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Abstract. Occupancy–abundance (OA) relationships are a foundational ecological phe-
nomenon and field of study, and occupancy models are increasingly used to track population
trends and understand ecological interactions. However, these two fields of ecological inquiry
remain largely isolated, despite growing appreciation of the importance of integration. For
example, using occupancy models to infer trends in abundance is predicated on positive OA
relationships. Many occupancy studies collect data that violate geographical closure assump-
tions due to the choice of sampling scales and application to mobile organisms, which may
change how occupancy and abundance are related. Little research, however, has explored how
different occupancy sampling designs affect OA relationships. We develop a conceptual
framework for understanding how sampling scales affect the definition of occupancy for
mobile organisms, which drives OA relationships. We explore how spatial and temporal sam-
pling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships.
We develop predictions using simulations, and test them using empirical occupancy data from
remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that
when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell
size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are
affected by spatial grain. Furthermore, OA relationships are also affected by temporal
sampling scales, where the curvature of the OA relationship increases with temporal sampling
duration. Our empirical results support these predictions, showing that at any given
abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer
surveys do increase occupancy estimates. For rare species (low occupancy), estimates of
occupancy will quickly increase with longer surveys, even while abundance remains constant.
Our results also clearly demonstrate that occupancy for mobile species without geographical
closure is not true occupancy. The independence of occupancy estimates from spatial sampling
grain depends on the sampling unit. Point-sampling surveys can, however, provide unbiased
estimates of occupancy for multiple species simultaneously, irrespective of home-range size.
The use of occupancy for trend monitoring needs to explicitly articulate how the chosen
sampling scales define occupancy and affect the occupancy–abundance relationship.

Key words: abundance–occupancy; distribution–abundance; large mammals; mobile organisms;
occupancy models; sampling; scale.

INTRODUCTION

The ubiquity of positive occupancy–abundance (OA)
relationships is a foundational pattern in ecology (Passy
2012). It has long been observed that locally abundant
species are regionally widespread (Andrewartha and
Birch 1964) and that this pattern is generally consistent
within species over time, and among species over space
(Gaston et al. 2000). OA relationships have key implica-
tions for both the theoretical understanding of ecology
and for guiding applied conservation. For example, these

macroecological patterns can help understand how local
and regional ecological processes interact (Gaston and
Blackburn 2000) and can illuminate how biological and
ecological traits can affect large-scale patterns (Webb
et al. 2009). In conservation, positive OA relationships
point to a “double jeopardy” where rare species are at
risk of extirpation both because small populations
increase the risk of stochastic catastrophic loss, and
because restricted distributions increase the risk that all
populations experience unfavorable conditions simulta-
neously (Lawton 1995, Gaston et al. 2000).
Changes in occupancy are most likely driven by

changes in abundance and not the other way around
(Gaston and Blackburn 2003). Understanding the mecha-
nisms underlying the shape of positive OA patterns,
however, remains incomplete, but includes at least four
factors. First, the positive relationship can be understood
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with the most basic mathematical relationship between
occupancy (a binomial process) and abundance (governed
by a Poisson process). Any increase in abundance mathe-
matically causes any spatial function of abundance to also
increase (Royle et al. 2015). The result is a positive
relationship between occupancy and abundance. Second,
ecological drivers, such as different life-histories among
species such as dispersal, can change OA relationships
because occupancy responds quicker at high dispersal
rates (e.g., in oceans) to changes in abundance (Blackburn
et al. 2006). Thirdly, discrepancies in terminology account
for some differences in the shape of OA relationships, for
example, some studies calculate abundance of only occu-
pied cells, while others consider all cells surveyed (Borre-
gaard and Rahbek 2010). Finally, the issue of scale is
paramount in ecology, both because species interact dif-
ferently with the environment at different scales, and
because our scale of observation affects our interpretation
of ecological patterns (Wiens 1989, Levin 1992). Wilson
(2008) showed that sampling artifacts can affect the shape
of OA relationships, for example, when the extents of
abundance and occupancy surveys do not match. More
importantly, estimates of occupancy have been shown to
depend on the size of grid cells (Gaston and Fuller 2009)
and this can affect the OA relationship (He and Gaston
2000, Kunin et al. 2000).
Beyond positive vs. negative, the curvature of the OA

relationship also has important applied implications
when relying upon occupancy as a surrogate for abun-
dance (MacKenzie and Nichols 2004). For example,
when using occupancy for monitoring population trend
of sensitive species, it is important to understand how an
observed change in occupancy corresponds to a change
in abundance. Estimated occupancy of Spotted Owls
(Strix occidentalis), for example, was linearly related to
abundance, and thus when used for trend monitoring,
changes in occupancy correspond linearly to changes in
abundance (Tempel and Guti�errez 2013). When gov-
erned by a curvilinear OA relationship, however, a
change in abundance may remain undetected when only
monitoring occupancy. For example, the relationship
between wolf (Canis lupus) occupancy and density is
curved and, furthermore, the curvature depends on sam-
pling grid size (Latham et al. 2014).
Occupancy models that correct for imperfect detection

have revolutionized how we estimate and think about
occupancy (MacKenzie et al. 2002, Bailey et al. 2013).
Occupancy models are inherently hierarchical and rely on
repeated sampling to estimate detection probability, pro-
viding estimates of site occupancy that are unbiased by
observer error (MacKenzie et al. 2002). Early occupancy
models were developed in discrete habitat patches, i.e.,
amphibians in ponds (MacKenzie et al. 2002). Sampling
can be repeated across space (e.g., transects; Ellis et al.
2014), across time (e.g., repeated call surveys; MacKenzie
et al. 2002), or by using multiple observers (Nichols et al.
2000). Point-location detection/non-detection data are
often inexpensive and are ever-increasing with new

emerging technologies such as eDNA (Schmidt et al.
2013) and camera trapping (Burton et al. 2015). As a
result, occupancy monitoring is rapidly being adopted as
a surrogate for abundance monitoring, but without fully
understanding the relationship between the two. Under-
standing changes in population occupancy over time is
often predicated on positive and linear OA relationships
(MacKenzie and Royle 2005). Despite the key connec-
tions between occupancy and abundance, little work (see
Royle et al. 2013, K�ery and Royle 2016) has explicitly
linked these two foundational concepts in ecology: occu-
pancy models and OA relationships.
Criticisms of estimating population trend with occu-

pancy models have recently emerged when occupancy is
estimated in continuous habitat (Efford and Dawson
2012) and when organisms are mobile (Hayes and Mon-
fils 2015), often violating the assumption of geographical
closure. Moving beyond sampling discrete habitat patches
(e.g., ponds; MacKenzie et al. 2002), ecologists now use a
wide array of sampling units to collect occupancy data,
commonly across continuous habitat, for example using
an imaginary grid to discretize the landscape in discrete
patches that are then classified as occupied or not (Noon
et al. 2012). This move away from sampling discrete units
of habitat contrasts with the original formulation of occu-
pancy models (MacKenzie et al. 2002), but is consistent
with data commonly used in the study of OA relation-
ships, for example, sampling birds or plants in quadrats
(Gaston et al. 2000). Estimates from occupancy models
rely on a closure assumption that prohibits changes in
occupancy state (occupied or not occupied) among
repeated sampling sessions; i.e., sites must remain occu-
pied or remain unoccupied throughout the entire survey.
Dynamic models allow for changes among seasons or
years only, and not within sampling occasions (MacKen-
zie et al. 2003), so dynamic models do not circumvent the
closure assumption. The most common form of repeated
sampling is over time (Bailey et al. 2013). When time
between repeated occasions is long relative to movement
speed of mobile organism, closure can be violated if
organisms move among sampling cells (Hayes and Mon-
fils 2015). One proposed solution for such violations is to
redefine the estimated parameter from “occupancy” to
“use” (Latif et al. 2016). Changes in definition that are
driven by sampling scale, whether temporal or spatial,
however, necessarily result in significant considerations
for how occupancy estimates are used in trend monitor-
ing, which we demonstrate in this paper.
Generally, occupancy is defined as the proportion of

sites where a species is found (Gaston et al. 2000,
MacKenzie et al. 2002), but the definition varies along
temporal and spatial sampling scales (Royle and Dora-
zio 2008, Noon et al. 2012). Using occupancy for trend
monitoring requires understanding the shape of species-
specific OA relationships, but this understanding may be
complicated by the potential interplay among sampling
scales and species-specific life history, especially with
the increased demand for simultaneous multi-species
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monitoring (e.g., Noon et al. 2012) where each species
may have a different OA relationships. When using occu-
pancy for monitoring, it has been argued that the most
useful spatial scale to sample occupancy is the scale
where the relationship between occupancy and abun-
dance remains close to 1:1 (Stanley and Royle 2005,
Noon et al. 2012). Linden et al. (2017), for example,
empirically showed that occupancy and abundance
estimates have the highest correspondence when sam-
pling at close to the home-range scale. This suggested
approach to spatial sampling scale could potentially
avoid both the grid saturation problem (Kunin et al.
2000) and the dilution effect (Gautestad and Mysterud
1994) when measuring occupancy. Selection of the tem-
poral sampling scale, on the other hand, depends on the
objective of the study and desire to minimize violations
of closure (Royle and Dorazio 2008). Discrete ponds, for
example, may be occupied at different times during a
breeding season due to ecological differences among
ponds. Surveying ponds throughout the total length of
the breeding season will, therefore, violate the assump-
tion of closure, but this choice remains appropriate if the
objective is to understand how many ponds are occupied
at any point during the breeding season (Royle and Dor-
azio 2008). However, for wide ranging mobile organism
moving through continuous habitat, it will be difficult to
address the violation of closure, and thus the interpreta-
tion of occupancy becomes unclear.
In this study, we first develop a conceptual framework

for interpreting estimated occupancy of mobile animals
in continuous space that can be applied across different
spatial and temporal scales. Next, using this framework,
we investigate the effects of spatial grain and sampling
unit on the shape of the OA relationship. Because of the
ubiquity of repeated sampling designs, we also consider
the effect of temporal sampling extent (i.e., duration of
the survey). Previous studies have shown that OA rela-
tionships become more curved with increasing spatial
grain (He and Gaston 2000, Hui and McGeoch 2007).
Following this work, we predict that similarly, the curva-
ture of the OA relationship will increase with grain size.
Thus, we expect that occupancy estimates will be higher
with larger grain size, even when abundance remains con-
stant. Similarly, we hypothesize that longer temporal
durations will also increase occupancy estimates because
of the increase in probability of closure violation (Rota
et al. 2009). Many different sample units are used in
occupancy and occupancy-abundance investigations (see
Conceptual framework for interpreting occupancy across
scales), but to our knowledge, there has been little or no
research on the effects of sampling unit on occupancy–
abundance relationships. Given occupancy is a spatial
process, we also expect the choice of sampling unit to
affect the OA relationship. We test these predictions using
a simulation study. Simulations help control for con-
founding variables while forcing an explicit expression of
underlying model assumptions. We further test our pre-
dictions with an empirical data set of 11 medium-large

mammals collected from remote cameras in and around
two national parks in the Canadian Rockies.

A note on terminology

The word “scale” can mean many things; for example,
spatial scale can mean spatial grain, spatial extent, spa-
tial lag, etc. Here we specify that we investigate spatial
grain as the size of the grid cells that are used to
discretize continuous space. For areal sampling, the
grid-cell size determines the size of the sampling unit;
for point sampling, the grid-cell size determines the dis-
tance between sampling locations (see Methods for more
details on the differences between these two general
forms of sampling). Similarly, temporal scale has equally
as many definitions; here we investigate only temporal
duration of sampling, i.e., total length of the survey. In
the discussion, however, we explain how other spatial
and temporal scales were either explored elsewhere in
the literature, were tested in the appendix, or were con-
trolled for. Finally, because occupancy can be inter-
preted in many different ways, we clarify here that, when
referring to “occupancy,” we mean the parameter being
estimated during any occupancy sampling exercise. As
we show in this manuscript, the meaning of this parame-
ter is fluid and depends on sampling scales.

Conceptual framework for interpreting occupancy across
scales

As explained above, occupancy-estimation designs often
stray far from the original formulation by MacKenzie
et al. (2002), with varying temporal and spatial sampling
scales that necessarily affect the definition of occupancy.
Here, we explain our conceptual framework that shows
explicitly how these deviations from MacKenzie et al.
(2002) affects the definition of occupancy being estimated.
Occupancy surveys can vary in temporal scale from
instantaneous direct observations of animals to cumula-
tive sign of animals (e.g., scat, tracks, pictures, vocaliza-
tions) over a longer period of time. This accumulation of
use is also referred to as occupancy integrated over time,
or as asymptotic occupancy (Efford and Dawson 2012).
Occupancy of individuals will be necessarily more closely
related to abundance than occupancy of sign because sign
from individuals can accumulate over an area as animals
move during longer temporal windows. The definition of
occupancy from sign, thus, depends on the movement rate
of individuals throughout their annual home range, the
temporal sampling window, and the spatial distribution of
surveys relative to the size of the species home range (see
large circles in Fig. 1). Considering occupancy relative to
home-range sizes illustrates the effects of both spatial and
temporal sampling scales. When occupancy surveys have a
short temporal window relative to movement rates and
home-range size, animal sign accumulates in a small area
(Fig. 1A, C, E). Temporal sampling duration, therefore,
changes the definition of occupancy because it affects the
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proportion of the landscape occupied by each individual
during the sampling period. Spatial grain (i.e., cell size),
on the other hand, affects the number of individuals that
occupy each cell. When cells are larger than average home
ranges, occupancy refers to the occupancy of at least one
individual (Fig. 1A, B). When cells are smaller than home

ranges, occupancy refers to the proportion of cells occu-
pied (used) by each individual (Fig. 1E, F). Occupancy
surveys are most directly related to abundance when cells
size matches home-range size, allowing one individual to
occupy each cell (Fig. 1C, D). Spotted owls provide an
ideal example because they are highly territorial and each
occupied territory has only one pair (Tempel and
Guti�errez 2013). Consequently, when grid cells and home
ranges align, each occupied cell represents one pair of owls
(Fig. 1C, D, but with non-overlapping home ranges). Due
to their territoriality, owl pair occupancy at the spatial
scale of the home range has a linear OA relationship
(Tempel and Guti�errez 2013). Thus, to ensure a closer link
between occupancy and abundance, it has been recom-
mended that occupancy studies sample at the home-range
scale whenever possible (MacKenzie and Nichols 2004,
Noon et al. 2012). Unfortunately, this can be difficult to
achieve for many species because individuals often have
overlapping home ranges and there is substantial variation
in home-range size within species (e.g., between sexes).
Moreover, it is impossible to standardize in multi-species
surveys when home-range size varies among species.
Not only do spatiotemporal sampling scales affect the

definition of occupancy, the sampling unit can as well
(Fig. 2). When dealing with discrete habitat, occupancy
can be interpreted as the proportion of discontinuous
habitat patches (e.g., ponds) that are occupied (Fig. 2D;
MacKenzie et al. 2002). When discretizing continuous
habitat, however, the sampling unit is considered the cell,
rather than the patch, and the occupancy parameter
changes from patch occupancy to cell occupancy
(Fig. 2A, B). For example, atlas data commonly gathers
information about the presence of bird or plant species
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FIG. 1. Conceptual framework for how the definition of
occupancy changes along spatiotemporal sampling scales.
Spatial sampling grain (i.e., cell size) is described at three scales
relative to annual home ranges (HR; large circles). Temporal
sampling duration (i.e., survey length) is described relative to
movement rate of the animal and total annual home range.
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FIG. 2. Conceptual differences among three commonly used sampling methods to collect occupancy data and the resulting sam-
pling units. Three common methods (areal sampling of individuals, areal sampling of use, and point sampling of use; rows A–C,
respectively) are compared to (D) how occupancy models were originally characterized by MacKenzie et al. (2002).
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within grids. Similarly, open-water fish hauls also sample
individuals and cover an area. Sampling use rather than
individuals provides some monitoring opportunities but
further complicates the definition of occupancy. For
mobile species, it is possible to move from areal-based
sampling of use (e.g., track counts) to point-based sam-
pling of use (Fig. 2C; e.g., camera traps, acoustic
surveys), although this distinction is seldom explicit in
the literature. A shift in sampling unit causes a corre-
sponding shift in the definition of occupancy: either cell
occupancy, patch occupancy, or site occupancy. How
this change in sampling unit affects OA relationships is
unknown, which is addressed in our simulations.

METHODS

Simulating occupancy–abundance relationships

We examined the effects of temporal scale, spatial
scale, and sampling unit on OA relationships using a
simplified spatial capture–recapture (SCR) sampling
framework used for abundance estimation (Efford et al.
2009, Royle et al. 2013). We first simulate point-location
data to mimic our empirical remote camera data (see
below where we vary sampling unit). This simulation
framework would be similar for any point data such as
acoustic surveys, eDNA samples, etc. We use a SCR
framework to simulate animal locations with a homoge-
nous Poisson point process (uniform movement density),
and distributes home range centers within a sampling
area. We focused on assuming perfect detection because
imperfect detection should only affect precision of
occupancy estimates and not the occupancy abundance
relationship (see Appendix S1 where we verify this
expectation). In the SCR sampling framework, individ-
ual detection at any point depends on: the baseline
detection probability at the home range center, g0; the
home range scale parameter, r; and the distance
between the home range center and the point location,
d, such that detection rates decrease with d, often
through a bivariate normal decay function. However, to
model our assumed perfect detection, we set g0 = 1 and
r = 0, so that detection was perfect and did not vary
with d (again, see Appendix S1 where we modified these
parameters and tested the effects of relaxing our perfect
detection assumption). We then truncated the area where
individuals could be detected to r(5.99)0.5, the 95% cen-
ter area of a bivariate normal decay (Royle et al. 2013).
To evaluate estimation bias, we calculated the total area
of occupancy as the overlapping total distribution of all
annual home ranges in a population, where each home
range is conceptualized as a circular area occupied by an
individual through a year (Fig. 1B, D, F). Note that
home range centers were Poisson distributed in space,
meaning we did not restrict animal distribution by con-
specifics (neither aggregation nor repulsion), and home
ranges were permitted to overlap. Holt et al. (2002)
investigated how different spatial distribution models

performed to describe OA relationships and found that,
although the Poisson distribution did poorer than others
when tested with empirical data, all models performed
reasonably similarly. The Poisson model saturates quicker
than other proposed models (e.g., negative binomial,
which allows for spatial aggregation), but we used the
Poisson model to develop our OA relationships because
of its simplicity in describing OA patterns (Freckleton
et al. 2005) and its correspondence with density estima-
tion simulations (Efford et al. 2009, Royle et al. 2013).
We used a simulated landscape of 80 9 80 sampling

units in continuous habitat. When considering each unit
in simulated space as 1 km in real space, the total simu-
lated area (6,400 km2) was close to the size of our main
study area, Banff National Park (6,641 km2). We simu-
lated between 1 and 150 animals reaching a maximum
density of 23.4 animals/1,000 km2 (a high, but compara-
ble maximum density for a rare carnivore such as Grizzly
bears, Ursus arctos). Each circular home range (large
circles in Figs. 1 and 2) occupied an area of 100 km2

(radius = 5.6 km). To simulate changes to spatial sam-
pling scale (i.e., grain), we changed the spacing between
sampling locations using three different sized lattices.
Sampling lattices with 16, 64, and 256 point-sampling
locations, resulted a spacing of 20, 10, and 5 km apart,
respectively (i.e., 1 point sample per 400, 100, and
25 km2, respectively). To simulate changes to temporal
sampling scale (i.e., total survey duration), we changed
the fraction of each 100-km2 home range that animals
were able to use. For example, to simulate a short, sea-
sonal sampling window, we allowed animals to use only
0.25 of their home range, resulting in an area used that
was 25 km2 rather than 100 km2. This assumption is true
under diffusive movement of individuals such as a corre-
lated random walk (Turchin 1998). All scenarios were
simulated 1,000 times.
To simulate different sampling units, we simulated three

data-collection methods commonly used for occupancy
estimation (see Fig. 2). First, we laid a lattice of grid cells
on the landscape within which the presence of individuals
is recorded. This method produces data common to spe-
cies atlas data (e.g., bird or plant counts) collected in many
OA studies (Fig. 2A). Removal sampling of individuals,
e.g., haul sampling of fish, would also produce data with
this nature. Observed occupancy was calculated as the
proportion of cells with at least one individual. Second,
we systematically distributed point samples across the
landscape as in the above simulations to record use, rather
than recording individuals. This method produces data
similar to acoustic and camera surveys by collecting
point-samples of animal sign (Fig. 2C). Estimation in this
sampling scenario essentially ignores any grid cells used to
spread out sampling; we calculated observed occupancy as
the proportion of point-sampling locations that landed on
occupied areas. When a camera fell on any home range, it
perfectly detected the presence of the individual(s) that use
the area and was considered occupied. Third, we simu-
lated an intermediate scenario between the two previous

176 ROBIN STEENWEG ET AL. Ecology, Vol. 99, No. 1



methods where we used the same lattice of grid cells for
areal sampling as in scenario A, but rather than tracking
the presence of individuals, we tracked their use (see
Fig. 2B). This method produces data similar to track
counts and other transect data (e.g., Ellis et al. 2014), or
similar to the data resulting from aggregating multiple
point locations in a cell to produce a single estimate of
occupancy per cell. For this third method, we calculated
observed occupancy as the proportion of cells containing
any portion of a home range. For all three sampling sce-
narios, we assumed perfect detection (but see Appendix S1
where simulated imperfect detection and showed there is
little affect of detection probability on how sampling
scales affect occupancy–abundance relationships).

Empirical test of the effects of samples scales on
underlying occupancy abundance relationships

To test the patterns predicted by our simulations, we
collected empirical data using 148 remote cameras for 11
medium-large mammal species. Cameras were deployed
across three study areas in and around Banff and Water-
ton Lakes National Parks, Alberta, Canada (total area
sampled: 3,700 km2; Appendix S2: Fig. S1). In 2012, 72
cameras were deployed in a portion of Banff National
Park and adjacent Kananaskis Country; in 2013, 48
cameras were deployed in Banff and the Ya Ha Tinda
study area; and in 2014, 26 cameras were deployed in
Waterton Lakes National Park study area. Camera loca-
tions were systematically distributed with one camera
per 5 9 5 km cell to allow analysis at three hierarchical
scales: 25, 100, and 400 km2. These cell sizes correspond
to the approximate home-range sizes of red fox (Vulpes
vulpes; ~25 km2), cougars (Puma concolor; 87–97 km2

and 140–334 km2 for females and males, respectively;
Ross and Jalkotzy 1992), and grizzly bears (~520 km2;
Stevens and Gibeau 2005). Of the 148 cameras deployed
2012–2014, 146 collected data from 15 June to 15 Octo-
ber. Images were classified to species level in all study
areas. We estimated occupancy for 11 medium-large
mammal species: black bear (Ursus americanus), cougar,
coyote (Canis latrans), elk (Cervus canadensis), grizzly
bear, lynx (Lynx canadensis), moose (Alces alces), mule
deer (Odocoileus hemionus), red fox, white-tailed deer
(Odocoileus virginianus), and wolf; refer to Steenweg
et al. (2016) for more study area details.
To estimate occupancy for each species, we discretized

camera data into two-week intervals, which was the
shortest temporal grain that avoided numerical estima-
tion errors for our data set (Steenweg et al. 2016). We
estimated occupancy using a maximum likelihood
approach in the statistical software, R (R Development
Core Team 2015), using the package unmarked (Version
0.10-6; Fiske and Chandler 2015). To mimic sampling at
larger spatial scales (i.e., grains of 100 and 400 km2), we
rarefied the 25-km2 data by subsampling the sampling
locations for each analysis within a larger grid cell. At
the scale of a cougar home range, for example, we used

0.25 of the locations, using only one camera per group of
four cameras within each 100-km2 cell. At each scale, we
randomly subsampled the data 200 times and tracked
mean occupancy and standard error. To mimic sampling
at smaller temporal scales (i.e., survey durations of 1, 2,
and 3 months) we similarly subsampled the data, using
random windows of 1, 2, or 3 months of data rather
than the full 4 months of data. Using a random window
(rather than random weeks) preserved any potential
seasonal signal in the data had we only sampled for a
particular month. We tested for the effects of survey
duration and spatial sampling scale on occupancy esti-
mates using mixed-effects generalized linear models in
the metafor package in R (Viechtbauer 2010). We speci-
fied species as a random effect and incorporated
variances of occupancy estimates. We then compared
models with and without the fixed effects of either
survey duration or spatial sampling scale using the Akaike
information criterion corrected for sample size (AICc).

RESULTS

Simulating occupancy–abundance relationships

Spatial and temporal sampling scales affected the OA
relationship differently. When surveys were temporally
short enough to allow only short-distance movements,
OA relationships were shallower, appearing near linear
(Fig. 3A, D, G). Increasing the temporal sampling
extent, moving right along rows in Fig. 3, increased the
curvature of the relationship. Thus for a fixed abun-
dance, estimates of occupancy increased with increased
temporal sampling extent. In contrast, increasing the
spatial sample grain, moving up along columns in
Fig. 3, did not affect the shape of OA relationship, but
did decrease the precision of the occupancy estimate.
Lower precision was due to a decline in sample size (see
Appendix S3: Fig. S1).
The choice of sampling unit had a strong effect on the

shape of the simulated OA relationship (Fig. 4). Regard-
less of the sampling unit, OA relationships were non-
linear, but the non-linearity depended on the type of
sampling unit. Simulating areal sampling of individuals
represents data commonly analyzed during investiga-
tions of the OA relationship. Point sampling of animal
sign (Fig. 4C) reached an asymptote much slower than
areal sampling of sign (Fig. 4B).

Empirical test of occupancy-abundance predictions

Concurring with our theoretical simulations in Fig. 3,
increasing the spatial grain of real data from camera traps
(point sampling) did not affect occupancy estimates. The
model with the effect of spatial grain performed worse
than the model without (DAICc = 2.17), with a non-signif-
icant effect of spatial grain (P = 0.25; Appendix S4). Mean
occupancy estimates remained relatively constant across
spatial grain for data collected from remote cameras
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(Fig. 5B). This trend was consistent for all 11 species when
sample size remained sufficiently high: grains of 25 and
100 km2, but not 400 km2. When sample size decreased to
only 10 cameras (at spatial grain of 400 km2), there was
great uncertainty in occupancy estimates. The apparent
increase in some occupancy estimates at such grain size
(Fig. 5B) was due to small sample size, and paralleled sim-
ilar declines in precision due to small sample size from our
simulations (Fig. 3A–C; Appendix S3). In contrast,
increasing the temporal sampling duration (survey length)
of real data from camera traps significantly increased occu-
pancy estimates (DAICc = 36.01) with a significant effect
of survey length, (P < 0.0001; Appendix S4). Moreover,
an estimate of 0.112 �0.012 (mean � SE) resulting in real
estimate of 0.022, means that with every additional month
surveyed, occupancy increases on average 2.2%, and this
trend was consistent across 10 of 11 species (Fig. 5A).
Thus, despite animal density remaining constant, occu-
pancy estimates increased with longer surveys, matching
expectations from our simulation results (Fig. 3).

DISCUSSION

Sampling scales affect the definition of occupancy for
mobile species and, in turn, these fluid definitions affect

the nature of OA relationships. The relationship between
temporal sampling scale and the time it takes an animal
to move throughout its home range affects occupancy
estimates. Our simulations demonstrate that, for a given
abundance, longer survey lengths result in higher occu-
pancy (Fig. 3). Our camera data on 11 medium-large
mammal species corroborate this conclusion for a wide
range of occupancy estimates (0.2–0.8; Fig. 5A). This
result is especially pertinent for rare species whose occu-
pancy estimates could increase by an absolute occupancy
of ~0.1 within four additional months of sampling. When
relating spatial sampling scales to home range size, it
may be prudent to sample for long enough to allow ani-
mals to move throughout their entire home range. Inter-
estingly, changes to our temporal sampling window
could also be interpreted as changes in home range size.
Given equal densities, therefore, occupancy estimates will
be higher for animals with larger home ranges because
each individual covers a greater area. Sampling at a point
over longer time periods is, in essence, a surrogate for
sampling a spatial area, by integrating the space used by
animals over time. The longer the sampling window, the
more time animals have to move in front of the camera
from elsewhere in their range. The area used, therefore,
increases over time and is species specific (Fig. 5A).
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Different from the effects of temporal scales, the shape
of OA relationships surprisingly remained constant
across spatial grain in our simulations of point sampling
(Fig. 3), but precision changed due to concurrent
changes in sample size (Appendix S3: Fig. S1). Our cam-
era data also demonstrated this result when sample size
was sufficient, i.e., when n = 146, or n = 31, but not
n = 10 (Fig. 5B). The species included in our analysis
spanned a wide range of life histories including carni-
vores, omnivores, and herbivores; group-living (e.g.,
wolves and elk) and solitary species (e.g., lynx, cougar);
and territorial (e.g., grizzly bears) and non-territorial
species (e.g., moose). The scale-invariance of the OA rela-
tionship under point sampling, therefore, appears robust
to these large ecological differences among species.
Our results showing that OA relationships are unaf-

fected by spatial sampling scale, contrasted with our pre-
dictions based on previous work that implicitly considered
only areal sampling (He and Gaston 2000, Hui and
McGeoch 2007, Wilson and Schmidt 2015). We reconcile
this disagreement by considering the sampling unit. Many
previous OA studies assumed complete or representative

areal sampling of grid cells, and in this case, OA relation-
ships are indeed dependent on spatial grain size (see
Fig. 4A, which closely mimics the change in relationship
due to spatial sampling scale demonstrated by He and
Gaston [2000], compare Fig. 4A to their Figs. 1 and 2). In
contrast, many recent occupancy studies use point sam-
pling (e.g., remote cameras, acoustic surveys) where occu-
pancy is defined as the presence of sign from one or more
individuals at a point. In this case, the density of sampling
points does not affect OA relationships (Fig. 4C). This
change in sampling unit is only possible with a concurrent
change in the definition of occupancy from presence of
individuals, to presence of sign (Fig. 2). Efford and Daw-
son (2012) similarly emphasize that in most occupancy
studies where individual identification or other means to
assure geographical closure are lacking, it is difficult to
guarantee independence among any indirect signs of
animals (e.g., scat, tracks, pictures, vocalizations). When
sampling use instead of individuals, the underlying pat-
tern-generating process that describes occurrence also
changes from a point-pattern process that describes indi-
viduals, to a surface-pattern process, for which theory is
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not well developed in spatial statistics (Gelfand et al.
2010). In our simulations, we conceptualize the presence
of sign as a uniform home range area for each mobile
individual. Substantial statistical theory is based on
instantaneous sampling, both in space and time (Buck-
land et al. 2005). Moving from areal to point sampling,
we move to a more instantaneous sampling of space,
which prevents the breakdown of the OA relationship
across spatial scales. In contrast, longer survey lengths are
further from instantaneous, resulting in an OA relation-
ship that is more curved because the occupancy parameter
represents an integration of use over time (Efford and
Dawson 2012). Therefore, point sampling of overall use
for occupancy estimation, rather than of individuals,
comes with the benefit of approximately instantaneous
spatial sampling, but with the drawback of longer tempo-
ral samples (i.e., changing estimates; Fig. 5A). More
research is needed to understand this trade-off in light of
spatial statistical theory on surface patterns (Gelfand
et al. 2010) as it emerges, but other aspects of sampling
design effects on OA relationships are well known.
Fortin and Dale (2005) describe five aspects of sam-

pling design that affect spatial patterns: grain, strategy,
sample size, extent, and spatial lag. Here we investigated
spatial grain, temporal extent, and one aspect of strategy
(point vs. areal sampling). Furthermore, other sampling
considerations, aspects of species life history (territorial-
ity), or density dependence can also affect OA relation-
ships (Efford and Dawson 2012). Our systematic
sampling caused both spatial lag and sample size to
remain fixed to grain (but see Appendix S3 where we
allowed sample size to deviate and show that it only

affected the precision of estimates, not the shape of the
curve). Spatial extent in our simulations and empirical
investigations remained relatively constant although
home ranges were able to extend beyond the sampling
grid. Because cameras collect continuous data, temporal
grain is equal to the length of each sample session (here,
2 weeks), but this choice only affects precision of occu-
pancy estimates, not the mean estimates themselves
(Steenweg et al. 2016). To more closely mimic closure,
point samples could be spaced beyond what individual
animals can move within the survey period (e.g.,
Fig. 1A, B). This spacing increases the independence
among sampling locations, individuals will not be likely
to be sampled at multiple locations, like most acoustic
bird sampling protocols, but spreading out sampling
cannot avoid multiple individuals being present at single
locations. We simulated randomly distributed animals,
which allowed for overlap among individuals. Aggrega-
tion of social animals, for example, will also increase the
curvature of the OA relationship (Efford and Dawson
2012), but this increase should not interact with the gen-
eral effects of spatial and temporal sampling scales on
OA developed here. Although we simulated changes in
abundance, we could not investigate how changes in
abundance affected occupancy with our empirical data.
This is typical of occupancy estimation data collected
within one season, for example, and our purpose was to
demonstrate that OA relationship can change only due
to sampling scales or sampling units. Furthermore, we
did not simulate density dependence between occupancy
and abundance, but little is known about how individual
species’ distributions change with abundance. Home
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range sizes of tigers (Panthera tigris) and oven birds
(Seiurus aurocapilla), for example, decrease with density
(Efford et al. 2016). This effect could materialize as
changes in degree of overlap among individuals’ home
ranges (Ellis et al. 2014), which is complex, even for a
territorial species with little range overlap (e.g., wolves
[Webb and Merrill 2012]).
In our simulations, we only considered occupancy as a

two-dimensional phenomenon, a measure of the distri-
bution of these individuals across a given area. However,
occupancy can be 0 dimensional (e.g., a point), one
dimensional (a fish in a river), or three dimensional,
depending on the ecology of the species of interest and
the objective of the study. Arboreal and many oceanic
organisms inhabit three-dimensional space, leading to
the possibility of three-dimensional occupancy (e.g.,
Davies and Asner 2014). Fish occupancy in streams can
be depicted as one dimensional if stream depth and
width are ignored or not of interest (Falke et al. 2012).
This one-dimensional occupancy could be similarly esti-
mated for shoreline or intertidal occupancy. Perhaps
non-intuitively, the original formulation of occupancy
(MacKenzie et al. 2002) is essentially 0 dimensional.
Point-sampling often necessarily involves sampling of
some small space (e.g., the area in front of the camera).
Similarly, ponds are multi-dimensional (at least two
dimensional). But when interested in the proportion of
ponds or points that are occupied, ponds become analo-
gous to individuals, despite occupancy being a spatial
metric. When measuring pond occupancy, the space that
an occupancy metric describes becomes dimensionless.
With multiple individual amphibians occupying single
ponds, however, the OA relationship will also be con-
cave. This non-linearity is true whenever one unit of
occupancy (e.g., grid cell, pond, point) can be occupied
by multiple individuals.
The linearity of the OA relationship is important to

consider when using occupancy as a surrogate for abun-
dance (MacKenzie and Nichols 2004). In our simula-
tions, when survey length was restricted to the scales
shorter than animal movements, the OA relationship
appeared nearly linear (Fig. 3A, D, G). If these OA rela-
tionships were extended to higher abundances, a similar
asymptotic shape would present itself due to overlap of
the movements of individuals. Similarly, had we extended
simulations of point sampling to higher animal densities
in Fig. 4C, the shape would begin to have a similar curvi-
linear shape to other sampling units. Therefore, the lin-
earity of the OA not only depends on temporal sampling
scale (Fig. 5A), spatial grain when using areal sampling
(Fig. 4A, B), but also the range of densities. Further-
more, there are ecological factors whose affects on OA
relationships are species or context specific. For example,
home range size (Efford and Dawson 2012), territoriality
or aggregation (Efford and Dawson 2012, Noon et al.
2012), and body size (Webb et al. 2009) can all affect the
curvature of the underlying OA relationship. Moreover,
Webb et al. (2007) showed that increasing species

followed expectations from interspecific OA relationships
(i.e., followed the interspecific curvature), but that rare
and declining species tend to have OA relationships that
departed from these expectations, making the implica-
tions of their decline less predictable. When using occu-
pancy as a metric for population trend, therefore, it may
be necessary to develop species-specific OA relationships
(e.g., for wolves, Webb and Merrill [2012], e.g., for bob-
cats, Clare et al. [2015]). Furthermore, understanding
where a species or population of interest lies on the OA
relationship affects the usefulness of using occupancy as
a surrogate for abundance. For many non-territorial spe-
cies, occupancy necessarily saturates to 1 once density is
sufficiently high. But regardless of curvature, rare species
with low occupancy (e.g., coyote, cougar, red fox, lynx in
Fig. 5) correspond to the lower portion of the OA rela-
tionship (e.g., only consider occupancy of 0–0.3), which
can appear near linear regardless of scale (Fig. 3).

CONCLUSIONS

Our investigation into the linkage between these two
foundational frameworks in ecology, AO relationships
and occupancy modeling, provides three major insights.
First, using the most common detection-corrected occu-
pancy data (temporally repeated surveys), we showed
how different scales of sampling necessarily change the
underlying definition of occupancy. Second, estimates of
detection-corrected occupancy that are used for trend
monitoring would benefit from explicitly articulating how
the chosen sampling scales affect the definition of occu-
pancy, and how this choice affects the underlying relation-
ship with abundance. Finally, occupancy without meeting
the assumption of geographical closure is not occupancy.
Discretizing space with grids for occupancy estimation
works best for static organisms. We demonstrated, how-
ever, that a benefit of point-based sampling of mobile
organisms is that their occupancy estimates are robust to
changes in sampling grain regardless of species ecology.
This result implies that point-sampling studies with non-
identifiable individuals (e.g., using remote cameras, acous-
tic surveys, species-level eDNA) can estimate occupancy
for multiple species using a fixed density of point-
sampling locations, regardless of home ranges size of the
animals, but we stress that the definition of occupancy
may be species-specific, ranging from use by one individual
to occupancy of multiple individuals. We hope this work
will stimulate more acknowledgement and discussion of
the implications of the fluid definition of occupancy.
We conclude with a call for more research linking the

theory and practice of investigating OA relationships
with occupancy estimation. Our novel results on how
the choice of sampling unit can affect the relationship
between sampling grain and the shape of OA relation-
ships demonstrates the need to reconcile these two dis-
tinct bodies of literature further. Both areas of research
would benefit from better integration. For example, OA
theoreticians long identified that occupancy of rare
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species can be underestimated due to imperfect detection
(Gaston et al. 1998), yet many OA investigations to date
continue to rely on species distributions that assume that
non-detections are true absences (K�ery 2011, Yin and
He 2014). Investigations into OA relationships would
benefit from correcting occupancy for imperfect
detection to avoid this negative bias, if following
sampling-design considerations when collecting occu-
pancy-estimation data (MacKenzie and Royle 2005, Bai-
ley et al. 2007, Guillera-Arroita and Lahoz-Monfort
2012). In turn, we demonstrate in this paper that a
greater understanding of the underlying intraspecific
relationship between occupancy and abundance would
improve the tracking of species of concern with occu-
pancy estimation. Both groups of researchers should be
aware of the effects of sampling scales and sampling unit
on both the definition of occupancy and the underlying
occupancy–abundance relationship.
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