyperspectral analysis, it is possible that the
2005 spruce beetle outbreak at GLEES may be detectable in Landsat
imagery, even in the early stages of the outbreak. If wavelengths
identified in our hyperspectral analysis are in fact able to detect
infestation at coarser spatial scales and spectral resolutions, this
should manifest as coherent changes in corresponding Landsat
bands.

We conducted a preliminary case test to begin evaluating the
potential for early-stage infestation identification in multispectral
satellite imagery. We focused on Landsat band 7 (2080–
2350 nm), RGI, and NDVI because of the substantial differences
between the foliage of non-infested and infested trees found over
these bands and indices in the hyperspectral data. Late summer
Landsat 5 TM imagery was used to calculate average rescaled dig-
ital number (DN) values for RGI, NDVI, and band 7 for the GLEES
outbreak, and these values were plotted across the infestation time
series along with data on cumulative percent spruce attacked from
Frank et al. (2014) (see Appendix A for more detailed methodol-
ogy). There was an overall increase in reflectance from Landsat
band 7 between 2003 and 2011, coherent with the increase in
cumulative attacked spruce with 2010 (Fig. 4). The red-green index
had an early peak in 2006 and then seemed to follow reflectance
from Landsat band 7, whereas NDVI peaked in 2007 and then
decreased. Pearson’s correlation coefficients between the attack
data and Landsat band 7, RGI, and NDVI are 0.854, 0.690, and
�0.485, respectively (see Appendix A for further results).

The coherent changes in the Landsat data record and percent
spruce attacked lend support to the idea that stand-level spruce
beetle infestation can be detected in broadband imagery, with



Fig. 4. Average rescaled relative normalized digital number values for Landsat band 7, RGI, and NDVI for forested plots at GLEES during a spruce beetle infestation along with
cumulative percent spruce trees attacked redrawn from Frank et al. (2014). Error bars on the spectral indicators represent confidence intervals (CI ¼ �x� 1:99SE�x).
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the potential for detection of green-stage outbreaks. Both Landsat
band 7, and to some extent RGI, correlated well with the progres-
sion of spruce beetle-attacked trees at GLEES (Fig. 4). Band 7 and
RGI also increased prior to when this attack could be identified
in MODIS data (Frank et al., 2014), and prior to a visual change
in the canopy (see photos taken during the infestation in Fig. S2
in Supplementary Material). These increases in RGI and band 7 in
the Landsat record prior to visible changes to the canopy further
support their utility as green-stage indicators of spruce beetle
infestation. Future studies investigating the use of Landsat band
7 and RGI to detect early-stage spruce beetle infestations should
include spatially detailed ground truthing at multiple locations
and in different times, including all classes of infestation stage.
However, the fact that we did see a change in the averaged wave-
bands and indices, even with the added influence of other infesta-
tion classes and other non-foliar influences, lends further support
to their use as green-stage indicators of spruce beetle infestation
in broadband imagery. Our intent with this preliminary assess-
ment is to bolster the argument for use of information gained at
the fine-scale to be used in the more readily available and compre-
hensive broad-scale satellite record.

The large differences between infested and non-infested spruce
in the SWIR region (Fig. 2), relatively high accuracy values of Land-
sat band 7 and RGI in the hyperspectral data (Table 2), and the
early increases in band 7 and RGI in the Landsat imagery at GLEES
(Supplemental Fig. S2) implicate the shortwave infrared region and
the red-green index as good candidates for detecting early stages of
spruce beetle infestation, potentially in broad-scale imagery. This
tool would provide managers and other researchers with an easier,
more cost-effective way of identifying and potentially mitigating
areas of spruce beetle infestation. Many studies have used RGI
and the SWIR region to detect vegetation stress due to infestations
(Apan et al., 2004; Cheng et al., 2010; Coops et al., 2006a; Delalieux
et al., 2007; Hart and Veblen, 2015; Hicke and Logan, 2009; White
et al., 2007). Complications with using the SWIR region to detect
moisture stress due to early-stage spruce beetle infestations arise
from the possibility of misclassifying drought-related stress as a
spruce-beetle infestation, or vice versa. Controlling for soil mois-
ture or precipitation using weather or flux tower data could allevi-
ate this problem. However, spruce forests undergoing drought
stress are also more likely to be infested by spruce beetles (Berg
et al., 2006; Hart et al., 2014; Hebertson and Jenkins, 2008;
Malmstrom and Raffa, 2000; McKenzie et al., 2009; Sherriff et al.,
2011), and as such detecting spruce forests undergoing drought-
related stress may help to identify areas predisposed to infestation.

These findings are an important step towards developing an
early-stage detection and monitoring tool for spruce beetle out-
breaks, and can serve as the foundation for further studies. Suc-
cessful monitoring and management of growing spruce beetle
outbreaks may help dampen tree mortality and curtail the expan-
sion of infestations. Such monitoring, especially when applied at
the early stages of outbreaks, may also provide insight into what
climate and environmental factors prompt outbreaks, and what
factors influence their spread. Such techniques can be applied
locally within the Colorado Rocky Mountains, more broadly across
the entire spruce beetle’s range, as well as across the ranges of
other similar bark beetle species.
5. Conclusions

Under outbreak conditions, spruce beetles can be devastating to
the landscape, with consequences ranging from widespread mor-
tality of Engelmann spruce to loss of slope stability and changes
in the carbon, water, and energy balances of the forest (Dale
et al., 2001; Edburg et al., 2012; Kurz et al., 2008; Veblen et al.,
1991). Early detection of spruce beetle infestations would aid in
the study of their outbreak dynamics and may help mitigate
large-scale outbreaks. Ground-based hyperspectral remote sens-
ing, with its fine spatial and spectral resolution, has been proven
to be a valuable tool for understanding the subtle changes in veg-
etation due to various types of stress and for determining pertinent
wavelengths, spectral regions, and vegetation indices useful for
classifying healthy and stressed vegetation (Ahern, 1988; Carter,
1993; Delalieux et al., 2007; Santos et al., 2010). The information
garnered with such small-scale data can be used to inform studies
involving more readily available broadband imagery. We have
found, through the use of a ground-based spectroradiometer, that
the shortwave infrared region and the red-green index may be use-
ful identifiers of green-stage spruce beetle infestation in
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Engelmann spruce. Although we had higher accuracy values for the
specific wavelengths of the spectroradiometer than those for the
aggregated wavebands or vegetation indices, our findings suggest
that these wavebands and indices may also be useful for detecting
stand-wide outbreaks using broad-scale multispectral sensors such
as Landsat. Our results can be used to inform other studies on
detecting and following spruce beetle outbreaks, and perhaps for
studies on detecting early-stage infestations from other bark bee-
tles within the Rocky Mountains landscape.
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Appendix A.

A.1. Landsat case test

A.1.1. Study area
The Glacier Lakes Ecosystem Experiments Site (GLEES; Fig. A.1)

was used for the case study using Landsat imagery. This separate
study area was chosen because (a) Landsat images for relevant
years at Monarch Pass were mostly obscured by clouds, and (b)
the extent and timing of beetle infestations are documented for
GLEES. GLEES experienced a large spruce beetle outbreak between
2005 and 2010 (Frank et al., 2014). GLEES is located in the Snowy
Colorado

Wyoming

Fig. A.1. Location of the study sites GLEES (southern Wyoming) and Monarch Pass
(central Colorado).
Range of the Rocky Mountains in the Medicine Bow-Routt National
Forest, near Centennial, WY (41�2203000N, 106�1503000W) at eleva-
tions ranging from 3200 to 3500 m. The forest is comprised of
Engelmann spruce and subalpine fir, with Engelmann spruce dom-
inating the site at 72% of the stems and 84% of the basal area (Frank
et al., 2014). Other bark beetles (i.e. Dendroctonus ponderosae, Dry-
ocoetes confuses) are native to the subalpine zone in this region,
however these damage agents were not a significant factor during
the period of the spruce beetle outbreak. Average annual precipita-
tion at the site is 100 cm and mean monthly temperatures are
24 �C and �9 �C for July and January, respectively (NRCS, 2014).
During the outbreak, rainfall was lower during the beginning
stages of the infestation (�100 cm for 2005 and 2007), and was
higher during one of the epidemic years (�140 cm for 2009)
(Frank et al., 2014). Soil moisture was also higher at GLEES during
the epidemic years (Frank et al., 2014).

A.1.2. Landsat case test methods
Late summer Landsat 5 TM images were obtained over GLEES

(path 34, row 31) for 2003, and from 2005 to 2011 (late summer
2004 images were all obscured by clouds). These images span
the development of a recent spruce beetle outbreak from endemic
(i.e. no infestation or infestation in a small number of isolated,
weakened trees), to an epidemic exhibiting high mortality levels,
and through the local crash of the outbreak (Frank et al., 2014).
The Landsat imagery were clipped to the study area and radiomet-
rically normalized to correct for atmospheric differences between
the images. In radiometric normalization, a number of ‘‘psuedoin-
variant” features are chosen, which are assumed to remain spec-
trally constant over time (i.e. rocks, roads, lakes, etc.). The
reflectances from these surfaces are then used to correct all other
scenes for atmospheric or sun/viewing angle differences between
the set of images (Yang and Lo, 2000). Radiometric normalization
also aids in differentiating change in the imagery due to changes
in the spectral properties of the ground surface, and change due
simply to noise (Schroeder et al., 2006). Relative radiometric cor-
rections on imagery do not require absolute surface reflectances,
as the corrections use only the radiometric information associated
with the time series images themselves (Canty and Nielsen, 2008).
We used a relative normalization procedure in which image digital
numbers (DNs) in 2005–2011 images were linearly related to DNs
in the 2003 image using major axis regression. The normalization
coefficients were obtained from sets of pseudo-invariant pixels
(Schott et al., 1988) and applied to the full images. Radiometric
normalization was conducted in R (R Development Core Team
2015) using the package ‘landsat’ (Goslee, 2011).

The RGI and NDVI were calculated for each image, and the
radiometrically calibrated images were then associated with
known forest plot locations at GLEES using Geospatial Modelling
Environment (Beyer, 2012). Because NDVI and RGI are ratios of dig-
ital number (DN) values, whereas the Landsat band 7 response is in
digital numbers, the values for these indices were rescaled so that
they could be more easily compared. The rescaled relative DN val-
ues for Landsat band 7, RGI, and NDVI associated with each plot
were averaged by year and plotted over time to determine if
change due to beetle infestation was reflected in the Landsat data
record, and which (if any) band or index may be a potential indica-
tor for early spruce beetle infestation.

These Landsat data were also plotted along with the spruce bee-
tle attack data from Frank et al. (2014). Frank et al. (2014) calcu-
lated cumulative percentage of trees attacked trees using tree
cores from a subset of trees at the site. They counted a tree as
attacked the year it ceased wood growth, attributing the tree’s
growth cessation to spruce beetles when accompanied by signs
of beetle attack (i.e. pitch tubes). Pearson’s product-moment
correlation coefficients were calculated to determine the amount
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of correlation between the cumulative percent spruce attacked and
each vegetation index or band.

A.1.3. Landsat case test results
Landsat band 7 reflectance increased throughout the infestation

time series, with a peak in 2010 (Pearson’s r = 0.854). The red-
green index peaked in 2006, and also increased throughout the
infestation (Pearson’s r = 0.690). NDVI peaked in 2007, and then
decreased throughout the rest of the time series (Pearson’s
r = �0.485). There was a steady, significant increase in the rescaled
relative DN values of band 7 from 2005 to 2007 (p = 0.003 for
2005–2006, p = 0.002 for 2006–2007), which corresponds to the
early stages of the spruce beetle outbreak at GLEES, before the peak
number of attacks had occurred (Frank et al., 2014). Band 7 was
also high in later years, correlating with the epidemic years of
the outbreak (2007, 2008, 2010). The decrease in band 7 between
2008 and 2009 may reflect the fact that 2009 was an abnormally
wet year, with about 140 cm of rainfall (Frank et al., 2014).

RGI peaked fairly early, in 2006, and was somewhat less corre-
lated with percent attacked spruce than was Landsat band 7 (Pear-
son’s r = 0.690 vs. 0.854). Photos taken by Frank et al. (2014) and
Speckman et al. (2015) at the site show that the majority of the
canopy was green from 2003 to 2007 (see Fig. S2 in the Supple-
mentary Material). Thus, the increases in RGI and Landsat band 7
occurred before there would have been a strong visual signal for
the outbreak. Most of the canopy is green in coloration until after
2007, during which time only about 10% of the forest is infested
with spruce beetles, though a significant increase in band 7 and
RGI has already occurred.

Because NDVI is a measure of greenness, one would expect
NDVI to steadily decrease as the infestation progressed. However,
this was not the case; NDVI over GLEES increased until 2007, after
which it did in fact decrease. In images from GLEES (Fig. S2; Sup-
plementary Material) one can see that in 2009, and especially
2010, many yellow and gray spruce trees can be seen, which
may account for the drop in NDVI.
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.foreco.2016.11.
004.
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