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4.1. INTRODUCTION

Wildland fire activity around the globe is driven by 
complex interactions between natural and human processes 
[Spies et al., 2014]. Wildland fire can result in significant 
ecological and socioeconomic loss, most notably the loss 
of human life. At the same time, wildland fire can be a 
powerful tool to achieve a wide range of  purposes, 
including clearing vegetation for agroforestry and hunting 
objectives, reducing hazardous fuel loads, and restoring 
and maintaining habitat for fire‐dependent species.

Figure  4.1 provides an overview of wildfire manage-
ment illustrating the major drivers of wildfire risk as well 
as their respective management options, if  applicable. 
(Note that whereas “wildland fire” is an all‐encompassing 
term including unplanned and planned ignitions, our 
focus here is on unplanned ignitions, or “wildfires.”) 
Given an ignition, weather, topography, fuel conditions, 

and suppression activities jointly determine the likelihood 
of fire reaching a given point on the landscape, as well as 
the intensity of wildfire. Prior to an ignition, risk mitigation 
options include investing in ignition prevention programs 
(e.g., campfire bans), reducing hazardous fuel loads 
(e.g.,  removing underbrush and reducing tree density), 
and investing in suppression response capacity (e.g., 
training and purchasing additional firefighting equip-
ment). Factors related to the location and environment of 
highly valued resources and assets (HVRAs) can also be 
changed, by reducing HVRA exposure to fire (e.g., zoning 
regulations), and reducing HVRA susceptibility to fire 
(e.g., home construction practices).

Efficient management of wildfire activity is challenged 
by multiple sources of uncertainty [Thompson and Calkin, 
2011]. First, variability surrounding weather conditions 
precludes deterministic prediction of fire growth and 
behavior, an uncertainty that is compounded by underly-
ing knowledge gaps in fire‐spread theory [Finney et al., 
2011a; Finney et  al., 2012]. Second, knowledge gaps 
s urrounding the effects of fire preclude determination 
of  impacts to vegetation, soil, and other ecosystem 
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components, and in turn the monetization of these impacts 
for cost‐benefit analysis [Venn and Calkin, 2011; Hyde 
et al., 2012]. Third, partial control, human error, and lim-
ited understanding of the productivity and effectiveness 
of firefighting resources constrain the development and 
implementation of optimal suppression strategies [Holmes 
and Calkin, 2013; Thompson, 2013]. Last, fire manager 
decision processes can be subject to a number of suboptimal 
heuristics and biases in complex, uncertain environments 
[Maguire and Albright, 2005; Thompson, 2014].

A wide range of models and decision support systems 
exist to help support risk‐informed wildfire decision 
making, many of which specifically target one or more of 
the aforementioned sources of uncertainty [Ager et  al., 
2014; Chuvieco et al., 2012; Kaloudis et al., 2010; Calkin 
et  al., 2011a; Noonan‐Wright et  al., 2011; Petrovic and 
Carlson, 2012; Rodríguez y Silva and González‐Cabán, 
2010; Salis et  al., 2012]. In a prefire planning environ-
ment, structured decision processes can systematically 
and deliberatively address uncertainties with a range of 
techniques [Warmink et  al., 2010; Marcot et  al., 2012; 
Thompson et al., 2013a; Skinner et al., 2014]. As an illus-
tration, Thompson et  al. [2015] detail how stochastic 
simulation, expert judgment elicitation, and multicriteria 
decision analysis could be used to address natural 
v ariability, knowledge gaps, and preference uncertainty, 
respectively.

Wildfire risk assessment is increasingly being adopted 
across landscapes and ownerships throughout the United 

States for decision support [Calkin et al., 2011b; Thompson 
et al., 2013b]. Assessment of wildfire risk follows a widely 
adopted ecological risk assessment paradigm, the two 
principal components of which are exposure analysis and 
effects analysis [Fairbrother and Turnley, 2005]. A gener-
alized framework known as the “wildfire risk triangle” 
(Fig. 4.2) depicts risk as a function of the likelihood of 
fire, the intensity at which fire burns, and the susceptibil-
ity of resources and assets to loss‐benefit from fire, which 
can be summarized to quantify risk in terms of expected 
net value change [Finney, 2005; Scott et al., 2013]. This is 
a value‐focused approach that considers not just the 
p ossibility of wildfire occurring but also its potential 
e cological and socioeconomic consequences, including 
benefits or net gains.
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Figure 4.1 Conceptual overview of major factors influencing wildfire risk management. Boxes in light grey rep-
resent primary management options, and boxes in dark grey represent the primary components of wildfire risk 
[modified from Calkin et al., 2011b].
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Figure 4.2 Wildfire risk triangle, composed of the likelihood 
and intensity of wildfire along with the susceptibility of 
resources and assets to wildfire [Scott et al., 2013].
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Wildfire risk has several important features that may 
influence mitigation planning relative to risks presented 
by other natural hazards. First, wildfire risk is inherently 
spatial: the likelihood and intensity of fire are driven by 
complex spatial interactions between ignition locations, 
fuel conditions, topography, and weather patterns. 
Furthermore, the location of resources and assets deter-
mines their respective exposure to wildfire as well as their 
susceptibility (e.g., watersheds with steeper slopes and 
more erodible soils may lead to greater postfire erosion 
and water quality concerns). Second, wildfire can lead to 
substantial benefits, in terms of restoring and maintain-
ing ecological conditions, as well as reducing future 
w ildfire hazard. Third, in contrast to phenomena such 
as  earthquakes and hurricanes, the likelihood and 
intensity of the natural hazard itself  can be reduced, 
either p reventatively or throughout the course of an event 
(see Fig. 4.1).

Although valuable for prioritizing mitigation needs 
and planning incident response in a prefire decision envi-
ronment, comprehensive and systematic risk assessment 
is often not possible in the dynamic and time‐pressed 
active incident decision environment. Where risk assess-
ments have already been performed, results can inform 
real‐time evaluations of potential consequences, but fire 
managers must still be responsive to changing conditions 
and the specific characteristics of  the wildfire incident 
as it unfolds. With that said, existing decision‐support 
s ystems can still provide a rich set of probabilistic and 
risk‐based information to support the management of 
active wildfire incidents.

In this chapter, we focus on the Wildland Fire Decision 
Support System (WFDSS), a web‐based system developed 
and used within the United States. Per federal policy [Fire 
Executive Council, 2009], fire managers are directed to 
“use a decision support process to guide and document 
wildfire management decisions,” and WFDSS is increas-
ingly adopted as the system of decision support, particu-
larly for large and complex wildfires. WFDSS was designed 
to be a single system to replace all previous processes, to 
integrate fire science and information technology, and to 
streamline and improve fire management decision making 
[Zimmerman, 2012]. Beyond decision documentation 
functionality, WFDSS provides a wide range of decision 
support components, including fire behavior modeling, 
fire weather information, air quality and smoke manage-
ment, economics, organization assessment, and risk 
assessment [Calkin et  al., 2011a; Noonan‐Wright et  al., 
2011]. Notably, WFDSS provides support through not 
only informational and analytical content, but also 
through an iterative decision process; both are critical for 
effective decision support [Thompson et al., 2013a].

In the subsequent sections, we expand upon decision 
support functionality within WFDSS, focusing on 

p rovision of probabilistic information and how it can 
facilitate strategic and tactical decision making. To begin, 
we provide a brief  overview of wildfire management in 
the United States. We then illustrate the role of stochastic 
wildfire simulation and compare and contrast modeling 
efforts in prefire and during‐fire contexts. We next review 
remaining uncertainties, including identified issues in 
how fire managers interpret and apply probabilistic 
information, and conclude with observations and 
p redictions for the future direction of risk‐based wildfire 
decision support.

4.2. WILDFIRE MANAGEMENT

In the United States and elsewhere around the globe, 
the dominant management response is to aggressively 
suppress wildfires to keep them as small as possible. 
Generally speaking this approach is highly successful; in 
the United States, typically 95%–98% of all ignitions are 
rapidly contained during “initial attack” operations 
[Calkin et al., 2005]. However, those rare fires that escape 
initial containment efforts account for a disproportionate 
share of area burned, as high as 95% depending on the 
geographic extent [Short, 2013]. Escaped large wildfires 
are a particularly prominent issue in the western United 
States, where topography is steeper, wildland areas are 
larger, and public acceptance of frequent prescribed 
burning to reduce hazard isn’t as high as in other regions 
like the southeastern United States

Federal policy provides substantial flexibility regarding 
the management of large wildfires [Fire Executive Council, 
2009], so that ecological benefits and reduced future 
h azard can be recognized and integrated into strategy 
development. However, for a variety of reasons, many of 
which are more sociopolitical than technical in nature, 
fire managers tend to be averse to implementing strate-
gies that promote fire on the landscape [Thompson, 2014]. 
Paradoxically, the result of aggressive suppression in 
some ecosystems is the accumulation of fuels that would 
otherwise have burned by periodic fire, so that, over time, 
fires become increasingly intense and resistant to control 
[Arno and Brown, 1991; Calkin et al., 2014a].

These larger wildfires require a more coordinated 
response effort that can extend over the course of multi-
ple days to weeks. Management of active wildfire events 
is dynamic and entails a series of recurrent, linked deci-
sions made by multiple actors, beginning with identifica-
tion of the appropriate scale and type of response 
organization. On federal lands in the United States, the 
management of escaped wildfires follows the National 
Incident Management System. Under this system, local 
land managers have shared responsibility with Incident 
Management Teams (IMTs) to determine appropriate 
strategies and tactics to achieve land and resource 
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objectives, subject to constraints on firefighting resource 
availability and firefighter safety. The complexity of the 
wildfire incident determines the type of  IMT; more 
complex incidents typically require IMTs with more 
training, experience, and organizational structure. 
Factors considered in the analysis of incident complexity 
include potential fire behavior, threatened HVRAs, land 
ownership and jurisdiction, and sociopolitical concerns.

IMTs next determine the amount and type of firefight-
ing resources to order, including hand crews, engines, 
bulldozers, and aerial resources. If  unavailable, IMTs 
may request alternative firefighting resources that could 
act as substitutes, or may be forced to reevaluate strate-
gies and tactics. The third level of decision making entails 
deploying resource mixes to achieve specific missions, 
which generally include restriction of fire growth or 
localized protection of HVRAs. Last, periodic reassess-
ment in response to changing conditions helps ensure the 
appropriateness of  strategies, the type of  response 
organization, and the amount and type of firefighting 
resources present.

4.3. PROBABILISTIC INFORMATION  
AND RISK‐BASED WILDFIRE DECISION SUPPORT

Stochastic wildfire simulation is a foundational ele-
ment of wildfire risk assessment. The state of fire mode-
ling has significantly advanced in the past decade or so, 
leveraging improved fire spread algorithms with expanded 
computational capacity to enable spatially explicit simu-
lation of thousands of possible realizations of fire events 
[Finney, 2002; Finney et al., 2011a; Finney et al., 2011b]. 
Further, more comprehensive fire‐history databases 
e nable improved calibration and validation of model 
results [Short, 2013].

These models rely on rasterized, or pixelated, represen-
tations of fire growth and final fire perimeters, and the 
aggregation of thousands of simulation runs quantifies 
the probability of any given pixel burning. Because most 
area burned comes from rare large fires [Short, 2013], 
localized burn probabilities are often influenced more by 
the spread of fire from remote ignitions rather than 
local ignitions. It is therefore critical for these models to 
i ncorporate geospatial information on topography, fuel 
conditions, and weather patterns to model the spread of 
fire across the landscape.

Burn probability modeling is now common practice in 
the United States, with a growing array of applications 
across planning contexts and geographic areas. Figure 4.3 
identifies the primary sources of variability addressed 
with burn probability modeling, and their relation to the 
planning context. In both contexts, fire weather is a key 
source of uncertainty; temperature, humidity, and, in 
particular, wind speed and direction are drivers of fire 

behavior. Before a wildfire occurs, the exact timing and 
location of the ignition are unknown, although predictive 
models may use historical spatiotemporal patterns of 
human‐ and lightning‐caused fires. The timing of igni-
tions is important with respect to the length of the fire 
season; fires that ignite earlier in the season have a longer 
period in which weather conditions may drive growth, 
whereas fires that ignite near the end of the season have a 
shorter window. The location of ignitions is important 
with respect to landscape conditions that could support 
fire spread as well as resources and assets that could be 
impacted by fire. By contrast, after an ignition has been 
detected, fire weather remains the primary source of 
uncertainty, and reliance on short‐term forecasts can 
improve model prediction.

Within WFDSS the Fire Spread Probability (FSPro) 
modeling system is the main source of probabilistic infor-
mation provided to fire managers [Calkin et  al., 2011a; 
Finney et  al., 2011a]. FSPro ingests local weather fore-
casts as well as historical weather data and simulates 
thousands of possible realizations of fire spread given the 
current location and size of the fire. FSPro simulation 
results depict burn probability contours over a defined 
temporal horizon (e.g., 7 days). Localized burn probabili-
ties are calculated as the proportion of runs that a given 
pixel burns by the simulated fire events. Probability con-
tours sometimes appear similar in shape to concentric 
circles, but variation in topography, fuels, and wind 
c onditions influence their exact shape.

The type of advanced analysis afforded by FSPro is not 
used for all incidents; use is instead typically restricted to 
the most complex incidents with potential to be long 
duration and/or large in size. However, on incidents where 
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Figure  4.3 Primary sources of variability in burn probability 
modeling and their relation to the planning context.
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FSPro is used, fire managers and analysts often perform 
multiple FSPro runs over the course of an event in 
response to changing fire and weather conditions. FSPro 
doesn’t directly simulate suppression efforts, although 
users can manually update landscape inputs to account 
for barriers to spread such as fire lines constructed by 
hand crews or dozers.

Figure 4.4a illustrates burn probability contours gener-
ated for the SQF Canyon Fire, which occurred in 2010 on 
the Kern River Ranger District of the Sequoia National 
Forest in California. These particular results are for a 
7 day run (i.e., fire spread is modeled over the course of 
7  days), for 1000 simulated growth projections. Spatial 
patterns in the burn probability contours can help fire 
managers understand fire potential in the absence of 
s uppression and the subsequent probability of resources 
or assets being impacted by fire.

In addition to fire spread probability, the potential 
exposure of resources and assets is a key driver of risk‐
informed incident management. WFDSS provides this 
functionality as well, leveraging multiple geospatial 

databases compiled by different agencies to display a 
range of infrastructure and natural and cultural resources 
(i.e., HVRAs). Figure 4.4b provides an example of expo-
sure analysis within WFDSS, specifically highlighting the 
locations of private building clusters (red squares), federal 
buildings (green and tan squares), and campgrounds 
(blue squares). Additional layers representing communi-
cation and energy infrastructure, roads and trails, air‐
quality concern areas, critical wildlife habitat, and so on, 
are available but not displayed here for ease of presenta-
tion. The ability to determine where fire spread may result 
in negative consequences can be a major driver of fire-
fighting strategy and tactics, including division of labor 
between suppression and localized protection of buildings 
and other assets.

WFDSS provides reports with a suite of additional 
information from FSPro analyses to understand model 
results and to support decision making. Figure 4.5 pre-
sents a histogram of simulated final fire sizes, reflecting 
the underlying distribution of fire events from which the 
burn probability contours were generated. In addition to 

Figure 4.4 Example FSPro burn (a) probability contours and (b) exposure of a select set of resources and assets.

15

FSPro Histogram

10

P
er

ce
nt

5

0

57

166 169

154

Final fire size
(number per class)

131

110 111

57

41

18
7 1 2

3 4 5 6 7 8

Acres × 10000

Number fires: 1024 Duration: 7 days Avg size: 71123 Median: 67252

9 10 11 12 13 14 15

Figure 4.5 Histogram of simulated final fire sizes output from FSPro.



36 NAtUrAl HAzArD UNcErtAiNty ASSESSMENt

supporting strategic evaluation of fire potential, WFDSS 
also provides additional fire modeling tools focusing on 
short‐ and near‐term fire behavior to facilitate tactical 
and operational decisions.

Figure  4.6 provides tabular exposure analysis results, 
which overlay FSPro burn probability contours with spa-
tial values‐at‐risk inventory layers and quantify expected 
values. As an example, the second row in the table shows 
the number of building clusters in Kern County broken 
down by burn probability zone, resulting in an expected 
value of 676 building clusters impacted by fire. In addi-
tion to HVRAs that may be impacted by fire, results also 
indicate whether the fire might spread onto land man-
aged by other agencies, which can be critically important 
to prepare for as agencies may have different mandates 
and different fire management objectives.

4.4. FUTURE DIRECTIONS FOR WILDFIRE 
DECISION SUPPORT

Returning to sources of uncertainty enumerated ear-
lier, WFDSS and specifically FSPro provide the decision 
support functionality to address uncertainty over possi-
ble fire spread directions and subsequent exposure of 
HVRAs. However, multiple other sources of uncertainty 
remain that fire managers must face. Below we identify 
opportunities for future directions of risk modeling and 

economic research to directly address these remaining 
uncertainties, ideally to improve risk‐informed and cost‐
effective fire management.

4.4.1. Addressing the Consequences of Wildfire

Many contemporary landscape‐scale wildfire risk 
assessments follow the exposure and effects analysis 
framework first identified by Finney [2005] and later for-
malized by Scott et al. [2013]. That framework quantifies 
wildfire risk for any discrete location on the landscape as 
the expected net change in value (eNVC) of all highly 
v alued resources and assets (HVRAs) exposed to wildfire 
at that location. The calculation of eNVC incorporates 
the likelihood of burning and the conditional net value 
change (cNVC) given that a fire occurs.

 eNVC BP cNVCk k k*  

where BPk is the burn probability at pixel k. BP is deter-
mined through stochastic simulation of wildfire occur-
rence and spread. The calculation of cNVCk incorporates 
intensity results of a deterministic or stochastic wildfire 
simulation, as well as the susceptibility of HVRAs to 
wildfire. Specifically,

 
cNVC FLP RF RIk

i j
ik ij j* *
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Figure  4.6 Tabular exposure analysis results summarizing FSPro results intersected with spatial value layers; 
results are presented across burn probability zones as well as in terms of expected values.
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where FLPik is the conditional probability burning in 
flame‐length class i at pixel k, and RFij is a “response 
function” value that indicates the consequence to HVRA 
j of  a wildfire occurring in flame‐length class i, and RI is 
the “relative importance” per unit area of HVRA j. 
Response function values for physical assets like residen-
tial structures and critical infrastructure are always 
n egative, indicating a net loss of value when exposed to 
wildfire. Wildfire positively affects the value of some 
resources, such as wildlife habitat or fire‐adapted ecosys-
tems, so RF values can also be positive. Response func-
tions are designed by resource specialists who rely on 
their experience and the scientific literature. Relative 
importance weighting is necessary to put all coincident 
HVRAs into a common currency. Relative importance 
values are determined by the line officers ultimately 
responsible for managing the landscape. To illustrate, 
Table 4.1 presents example response functions and rela-
tive importance weights for two stylized HVRAs, where 
response values range from −100 to +100, and importance 
weights range from 0 to +100.

The quantitative framework described above is designed 
to support land, resource, and fuel‐management plan-
ning, typically relying on more advanced fire modeling 
systems that simulate tens of thousands of fire seasons to 
generate burn probabilities and flame length distribu-
tions [Finney et  al., 2011b; Thompson et  al., 2013b]. 
However, its results can also support planning for the 
response to a wildfire before one has started and even for 
planning the management of a wildfire after it has 
escaped initial attack. For example, the cNVCk values can 
be summed within each simulated fire perimeter from a 
stochastic fire modeling system, resulting in an estimate 
of the overall NVC for the fire. Because the simulated fire 
start location is known, this new NVC attribute can be 
used to identify the net “risk source” associated with each 
ignition. Net “risk source” maps that average the conse-
quence of all simulated fires starting across different 

parts of a landscape, whether positive or negative, can 
then succinctly summarize consequences of ignitions in 
various locations. Such an analysis could help to create a 
spatial wildfire management response plan by identifying 
locations on the landscape where fires tend to result in 
positive net effects and where they tend to cause damage. 
Likewise, a similar analysis can be done using simulated 
fire perimeters generated by FSPro for an ongoing wild-
fire event. That analysis would not generate a risk‐source 
map, but would instead quantify the likelihood of exceed-
ing threshold quantities of net value change, a small 
improvement over the analysis currently available in 
WFDSS.

To demonstrate potential applications in the real‐time 
incident decision environment, Figure 4.7 illustrates risk 
modeling results generated from FSPro outputs. Fire 
perimeters were simulated on a real incident on a land-
scape in the southern Sierras in California, and paired 
with a preexisting cNVC grid that was generated follow-
ing the risk assessment framework outlined above. While 
the scatterplot generally indicates increasing net loss as 
simulated fire size grows, variation in loss stems from the 
shape and location of the fire with respect to potential 
fire intensity, HVRA location, and HVRA susceptibility. 
Notably, the greatest losses do not come from the largest 
fires but rather tend to concentrate around 15,000–20,000 
acres, and this result underscores the importance of the 
fire’s shape and location in addition to its size. Some of 
the most consequential fires may have burned into a com-
munity, whereas the fires that grew the largest may have 
done so by virtue of growing into undeveloped wildlands 
with few susceptible HVRAs.

Figure 4.8 further summarizes simulated fire‐level net 
loss using an exceedance probability chart. These results 
display the likelihood of  experiencing a given level of 
net loss, which can be compared against prospective 
suppression expenditures to inform cost‐effectiveness 
analysis. For example, there is approximately a 20% 

Table 4.1 Response Functions and Relative Importance Weights for Two Stylized HVRAs

HVRA

Response function value, by flame‐length class (FLC)

Relative importance weightFLC 1 FLC 2 FLC 3 FLC 4 FLC 5 FLC 6

Critical 
infrastructure

−10 −10 −80 −80 −80 −80 100

Fire‐dependent 
wildlife habitat

+50 +40 +30 −10 −30 −60 80

Source: See Thompson et al. [2015].
Note: FLCs are presented in order of increasing flame length, and users can define the number of categories and their 
corresponding flame lengths depending upon the application. The response function for critical infrastructure illustrates 
minimal loss until a flame length threshold is crossed with significant loss, whereas the response function for the wildlife 
habitat illustrates beneficial effects at low to moderate intensity fire. Response functions can be nonlinear, and can be 
multivariate with additional HVRA‐specific information 
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chance of  exceeding $250,000 in losses. For illustration, 
results are presented in monetary terms, although opera-
tionally the quantification of  all possible market and 
nonmarket impacts can be challenging [Venn and Calkin, 
2011]. Extensions include modifying these exceedance 
probability curves in cases where response functions 
indicate potential for benefit, and probabilistically ana-
lyzing prefire risk mitigation investments in terms of 
avoided losses.

4.4.2. Suppression Effectiveness

Despite the scale of investment in large wildfire 
s uppression, relatively little is understood about how sup-
pression actions influence large wildfire spread and those 
conditions that ultimately lead to containment [Finney 
et  al., 2009]. Wildfire containment under initial attack 
(IA) has typically been modeled by evaluating the elliptical 
rate of spread of an ignition under identified fuel and 
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weather conditions compared with the productive capac-
ity and arrival time of IA resources [see for example Fried 
and Fried, 1996]. However, the large fire environment 
p resents additional complexity and it has not been dem-
onstrated if  the IA containment approach is relevant to 
large wildfire suppression.

There is considerable uncertainty in managing large 
wildfires including the quality of weather forecasts, com-
plex environmental conditions, variation in the type and 
quality of suppression resources, and whether or not 
requested suppression resources will be assigned [Thompson 
and Calkin, 2011]. Additionally, many resources are engaged 
in non‐line‐building activities such as point protection, 
contingency line development, and mop up. Further, 
given that the wildfire escaped IA, it is likely that the 
characteristics of wildfire growth are such that line‐building 
efforts may not be feasible or effective.

Data necessary to understand suppression effectiveness 
within the United States can be difficult to obtain. Some 
recent studies have relied on primary reporting systems 
such as the Incident Status Summary (ICS‐209) Situation 
report. However, these data do not provide spatial char-
acteristics of the fire environment and rely on self‐reporting 
by the incident team responsible for managing the events. 
In particular, some of the most relevant data for suppres-
sion modeling (specifically percentage of the wildfire 
contained, growth potential, and reported values at risk) 
are subjective and may not be accurately reported [Holmes 
and Calkin, 2013].

Despite these challenges, several authors have examined 
the ICS‐209 data to model suppression effectiveness. 
Finney et al. [2009] modeled the probability that on a given 
day a large fire would be declared fully contained by exam-
ining wildfire suppression resource assignment, daily fire 
growth, fuel type, and other reported data within the 209 
reports. The most significant factor in achieving wildfire 
containment was quiescent periods during the fire. That is, 
containment was most directly related to the number of 
low growth fire days and the number of previous intervals 
of low growth. Containment probability was negatively 
related to the presence of timber fuel types. No significant 
relationship was found between likelihood of contain-
ment and fire size or number of personnel assigned. 
Holmes and Calkin [2013] utilized similar data from the 
ICS‐209 to examine the relative efficiency of suppression 
resources by comparing published resource line‐building 
production rates published by Broyles [2011] with daily 
line built estimated from reported fire size and percentage 
containment. The results indicated that the actual produc-
tion rates of  suppression resources on a set of  large 
wildland fires in 2009 were relatively low; 14% for engines, 
18% for dozers, and 35% for hand crews compared to the 
reported standard production rates. Helicopters were the 
one exception with actual production rates estimated to be 

close to published rates (93%). Limited understanding 
of  the objectives of resource assignments and the condi-
tions of the suppression environment limit the ability of 
research efforts to characterize the conditions under which 
suppression activities are most effective.

In‐flight GPS‐based systems such as the Automated 
Flight Following and Operational Loads Monitoring sys-
tems allow for analysis of the spatial use patterns of wild-
fire aviation resources such as Large Air Tankers (LATs), 
large planes capable of dropping greater than 1800 gal of 
retardant or water. Understanding the cost effectiveness 
of LATs has been a particular emphasis area of the US 
Forest Service over the last several years as the existing 
fleet of Korean War vintage aircraft are replaced with 
newer ships. Calkin et al. [2014b] tied individual retardant 
drops from LATs to wildfire outcomes during the 2010 
and 2011 wildfire seasons in the United States. The 
authors found that approximately half of all use of LATs 
occurred after the fire had escaped initial attack. On those 
incidents where LATs were used during initial attack, 75% 
escaped, compared to the 2%–4% annual escape rate on 
all wildfire ignitions. These results suggest that LAT usage 
on IA is typically restricted to only those fires with a very 
high escape rate. Information on the effectiveness of LATs 
in large fire support is c urrently limited due to missing 
data on the objectives and outcomes of retardant drops in 
supporting large fire strategies.

The practice of wildfire management is highly complex, 
and, currently, there are many challenges to understand-
ing the effectiveness of wildfire suppression actions. 
Improved and expanded data collection systems and con-
tinued research efforts are critical to our understanding of 
the conditions that lead to effective suppression, informed 
trade‐off analyses of alternative suppression strategies 
and organizations, and safer and more economically 
efficient outcomes.

4.4.3. Fire Managers’ Use and Interpretation 
of Probabilities and Decision Making Under 
Uncertainty

Decision‐support tools may be able to leverage how 
managers respond to risk information to mitigate some 
cognitive biases and decision heuristics. Common biases 
and decision heuristics have been linked to the wildfire 
management environment [Table  4.2; see also Maguire 
and Albright, 2005], and wildfire managers have exhibited 
several of these when choosing among strategies in hypo-
thetical wildfire scenarios [Wilson et al., 2011; Wibbenmeyer 
et al., 2013]. In some cases, the informational content or 
way in which information is presented can affect deci-
sions. Framing potential wildfire outcomes in certain 
ways can increase the salience of certain outcomes, and 
trigger an analytical response from decision makers. 
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For example, presenting information about the duration 
of use of suppression resources as an accident or fatality 
rate may highlight for managers the risk to personnel of 
using those resources. Presenting fatality rates instead of 
usage rates has been shown to result in reduced exposure 
of personnel to risk in hypothetical fire scenarios [Hand 
et al., 2015], although this may exacerbate other biases 
related to responses to outcome probabilities.

Biased responses to outcome probabilities [see Tversky 
and Kahneman, 1992; Prelec, 1998] may be less amenable to 
direct intervention through decision support tools. An 
option for addressing cognitive biases that may not respond 
well to different information framing may be to identify 
those managers who tend to exhibit responses to risk that 
are most closely aligned with agency preferences and facili-
tate training and knowledge transfers among managers. 
Heterogeneity in responses to risk (and probabilities in par-
ticular) is evident among managers, and a portion of man-
agers appear to make decisions that minimize expected 
losses in a risk environment [Hand et al., 2015]. Decision 
support could help by providing structured decision pro-
cesses [Maguire and Albright, 2005] that mirror risk‐based 
training efforts and knowledge transfer among managers.

4.5. CONCLUSION

Wildfire management is complex, dynamic, and uncer-
tain, and a full investigation into wildfire risk assessment 
and mitigation planning is beyond the scope of a single 
chapter. Nevertheless, we highlighted salient uncertainties 
faced in the management of active large wildfire incidents, 
reviewed an existing decision‐support system widely used 
in the United States (WFDSS), and illustrated how proba-
bilistic information provided by WFDSS can inform risk‐
based decision making. Significant sources of uncertainty 
remain, which vary according to the degree of influence 
they may exert on decision p rocesses as well as approaches 
to manage those uncertainties and improve decisions. 
A  fundamental need for increased wildfire management 
efficiency is improved understanding of suppression 
effectiveness, requiring large‐scale collection of operational 
data across incidents. We expect continued research into 

risk and decision analysis will play a role for years to come 
in wildfire management and risk mitigation, and that in 
particular advanced risk modeling techniques will be used 
to inform wildfire management decisions.
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