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Abstract. Genetic connectivity results from the dispersal and reproduction of individuals across land-
scapes. Mammalian populations frequently exhibit sex-biased dispersal, but this factor has rarely been
addressed in individual-based landscape genetics research. In this study, we evaluate the effects of sex-
biased dispersal and landscape heterogeneity on genetic connectivity in a small and isolated population of
fisher (Pekania pennanti). We genotyped 247 fisher samples collected across the southern Sierra Nevada
Mountains of California. We tested for genetic evidence of sex-biased dispersal using sex-specific popula-
tion structure and spatial autocorrelation analyses, and sex-biased dispersal tests of the assignment index,
FST, and FIS. We developed resistance surfaces for eight landscape features hypothesized to affect gene flow
and optimized each resistance surface independently by sex. Using multiple regression of distance matri-
ces and an information-theoretic model selection approach, we fit models of genetic distance to landscape
resistance distance separately by sex and geographic region. We found genetic evidence of sex-biased dis-
persal with significant differences in FST, FIS, and spatial autocorrelation between sexes. Optimal resistance
values differed by sex, and model variables, fit, and parameter estimates varied substantially both between
sexes and between geographic regions. We found a stronger relationship between landscape features and
genetic distance for females, the philopatric sex, than the more widely dispersing males. Our results show
that landscape features influencing gene flow differed by both sex and regional heterogeneity. Conducting
analyses by sex and by region allowed for the identification of landscape genetics relationships not dis-
cernible when analyzed together. Our results show that failing to account for these factors can confound
results and obscure relationships between landscape features and gene flow.
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INTRODUCTION

Connectivity, defined as the ability of organ-
isms to move within and among populations, is
fundamental for long-term species persistence
(Lowe and Allendorf 2010). For small populations
vulnerable to stochastic events, demographic and
genetic connectivity is essential for maintaining

population viability (Gilpin and Soule 1986, Pier-
son et al. 2015, Benson et al. 2016). Genetic con-
nectivity results from successful dispersal and
reproduction of individuals across a landscape.
Therefore, understanding the dispersal character-
istics of a species and gene flow is inherently
intertwined. Estimating dispersal through direct
methods (e.g., mark–recapture, telemetry) is
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difficult for many species as it can be cost pro-
hibitive over large landscapes, especially for spe-
cies that are rare or difficult to detect. Direct
methods also cannot easily distinguish between
movement and gene flow, in which movement is
followed by successful reproduction. Genetic
methods for assessing dispersal (Slatkin 1987)
coupled with non-invasive genetic sampling pro-
vide a powerful, cost-effective tool for sampling
individuals over large areas and improving our
understanding of dispersal and gene flow.

Landscape features can influence the ability of
an individual to disperse through the landscape,
and consequently, landscape features influencing
dispersal will also influence gene flow. Previous
studies have shown that gene flow can be influ-
enced by a wide variety of factors including abi-
otic factors such as topography (Blair et al. 2013),
climate (Schwartz et al. 2009), or anthropogenic
features (Epps et al. 2013) and biotic factors such
as land cover type (Cushman et al. 2006) or dis-
tribution of predators (Murphy et al. 2010). Anal-
ysis of the influence of landscape features on
gene flow can be either population-based, where
individuals are grouped into demes and genetic
differentiation is estimated among these demes,
or individual-based, where analyses are con-
ducted using individual genotypes without a pri-
ori definition of populations allowing for the
assessment of fine-scale genetic structure across
the landscape (Manel et al. 2003).

Sex-biased dispersal is a well-documented
characteristic of many wildlife populations (Pusey
1987), and males and females may not respond to
landscape features the same way during disper-
sal. In mammals, dispersal is often male-biased
(Dobson 1982) although there are exceptions to
this generalization (Favre et al. 1997). There are
many hypotheses as to why sex-biased dispersal
occurs, including resource competition (Green-
wood 1980), inbreeding avoidance (Pusey 1987),
and local-mate competition (Dobson 1982).
Understanding sex-biased dispersal is important
in conserving population connectivity, as factors
important to connectivity for the dispersing sex
may differ from those important to the philopa-
tric sex and effective conservation strategies must
address these differences.

The relative influence of particular landscape
features on dispersal can also vary spatially. This
may be due to biotic factors such as variation in

population density, where individuals in dense
populations may be more likely to disperse
across landscape features than individuals from
low-density populations (Matthysen 2005), or
interspecific interactions where the presence of
predators or competitors may influence dispersal
behavior (Rundle and Nosil 2005). Alternatively,
this spatial variation can be due to the differen-
tial availability of a feature on the landscape.
Short Bull et al. (2011) identified the importance
of replicating study areas in landscape genetics
finding gene flow in American black bears dif-
fered among study areas due to variability of
landscape features in each area. For example, in
some of their populations, elevation was constant
and had no relationship with gene flow, while in
other areas elevation varied substantially and
was found important for explaining gene flow.
This conclusion has been found in a number of
subsequent landscape genetic analyses (Moore
et al. 2011, Trumbo et al. 2013).
In this study, we examine how sex-biased dis-

persal and landscape heterogeneity affect gene
flow in a small and isolated population of fisher
(Pekania pennanti) in the southern Sierra Nevada
Mountains of California. Identifying landscape
elements structuring genetic connectivity and
dispersal in this fisher population has important
conservation implications. Due to its small size,
estimated at <300 adults (Spencer et al. 2011),
and long-term genetic isolation (Knaus et al.
2011, Tucker et al. 2012), there are acute conser-
vation concerns regarding the long-term viability
of this population which has been considered for
listing as a Threatened species under both State
and Federal Endangered Species Acts (U.S. Fish
and Wildlife Service 2014, California Department
of Fish and Wildlife 2015).
The southern Sierra Nevada fisher population

provides a useful study system to address ques-
tions of how sex-biased dispersal and landscape
heterogeneity relate to genetic connectivity for a
number of reasons. Sex-biased dispersal has been
documented in other fisher populations (Powell
1993, Aubry et al. 2005, Matthews et al. 2013) and
related mustelid species (Vangen et al. 2001,
Zalewski et al. 2009) and so we hypothesized that
this is likely also a feature of the Sierra Nevada
fisher population. Secondly, this population occu-
pies a large and diverse landscape with substan-
tial spatial variation across the study area and a
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previous study has identified three genetic sub-
populations that can be used to define groups for
spatial replication of landscape genetic analyses
(Tucker et al. 2014). Thirdly, fisher habitat has
been well studied within California (Zielinski
et al. 2004a, b, Davis et al. 2007, Spencer et al.
2011) and elsewhere in their range genetic studies
have identified landscape features that have been
influential for fisher gene flow and provide a
diverse suite of candidate variables from which to
form landscape genetic hypotheses (Carr et al.
2007, Garroway et al. 2011, Hapeman et al. 2011).

Here, we use an individual-based landscape
genetics approach to assess the importance of
landscape features in influencing patterns of
gene flow, and whether these landscape features
vary by sex. Using samples from across the
southern Sierra Nevada fisher population, we
address the following questions: (1) Is there
genetic evidence of sex-biased dispersal? (2)
What landscape features influence genetic con-
nectivity? (3) Does the influence of landscape
features on gene flow vary by sex? and (4) Does
the influence of landscape features on gene flow
vary spatially across the study area? We investi-
gate these questions by first testing for genetic
evidence of sex-biased dispersal and then
employ a resistance modeling approach in which
we generate resistance surfaces representing our
hypothesized relationships between landscape
features and gene flow. This study contributes to
the growing body of research that has detected
sex-biased dispersal using a landscape genetics
approach (Coulon et al. 2004, Shafer et al. 2012,
Amos et al. 2014) but adds the unique elements
of optimizing resistance values by sex, employ-
ing a sex-specific information-theoretic model
selection approach, and comparing sex-specific
to sex-combined analyses. This last step is impor-
tant in that it allowed us to discern the potential
problems that could arise in landscape genetics
studies if you fail to account for sex bias when it
is a characteristic of the species under study.

METHODS

Genetic sampling
Fisher hair samples were collected from across

the southern Sierra Nevada fisher population
from 2006 to 2009 in conjunction with the
U.S. Forest Service Sierra Nevada Carnivore

Monitoring Program (Zielinski et al. 2013, 2017,
Fig. 1). The study area is ~12,240 km2 and
encompasses the extant fisher population in the
southern Sierra Nevada. Samples were collected
from 223 survey units established across the ele-
vational range of fisher (~1000–3400 m) on a sys-
tematic survey grid co-located with the Forest
Inventory and Analysis sampling grid (Roesch
and Reams 1999). Sample units consisted of
arrays of six detection stations covering ~0.8 km2

with a mean minimum distance between sample
units of 4.1 km. Each detection station was com-
prised of a baited track plate box with a barbed-
wire hair snare. An average of 140 units were
sampled from May to October of each year.
Additionally, in areas potentially occupied by
fisher but not covered by the monitoring sam-
pling frame (primarily Yosemite, Sequoia, and
Kings Canyon National Parks), we opportunisti-
cally established hair snares along established
roads or trails (at least 50 m from the road or
trail) to fill in any potential spatial gaps in sam-
ple distribution. Details regarding study area
and sampling methods are detailed in Zielinski
et al. (2013) and Tucker et al. (2014). All hair
samples from stations that detected fisher via
tracks were genetically analyzed. We genotyped
247 fisher samples using 10 microsatellites (Dal-
las and Piertney 1998, Davis and Strobeck 1998,
Duffy et al. 1998, Jordan et al. 2007) and the
y-linked marker DBY-3 (Hedmark et al. 2004).
A y-locus control sample from a known male
fisher was used to distinguish failed PCR from
true negatives (females). Individuals captured
multiple times were assigned the coordinates of
their initial detection.

Sex-biased dispersal
We first assessed sex-biased dispersal by con-

ducting a genetic structure analysis of males and
females independently using the package GENE-
LAND 4.0.3 (Guillot et al. 2005) in R 3.1.2. (R
Development Core Team 2014) using the spatial
uncorrelated allele frequencies model with the fol-
lowing parameters: K = 1–10; Marcov Chain
Monte Carlo (MCMC) iterations = 500,000; thin-
ning = 100; spatial uncertainty = 2000 m. Each
model was replicated 20 times to evaluate consis-
tency. To compare how strongly males and
females assigned to a subpopulation, we calcu-
lated the mean and standard deviation of the
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probability of assignment of each individual to
their most likely subpopulation. We would expect
that with sex-biased dispersal, the philopatric sex
would assign with greater certainty to the sub-
population of origin than the dispersing sex.

Next, we assigned individuals to subpopula-
tions using the results of the sex-specific genetic
structure analysis in order to test for differences

between males and females in three different
population-based genetic metrics (Goudet 2001):
the assignment index (AI; Goudet et al. 2002),
FST (Weir and Cockerham 1984), and FIS. The AI
estimates the probability of each individual’s
genotype originating within its geographic sub-
population of capture such that the dispersing
sex should have a lower mean and higher

Fig. 1. Locations of genotyped individuals shown by sex (male = blue, female = white) and their assignment
to three genetic subpopulations (north = triangle, central = circle, south = square) based on population assign-
ment results from GENELAND.
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variance of AI than the philopatric sex (Goudet
et al. 2002). For the FST test, we expect the philo-
patric sex to have significantly higher FST values
than the dispersing sex. FST and AI tests were
conducted across all subpopulation comparisons
as well as for each pair of adjacent subpopula-
tions. Significance of sex-biased dispersal tests
for AI and FST was determined using 10,000 ran-
domizations using FSTAT 2.9.3 (Goudet 2001).

We also estimated FIS by sex for each subpopu-
lation with the expectation that with sex-biased
dispersal, the dispersing sex should have a posi-
tive FIS (heterozygote deficiency) caused by a
Wahlund effect because the dispersers’ geno-
types originated in a different subpopulation
from where they were sampled (Wahlund 1928).
FIS was calculated in GENEPOP 4.2 with signifi-
cance determined using exact tests for heterozy-
gote deficiency (Rousset 2008). Because our
sampling was moderately male-biased, and there
is debate as to whether this sampling bias may
significantly influence results (Bekkevold et al.
2004, Hammond et al. 2006), we examined the
effect of unequal sample sizes between males
and females. We created 20 subsampled datasets
in which males were randomly sampled without
replacement to an equivalent sample size as
females and repeated our analyses (Yannic et al.
2012). As other factors can produce a positive FIS
(null alleles, positive assortative mating), we con-
ducted a linear regression of FIS and FST across
all loci as a positive relationship between the two
is indicative of a Wahlund effect (Waples 2014).

Lastly, we also employed an individual-based
method to test for sex-biased dispersal using
multi-locus spatial autocorrelation analyses in
GenAlEx 6.5 (Peakall and Smouse 2006, Banks
and Peakall 2012). We calculated the genetic
autocorrelation coefficient (r) for each distance
class and calculated 95% CIs for each estimate of
r using 999 bootstraps from within each distance
class. We defined the 95% CI around the null
hypothesis (r = 0) by 1000 random permutations
of the genetic distance matrix. The detection of
spatial autocorrelation is influenced by distance
class size (Peakall et al. 2003), and there is a
tradeoff between spatial resolution and sample
size per class. Therefore, we conducted analyses
using 6- and 12-km increments to derive two dif-
ferent sets of distance classes. The 6-km size
reflects the average female fisher dispersal

distance in the southern Sierra Nevada (5.8 km;
Sweitzer et al. 2015) and the optimal distance
class size has been found to correspond with the
mean dispersal distance of the philopatric sex
(Banks and Peakall 2012). The 12-km size allows
for increased sample size within classes but is
still well below the maximum dispersal distance
for female fisher in the Sierra Nevada (24.5 km,
Sweitzer et al. 2015). We used two statistical
criteria to assess the significance of the results
from the spatial autocorrelation analysis: (1)
r values for the philopatric sex were significantly
greater than for the dispersing sex with 95%
bootstrap CIs that do not overlap and (2) a
heterogeneity test between sexes for each dis-
tance class using a squared paired-sample t-test
(T2; Banks and Peakall 2012).

Landscape genetics-resistance modeling
We identified eight landscape features that we

had a priori hypotheses regarding their effect on
gene flow (Table 1; Appendix S1). We hypothe-
sized that six landscape features were resistant to
genetic connectivity including major water bod-
ies (rivers/lakes; Wisely et al. 2004, Garroway
et al. 2011), roads (Garroway et al. 2011), steep
slopes (Jordan 2007), open areas (Powell 1993),
moderate- or high-severity fire areas (Scheller
et al. 2011), and both very low and very high ele-
vations (Davis et al. 2007, Spencer et al. 2011).
We also hypothesized that large tree size and

high canopy cover would facilitate gene flow
(Zielinski et al. 2004a, Purcell et al. 2009) and
included two variables reflecting these hypothe-
ses. We defined these variables using the Califor-
nia Wildlife Habitat Relationship system (Mayer
and Laudenslayer 1988) and included potentially
suitable forest types with large trees (>28 cm)
and dense canopy cover (>60%). The two vari-
ables differ in the presence of the Sierra Mixed
Conifer (SMC) habitat type, where its exclusion
from the dense forest variable restricted the ele-
vation range of forested pixels to the core of the
occupied fisher range in the Sierra Nevada
(1400–2300 m; Spencer et al. 2011), whereas its
inclusion in the second variable (SMC forest)
expanded forested pixels to the margins of the
fisher elevation range. These higher-elevation
areas may not be optimal habitat for fisher occu-
pancy, but we hypothesized that they may play
an important role in fisher gene flow.
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Resistance layers were generated in ArcGIS 10
using a pixel size of 100 m. Variables were coded
as resistance surfaces with features resistant to
gene flow assigned a value greater than one. For
example, for the two forest variables hypothe-
sized to be conductive to gene flow (dense forest,
SMC forest), all forested pixels were set = 1 (no
resistance) and all non-forested pixels >1 (resis-
tance). Conversely for water, hypothesized to be
resistant to gene flow, all water pixels were
assigned a value >1 (resistance) and non-water
pixels = 1 (no resistance). As map edges have
been shown to bias resistance values (Koen et al.
2010), we buffered locations by a minimum of

12 km. Resistance distance calculations require
only one individual per pixel so if two individu-
als occupied the same pixel, we moved one of
them ~100 m in a random direction (McRae and
Shah 2009). We assumed that this had a negligi-
ble effect because our sampling involved baited
stations and scent lure which are thought to
extend the sampling area hundreds of meters
beyond the sampling device (Zielinski and Mori
2001, Schlexer 2008).
We used circuit theory to estimate resistance

distances between all pairs of individuals using
CIRCUITSCAPE (McRae 2006, McRae et al.
2008). CIRCUITSCAPE incorporates multiple

Table 1. Description of landscape resistance variables.

Variables Description Continuous Categorical
Optimum
resistance

Water Major lakes (>35 ha) and rivers
resistant to gene flow

Density (1-km
moving window)

Water = resistance
Non-water =
no resistance

Categorical:
resistance = 25

Roads Primary and secondary roads
resistant to gene flow

Density (1-km
moving window)

Road = resistance
Non-road =
no resistance

Categorical:
resistance = 5

Slope Steep slopes resistant to gene flow Raw slope values
(percent)

Slopes > threshold =
resistance
50%, 60%, 70%,
80% thresholds

Categorical:
70% slope,
resistance = 25

Elevation Latitude-adjusted elevation:
Mid-elevations facilitate gene
flow, while low and high
elevations resistant to gene flow.

Inverted Gaussian
function of
raw values
(mid-elevations =
low resistance)

500–999 ft = high
1000–2000 ft =
moderate

2000–3000 ft = low
>8000 ft = low
3000–8000 ft = none

Categorical:
500–999 ft = 20
1000–2000 ft = 15
2000–3000 = 10
>8000 ft = 10
3000–8000 ft = 1

Dense
forest

Dense forest facilitates gene
flow/non-forest resistant to gene
flow. CWHR density “D”60% cover;
WHR size = 4 and 5, WHR type =
Douglas and White Fir, Ponderosa,
Jeffery and Eastside Pine, Montane
Hardwood Conifer

% forest type in
a 500 9 500 m
neighborhood

Dense forest =
no resistance

Non-dense forest =
resistance

Categorical:
dense forest = 1
Non-forest,
resistance = 100

Sierra
Mixed
Conifer
(SMC)
forest

SMC forest facilitates gene
flow/non-forest resistant to gene
flow: density “D”60% cover;
WHR size = 4 and 5, WHR type =
Douglas and White Fir, Ponderosa,
Jeffery and Eastside Pine, Montane
Hardwood and SMC

% forest type in
a 500 9 500 m
neighborhood

SMC forest =
no resistance

Non-SMC forest =
resistance

Categorical:
SMC forest = 1
Non-forest,
resistance = 10

Fire Recently burned areas (moderate-and
high-severity fires 1984–2005)
resistant to gene flow

N/A Burned = resistance
Non-burned =
no resistance

Categorical:
resistance = 5

Openings Open areas lacking forest cover resistant
to gene flow: defined by non-forested
cells (all WHR shrub and grassland
classes, sagebrush, and barren) within
1 km radius neighborhood

Percent of a
1 km radius
neighborhood

>50% open =
resistance

<50% open =
no resistance

Categorical:
resistance = 25

Notes: Each variable was optimized as both continuous and categorical variables over a range of maximum resistance values
(2–100). The optimum resistance in the final column lists the data type (categorical or continuous) and resistance value that
maximized the correlation between genetic distance and resistance distance. Species composition of CWHR types is detailed in
Mayer and Laudenslayer (1988).
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alternative paths, accounts for effects of path
size, and is directly related to random walks,
which more realistically approximates dispersal
behavior than the alternative least cost path
approach, which assumes that dispersers have
perfect knowledge of a single optimal path
through the landscape (McRae et al. 2008, Pinto
and Keitt 2009, Sawyer et al. 2011). CIRCUITS-
CAPE analyses were conducted in pairwise
mode, with individual locations set as focal
nodes, and each pixel connected to its eight
neighboring pixels. We established a null model
representing Euclidean distance by running CIR-
CUITSCAPE with a homogeneous resistance sur-
face, with all pixels = 1. This null model has
been established as the appropriate surrogate for
geographic distance between individuals for cir-
cuit theory analyses instead of pure Euclidean
distance (Koen et al. 2010, Amos et al. 2012). All
references to Euclidean distance in our analyses
refer to this null model. We calculated pairwise
genetic distance between individuals using two
metrics to compare results: the proportion of
shared alleles (Dps; Bowcock et al. 1994), calcu-
lated using MSA 4.05 (Dieringer and Schlotterer
2003), and Rousset’s a, calculated using SPAGeDi
(Hardy and Vekemans 2002).

Optimizing resistance values
Assigning resistance values to landscape fea-

tures is a well-acknowledged challenge in land-
scape genetics (Rayfield et al. 2010, Spear et al.
2010). To address this uncertainty, we evaluated
each landscape feature over a wide range of
resistance values from 2 to 100 (Table 1) and
assessed the correlation strength with genetic
distance using partial Mantel correlation coeffi-
cients (rpm) (Mantel 1967, Smouse et al. 1986).
Thematic resolution can also affect the nature
and strength of landscape genetic relationships
(Cushman and Landguth 2010) and so we also
evaluated landscape features both as continuous
and as categorical variables. The partial Mantel
test has been found to be highly sensitive to
changes in underlying landscape features (Kier-
epka and Latch 2015) but there is an ongoing
debate regarding their use due to potential bias
in statistical significance tests and inflated type 1
error rates (Legendre and Fortin 2010, Graves
et al. 2013, Guillot et al. 2013, Legendre et al.
2015). However, our optimization approach

relied solely on relative comparisons of the par-
tial Mantel correlation coefficient, not the statisti-
cal test. This optimization method has been
repeatedly found effective in identifying land-
scape features influencing gene flow, especially
when combined with a comparative model selec-
tion approach (Wasserman et al. 2013, Castillo
et al. 2014, Mateo-S�anchez et al. 2015). We con-
ducted resistance value optimization for males
and females separately and with both sexes com-
bined using the Ecodist package in R (Goslee and
Urban 2007).
We defined optimum univariate resistance as

the asymptote of the curve (rate of change <5%)
of the partial Mantel r against resistance values,
and employed two different optimization
approaches: (1) independent optimization, where
the optimum resistance value was defined indi-
vidually for each sex, and (2) combined opti-
mization, where the optimum resistance value
was based on the overall strongest relationship
with genetic distance for either sex. Previous
research has identified the potential importance
of also conducting multivariate resistance value
optimization (Shirk et al. 2010). Therefore, we
used these optimized univariate resistance values
to create a candidate suite of multivariate models
and conducted a model selection approach to
identify an optimal multivariate resistance sur-
face (details below).

Model selection and evaluation
We used optimized resistance values to fit linear

models of landscape resistance to genetic distance
with statistical significance assessed using multi-
ple regression of distance matrices (MRDM). Mul-
tiple regression of distance matrices is the multiple
regression of a response distance matrix (pairwise
genetic distance) against two or more environmen-
tal variables (pairwise resistance distance) with
significance testing performed by random permu-
tations of the response distance matrix (Lich-
stein 2006, i.e., DISTGENETIC ~ DISTRESISTANCE1 +
DISTRESISTANCE2 + � � � + DISTRESISTANCEn). Multi-
ple regression of distance matrices has been found
to have high power and low type 1 error for land-
scape genetic analyses (Balkenhol et al. 2009).
To test our first hypothesis that landscape fea-

tures influence males and females differently, we
fit an identical suite of models for each of three
groups: all individuals, males only, and females
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only. To test our second hypothesis that landscape
features important to gene flow vary spatially, we
divided the data into two geographic regions con-
sisting of adjacent subpopulation pairs based on
the subpopulation structure identified in Tucker
et al. (2014; North-Central and Central-South;
Fig. 1). We chose to divide the data into two
regions vs. three individual subpopulations as the
latter would only provide insight into how the
landscape influences gene flow within each sub-
population, whereas the regional division also
speaks to what landscape features may be limiting
gene flow between subpopulations. Subdividing
in this manner also excludes the largest pairwise
geographic distances (north–south), which on
average (168 km) far exceeded the maximum
reported dispersal distances for fisher both in the
southern Sierra Nevada (36.2 km, Sweitzer et al.
2015) and in all of North America (~107 km, York
1996). Including such long-distance pairs may
overestimate the importance of rare long-distance
dispersal over more frequent short-distance dis-
persal (Parks et al. 2013). All individuals in the
central subpopulation were included in both the
north-central and central-south regions. However,
due to the nature of the pairwise data used in this
analysis, this did not create pseudo-replication as
each region contained unique pairs of individuals
between subpopulations. The combination of par-
titioning both by sex and by region resulted in
nine separate analyses (all individuals, males, and
females X all regions, north-central region, and
central-south region). We then used Akaike’s infor-
mation criterion (AIC) model selection to identify
the model best supported by genetic data.

Prior to creating a candidate model set, we
assessed multicollinearity between variables by
calculating Pearson’s correlations and variance
inflation factors (VIF) for a global linear model
containing all variables. During this initial
assessment, we found very high collinearity
between many variables and between each land-
scape variable and Euclidean distance (Pearson’s
correlation >0.95, VIF >100). We discerned that
this collinearity was generated in part because
each landscape resistance distance matrix
includes Euclidean distance. To address this
problem, we subtracted pairwise Euclidean dis-
tances (null resistance surface) from landscape
resistance distances prior to fitting MRDM mod-
els. Subtracting the null resistance surface from

the landscape resistance surface enables analysis
of how much more or less important a pixel is
than expected under the null model (B. McRae,
personal communication). We then re-calculated
Pearson’s correlations and variables with a corre-
lation >0.80 were excluded from being in the
same candidate model.
We created a set of 23 candidate models (four

univariate and 19 multivariate) shaped by three
overarching hypotheses that fisher gene flow (1) is
facilitated by mid-elevation dense forest found to
be strongly associated with fisher occupancy and
denning habitat (Spencer et al. 2011), (2) is facili-
tated by forested areas across a broad elevation
range including high-elevation forests, and (3) is
impeded by open areas such as large water bod-
ies, roads, and burned areas (Appendix S2).
Because the optimum resistance value varied, we
standardized variables using z-transformations to
facilitate comparison of parameter estimates and
then fit MRDMmodels of genetic distance to land-
scape resistance using 10,000 permutations for sig-
nificance tests. Models were again assessed for
multicollinearity, and models with a variable VIF
>5 were dropped from the candidate model set.
Models were ranked using second-order AICc

values, and models with uninformative parame-
ters (additional parameter that did not improve
the AIC score by at least 2) were excluded from
further consideration (Burnham and Anderson
2002, Arnold 2010). We report parameter esti-
mates from the top model- rather than model-
averaged coefficients due to concerns regarding
model averaging and potential collinearity
among variables (Cade 2015). We considered
variables informative if the 95% confidence inter-
vals (CIs) of their slope coefficients excluded
zero. We report 95% CIs for parameter estimates,
rather than the 85% CIs suggested for AIC-based
approaches (Arnold 2010), to be more conserva-
tive in our assessment of potential landscape
effects. There have been concerns regarding the
use of AIC with MRDM, as pairwise data may
violate the assumption-independent data points
(Burnham and Anderson 2002). However, this
approach has been regularly used in landscape
genetics analyses in assessing model perfor-
mance because the potential error is equivalent
for each model, and consequently does not affect
model ranking (Garroway et al. 2008, Richard-
son 2012, Engler et al. 2014). We conducted
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model fitting and selection in R using the follow-
ing packages: GenABEL for z-transformations
(Aulchenko et al. 2007), car for VIF calculation
(Fox and Weisberg 2011), ecodist for MRDM
(Goslee and Urban 2007), and MuMIn for model
selection and averaging (Barton 2013). We inves-
tigated the effect of unequal sample size between
sexes by generating 20 random male subsets,
equivalent to female sample sizes, and repeating
the model selection procedure.

We used the coefficients from the top model
equations to generate a single optimum multi-
variate resistance surface for each sex and region.
If our approach was effective, we would expect
to see an increased rpm correlation for the multi-
variate surfaces compared to univariate surfaces.
We used the raster calculator in the Spatial Ana-
lyst extension of ArcGIS 10 to multiply the
untransformed parameter coefficient by its corre-
sponding resistance surface and then summed all
surfaces to generate a single multivariate resis-
tance surface (Garroway et al. 2011, Row et al.
2015). Finally, using CIRCUITSCAPE, we gener-
ated pairwise resistance distances for these mul-
tivariate surfaces and calculated their rpm
correlation with genetic distance.

RESULTS

Genotyping resulted in a dataset of 124 indi-
viduals comprised 69 males, 48 females, and
seven individuals for which we were not able to
determine sex. Sample sizes by subpopulation
were as follows: north n = 42 (16 females, 22
males, four unknown), central n = 31 (12
females, 18 males, one unknown), and south
n = 51 (20 females, 29 males, two unknown)
(Fig. 1). We found limited movements in individ-
uals recaptured multiple times with most recap-
tures occurring either within the same sample
unit or at an adjacent sample unit. Genetic dis-
tance metrics were highly correlated
(Dps ~ Rousset a: Mantel r = 0.94, P = 0.001),
and so for clarity, we only report the results of
the analyses using Dps.

Sex-biased dispersal
We found evidence of sex-biased dispersal in

both population- and individual-based analyses.
GENELAND identified three genetic clusters
(K = 3) for both males and females with similar

boundaries between subpopulations for each sex.
Females assigned more strongly to subpopula-
tions (mean probassign female = 0.98 [standard
deviation (SD) = 0.04], male = 0.87 [SD = 0.09],
P < 0.0001, t-test) and had higher FST values than
males (Table 2). The sex-biased dispersal FST test
was significant across all subpopulation compar-
isons and the north-central region, but non-sig-
nificant in the central-south region (Table 3).
We also found an excess of homozygotes for

males, but not females, as is expected with male-
biased dispersal (FIS-north: male = 0.053, female =
0.006/FIS-central: male = 0.043, female = �0.005/FIS-
south: male = 0.043, female = 0.033) but these dif-
ferences were not statistically significant. Linear
regression of locus-specific plots of FIS and FST
showed a positive correlation in the north-
central region (slope = 0.58, r = 0.60, P = 0.07) as

Table 2. FST values calculated in GENELAND for each
of the identified subpopulations.

Subpopulation North Central South

North 0 0.173 0.155
Central 0.059 0 0.069
South 0.132 0.051 0

Notes: FST values for females are above the diagonal and
for males below the diagonal. All FST values are significant at
P < 0.01.

Table 3. Tests for sex-biased dispersal for FST and the
mean and variance of the assignment index (AI) con-
ducted in FSTATwith individuals assigned to one of
three genetic subpopulations based on population
assignment in GENELAND.

Variables FST Mean AI Variance AI

North/central/south
Female 0.133 �0.036 5.881
Male 0.083 0.023 4.925
Δ FST 0.050
P value 0.032� 0.553 0.650

North/central
Female 0.170 0.217 3.944
Male 0.055 �0.136 4.856
Δ FST 0.115
P value 0.004�� 0.275 0.592

Central/south
Female 0.072 �0.181 6.838
Male 0.048 0.117 4.104
Δ FST 0.024
P value 0.175 0.689 0.866

�P < 0.05, ��P < 0.01.
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expected with a Wahlund effect, but not in the
central-south region (slope = �0.063, r = 0.05,
P = 0.89). All tests for the mean and variance AI
were non-significant (Table 3). Subsampling to
balance the sample size of males and females did
not produce a meaningful difference in results.

Spatial autocorrelation analyses for both
regions at 6 and 12 km distance increments found
significant autocorrelation in females in the 24 km
distance class and rfemale > rmale (6 km: App-
endix S3, 12 km: Fig. 2C–F). Results of sex-biased
dispersal tests varied depending on the increment
size. For the 12-km increment size, tests were pos-
itive for sex-biased dispersal in both regions at the
24 km distance class with no overlap in the 95%
bootstrap CIs and significant T2 statistics
(Fig. 2A, B). For the 6-km increment size, sex-
biased dispersal tests were also significant in the
central-south region; however, while the north-
central had rfemale > rmale, there was overlap in
the bootstrap CIs and a non-significant T2 statistic
according to the recommended P < 0.01 signifi-
cance cutoff for the T2 heterogeneity tests (Banks
and Peakall 2012, Appendix S3).

Landscape genetics-resistance modeling
Optimizing resistance values.—Results of land-

scape resistance analyses support that the influ-
ence of landscape features on gene flow varies by
sex. When optimizing resistance values for each
variable, we found that the partial correlations
(rpm) of genetic distance and resistance distance
were markedly different for males and females
for the majority of variables (Fig. 3). When
analyzing the sexes together, rpm was generally
intermediate between the values for each sex.
Optimum resistance values differed considerably
between variables ranging from 2 (slope) to 100
(dense forest; Table 1), but were generally similar
in both the independent and combined optimiza-
tion approaches. We did not find any significant
difference in the model selection results between
these two approaches, and for simplicity, we only
present the results of the combined optimization
approach.

Model selection and evaluation.—Model selection
also varied substantially between sexes in terms
of variables in the top models, magnitude of
parameter estimates (b), and model fit (R2, rpm).
Full AIC model selection results are provided in

Appendix S4. Across all subpopulations, the top
female model indicated that gene flow was
impeded by large bodies of water and roads, but
facilitated by dense forests. For males, the top
model was univariate, comprising solely the
SMC forest variable, indicating that for males
gene flow was facilitated by SMC forest
(Table 4). There were no variables in common
between top models for males and females. With
sexes combined, the top model was a mix of vari-
ables in the top models for each sex, but with
reduced parameter coefficients and model fit
compared to the sex-specific analyses. Explana-
tory power of models for males, and for the sexes
combined, was low (R2 = 0.05–0.10).
Results also supported spatial variation in the

influence of landscape features of gene flow as
top models varied by region (Table 4). Respective
forest variables for both sexes (females = dense
forest, males = SMC forest) were consistent across
regions, but all other variables in the top models
differed. Gene flow in females was most strongly
influenced by water in the north-central region
and by roads in the south-central region (Table 4).
For males, the north-central top model found gene
flow to be influenced by SMC forest and roads,
but this model had high uncertainty and poor fit
(wi = 0.51, R2 = 0.05). In the central-south region,
SMC forest was the only variable in the top model
for males. Taking subsets of male data to an
equivalent sample size as females produced gen-
erally consistent results as the full male dataset
although a minority of the male subsets included
the alternate variables of either elevation or open-
ings instead of SMC forest in the top model. This
is likely due to a high correlation between these
variables (>0.70) as they are all comprised of
broadly distributed areas of low resistance across
a wide elevational range. In the north-central
region, the male subsets had poor fit and high
model uncertainty resulting in variation in the co-
variates in the top model, which is indicative of
the low explanatory power of landscape features
on male gene flow in this region. Notably in both
regions, some male subsets found Euclidean dis-
tance as the top model (Appendix S5).
Females had better model fit than either males

alone or the sexes combined, and the composite
multivariate resistance surfaces for females had
increased partial Mantel correlations compared
to univariate surfaces. The female north-central
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Fig. 2. Correlograms for sex- and region-specific spatial autocorrelation analyses. X-axis: distance class end-
point in 12-km increments; y-axis: genetic correlation coefficient (r) for females (solid lines) and males (dashed
lines). (A, B) comparison between sexes by region with 95% bootstrap confidence intervals with asterisks� indi-
cating statistically significant sex-biased dispersal tests. (C–F) sex- and region-specific results with permutation
tests (dotted lines) illustrating the null model of no spatial autocorrelation: C = females north-central; D = males
north-central; E = females central-south; and F = males central-south.
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regional model had the best fit and highest corre-
lation for the composite multivariate resistance
surface of any sex or region (R2 = 0.25,
rpm = 0.31). In the north-central region, the
model for sexes combined had equivalent vari-
ables as the female-only model. However, across
all subpopulations and in the central-south

region, the models for the sexes combined were a
mix of variables from the male and female mod-
els. For all analyses, parameter coefficients with
the sexes combined were reduced compared to
the same variable in the sex-specific analysis. Top
models for all sexes and regions were statistically
significant at P < 0.05.
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Fig. 3. Plots of the partial Mantel correlation value (rpm) of pairwise genetic distance ~ resistance distance,
controlling for the effects of Euclidean distance, for a range of maximum resistance values for each variable
(2–100). Correlations are plotted for all individuals (purple circles), females (red triangles), and males (blue
squares) independently.
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DISCUSSION

Our landscape resistance modeling results show
that both sex-biased dispersal and landscape het-
erogeneity can influence the association between
landscape features and gene flow. Conducting
resistance modeling separately by sex and region
allowed for the identification of landscape genet-
ics relationships not discernible when analyzed
together, and failing to account for these factors
may confound results and obscure relationships
between landscape features and gene flow.

For analyses conducted with the sexes com-
bined, we found the landscape relationships for
one sex often masked one or more variables
important to gene flow for the other sex. This
was due to that sex either having a larger sample
size or having a stronger relationship to genetic
distance. With the sexes combined, parameter
estimates of variables were lower than those in
the sex-specific models, due to the averaging of
opposing responses between the sexes. This issue
was also reported by Amos et al. (2014) who
detected strong sex-specific responses to habitat
fragmentation when conducting analyses by sex
but had inconclusive results when analyzing
both sexes together.

We also found regional variation in landscape
features influencing gene flow. Only the forest

cover variables for each sex (females: dense forest,
males: SMC forest) were consistent in the top
models, with all other variables differing between
regions. Regional differences were most pro-
nounced when analyzing the sexes combined
where there were no variables in common
between the two regional models. Our results con-
cur with other studies that have found spatial
heterogeneity in landscape genetic relationships,
and we echo the warning that it may not be appro-
priate to apply landscape genetic findings from a
specific region to other populations within a spe-
cies (Short Bull et al. 2011, Trumbo et al. 2013).

Sex-biased dispersal
Overall, the results of sex-biased dispersal tests

provide support that males disperse farther than
females. FST and FIS values were consistent with
male-biased dispersal with females having sig-
nificantly greater FST and stronger subpopulation
assignment, FIS > 0 for males but not females,
and significant male bias detected in spatial auto-
correlation analyses. Notably while the FST test
was significant for the entire population, region-
ally it was only significant for the north-central
pair. This is likely being driven by generally
higher gene flow between the central and south
groups as evidenced by comparatively low FST
values for both males and females in this region.

Table 4. Variables and standardized parameter coefficients (b) with 95% confidence intervals for top models.

Region Sex n Var1
b1

(95% CI) Var2
b2

(95% CI) Var3
b3

(95% CI) wi R2 rpm

All Both 124 Water 0.15
(0.12–0.18)

SMC
forest

0.19
(0.15–0.22)

– – 0.93 0.10 0.11

All Female 48 Water 0.21
(0.12–0.30)

Roads 0.16
(0.10–0.21)

Dense
forest

0.13
(0.04–0.22)

0.97 0.15 0.21

All Male 69 SMC
forest

0.32
(0.27–0.35)

– – – – 1.00 0.10 0.13

North–central Both 68 Water 0.24
(0.19–0.30)

Dense
forest

0.09
(0.04–0.14)

– – 0.92 0.10 0.10

North-central Female 28 Water 0.34
(0.22–0.46)

Dense
forest

0.20
(0.08–0.32)

– – 0.92 0.25 0.31

North-central Male 40 Roads 0.11
(0.04–0.18)

SMC
forest

0.21
(0.14–0.27)

– – 0.51 0.05 0.04

Central-south Both 79 Roads 0.18
(0.14–0.22)

SMC
forest

0.20
(0.16–0.23)

– – 0.89 0.05 0.16

Central-south Female 32 Roads 0.32
(0.24–0.41)

Dense
forest

0.23
(0.15–0.31)

– – 0.94 0.14 0.29

Central-south Male 47 SMC
forest

0.21
(0.15–0.27)

– – – – 1.00 0.04 0.12

Note: SMC, Sierra Mixed Conifer; wi = model weight; R2 = fit of multiple regression of distance matrices model;
rpm = partial Mantel correlation between genetic distance and the optimum resistance surface generated from the top model
regression equation.

 ❖ www.esajournals.org 13 June 2017 ❖ Volume 8(6) ❖ Article e01839

TUCKER ET AL.



There was no significant difference between
sexes in either the mean or variance of AI. How-
ever, Goudet et al. (2002) found that except when
the dispersal rate is very low (<10%), the FST
statistic is the most powerful and robust to
changes in sampling and magnitude of sex bias
for detecting sex-biased dispersal. Dispersal
estimates for fisher primarily focus on juvenile
dispersal and vary widely from a mean of
16.7 km-female/41.3 km-male in British Colum-
bia (Weir and Corbould 2010) to 1.3 km-female/
4.0 km-male in northern California (Matthews
et al. 2013), and 5.8 km-female/9.8 km-male in
the southern Sierra Nevada (Sweitzer et al.
2015). While less is known about adult dispersal,
males have been found to move broadly during
the spring breeding season (Sweitzer et al. 2015).
Therefore, dispersal characteristics of fisher may
result in low power using AI-based test statistics.
Additionally, such mixed results of statistical
testing have been reported in studies of species
that otherwise have strong evidence for sex-
biased dispersal due to difficulties in using bi-
parentally inherited markers described in more
detail below (Helfer et al. 2012).

There are inherent difficulties in detecting sex-
biased dispersal using bi-parentally inherited
markers and the timing of sampling. With non-
overlapping generations, microsatellite markers
can detect sex-biased dispersal when individuals
are sampled after dispersal, but before reproduc-
tion, when alleles from dispersers will be transmit-
ted to its offspring. The presence of overlapping
generations, more realistic of wild populations,
extends the genetic signal of sex-biased dispersal
as mothers and daughters cluster geographically,
while male offspring disperse farther from their
natal area (Blyton et al. 2015). Juvenile dispersal
of fisher from their natal areas usually begins in
mid-late winter (~10 months post-birth), with the
majority of juvenile dispersal occurring from
February to September (Lofroth et al. 2010, Sweit-
zer et al. 2015). Because our sampling period
(June–October) overlaps this dispersal period and
also spans multiple years, we could potentially
sample the same individuals both pre- and post-
dispersal. However, the majority of recaptured
individuals were detected in close spatial proxim-
ity to their initial detection and we did not
recapture the same individuals in multiple sub-
populations, indicating that the individuals

sampled were not likely dispersing long distances
over the course of the study.

Landscape genetics-resistance models
Our results indicate that the influence of land-

scape features on gene flow varies by sex and
that landscape resistance analyses conducted for
males and females independently are more bio-
logically relevant for fisher in the southern Sierra
Nevada than the analyses conducted with the
sexes combined. We reached this conclusion
based on (1) differences between sexes in correla-
tion values during optimization of resistances
surfaces, (2) differences between sexes in vari-
ables and parameter estimates of top models,
and (3) improvement in model fit when analyz-
ing the sexes independently.
In all regions, dense forest had a positive influ-

ence on genetic connectivity of females. This rela-
tionship is consistent with home range
characteristics for fishers in the Sierra Nevada
(Zielinski et al. 2004a, Purcell et al. 2009) and
throughout their range (Aubry et al. 2013,
Schwartz et al. 2013). This relationship is also
congruent with fisher denning habitat models
that have found female den sites primarily in
dense mid-elevation mixed conifer and hard-
wood forests at a comparatively narrow eleva-
tional band compared with more broadly
distributed foraging habitat (Spencer et al. 2015).
We found an entirely different suite of variables
in the top models of males. The SMC forest vari-
able was present across all male top models
instead of the dense forest variable found impor-
tant in females, and model fit for males was
much lower than for females in all analyses. The
comparatively poor model fit and low partial
Mantel correlations for males imply that land-
scape features create relatively little resistance to
gene flow and that the landscape overall has
much less influence on male dispersal than on
female dispersal.
Our results also indicate that the influence of

landscape features on gene flow varies spatially.
While the forest variables were consistent for
each sex across regions, all other variables dif-
fered between regions. In the north-central
region, water had a strong negative influence on
genetic connectivity of females, but not males.
The negative influence of water on female gene
flow is likely attributable to the Kings River
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Canyon, which has long been hypothesized to
limit fisher dispersal (Wisely et al. 2004, Jordan
2007, Tucker et al. 2014) and may also reflect
fine-scale genetic structuring among several
small clusters separated by the San Joaquin River
within the northern subpopulation (Tucker et al.
2014). Notably, the water variable was absent
from all male top models. Considering the mag-
nitude of the Kings River Canyon, it is surprising
that it does not appear to create any impediment
to male dispersal. In the central-south region,
roads rather than water had a negative influence
on genetic connectivity for females. This relation-
ship was unexpected as the road density and
intensity of road use seem comparable across
regions and even the most heavily used roads
within the central-south region are primarily two
lane mountain roads running through otherwise
contiguous forested habitat. For males in the
north-central region, roads were found to nega-
tively influence gene flow, but not in the central-
south region where the top model con.sisted
solely of the SMC forest variable. Both regional
models for males had very poor fit.

The difference between forest variables
selected by males (SMC forest) and females
(dense forest) is particularly intriguing. The SMC
forest variable encompasses a higher elevational
range than the dense forest variable (maximum
elevation SMC forest = 2602 m, dense forest =
2223 m) and includes a much larger geographic
area covering an additional 171,849 pixels
(~1718 km2) over the dense forest layer. We spec-
ulate that this indicates female gene flow is char-
acterized by dispersal among high-quality
habitat in the core elevation range for fisher occu-
pancy in the Sierra (~1400–2300 m elevation;
Spencer et al. 2011), while males disperse more
widely and therefore associate with a more wide-
spread land cover type.

Our findings indicate that female dispersal
may be one of the factors limiting population
expansion north of its current extent. The north-
ern boundary of the current population aligns
with two features shown to impede female fisher
flow: the Merced River and the heavily traveled
roads associated with Yosemite National Park.
Habitat models indicate that there is suitable but
unoccupied habitat north of the Merced River
(Davis et al. 2007, Spencer et al. 2011). There
have been incidental sightings of fishers north of

this river but no evidence of a breeding popula-
tion (Chow 2009), and it is likely that these sight-
ings were dispersing males that failed to find
mates. Consequently, northward population
expansion, a goal identified in a recent fisher
Conservation Strategy (Spencer et al. 2016), may
require assisted translocation of females across
these potential dispersal barriers.
Previous research has shown a temporal delay

between genetic data and landscape features,
making it difficult to know whether to attribute
current genetic patterns to contemporary or his-
torical landscape characteristics. However, this
lag time has been found to be relatively short
when using Dps and Mantel correlations in com-
parison with population-based approaches using
FST. The temporal delay is also smaller for species
with longer dispersal distances (>10 km, Land-
guth et al. 2010). Considering the relatively long
dispersal ability for fisher reported for the south-
ern Sierra Nevada (36.2 km, Sweitzer et al. 2015)
and elsewhere in their range (~100 km, York
1996), our results are likely attributable to recent
(within the last few decades) rather than histori-
cal landscape conditions.
There is an important distinction between pop-

ulation-based analyses (FST, FIS, AI, population
assignment) and individual-based analyses (spa-
tial autocorrelation and landscape resistance
modeling). This distinction is critical when con-
sidering the effect of dispersers in each approach.
In a population-based approach, one individual
dispersing between subpopulations may only
have a small effect on population-based metrics
like FST, but in an individual-based approach,
one disperser will affect pairwise values to all
other individuals both within and between sub-
populations. Consequently, population-based
analyses will only reflect the influence of land-
scape features between subpopulations, whereas
individual-based analyses reflect the influence of
landscape features both between and within sub-
populations (Broquet et al. 2006, Segelbacher
et al. 2010).
We acknowledge that the sample sizes used in

this study are small, which decreases power of
statistical analyses. In landscape genetics analy-
ses, reducing the number of individuals does not
affect the accuracy of the estimate of the partial
Mantel correlation, but does increase the uncer-
tainty in the estimate (Landguth et al. 2012).
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However, the issue of sample size has never been
directly addressed using MRDM and model
selection. The sample sizes used in this study are
similar to other individual-based landscape
genetic analyses detecting significant relation-
ships between genetic distance and landscape
features (Cushman et al. 2006, Shafer et al. 2012,
Wasserman et al. 2013). Considering this popula-
tion has been estimated to contain <300 adults
(Spencer et al. 2011), the 124 individuals ana-
lyzed in this study represent a substantial pro-
portion (≤41%) of the extant population.

CONCLUSIONS

Careful consideration of the potential for sex-
biased dispersal and landscape heterogeneity
should be undertaken prior to conducting land-
scape genetic analyses as these factors can
strongly influence results. Our findings have con-
siderable conservation implications in showing
that failing to account for sex-biased dispersal in
landscape genetics analyses may result in omit-
ting or misidentifying landscape features impor-
tant for genetic connectivity.

This study indicates that management actions
with the goal of conserving or enhancing popula-
tion connectivity need to consider that males and
females may each have a different suite of habitat
features important for connectivity. For species
with male-biased dispersal, population expansion
is likely mediated by female’s ability to disperse
to new habitat areas. Consequently, identifying
and conserving landscape features important for
female dispersal may be more important than for
more widely dispersing males.
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