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Abstract
Scarce and uncertain data on woody debris decomposition

rates are available for calibrating forest ecosystem mod-

els, owing to the difficulty of their empirical estimations.

Using field data from three experimental sites which are

part of the North American Long-Term Soil Productivity

(LTSP) Study in south-eastern British Columbia (Canada),

we developed probability distributions of standard wood

stake mass loss of Populus tremuloides and Pinus con-
torta. Using a Monte Carlo approach, 50 synthetic decom-

position rate values per debris type were used to calibrate

the ecosystem-level forest model FORECAST. Significant

effects of uncertainty of pine stake mass loss rates on esti-

mated tree growth were found, especially in moderately

managed forests, as estimations of available nitrogen were

affected. Consequently, our work has shown that projec-

tions of tree growth under management conditions depend

on accurate estimations of woody debris decomposition

rates, and special effort should be done in create reliable

databases of decomposition rates for their use in tree growth

and yield modelling.

Recommendations for Resource Managers
• Maintaining woody debris on site, particularly large

roots, should be favored. Significant influences of wood

decomposition rates on tree growth were found, espe-

cially in moderately managed forests, because below-

ground woody debris became an important reservoir of
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nutrients needed to maintain tree growth rates. Forest

floor and stump removal are therefore discouraged.

• When using ecological models for estimating tree

growth, uncertainty associated with calibrating woody

debris decomposition processes should be taken into con-

sideration if moderate management is planned.

• Special efforts should be made to gather site- and species-

specific woody debris decomposition rates, particularly

for medium and coarse roots (diameter above 2.5 cm).

Creating a database of standardized branch and root

decomposition rates would greatly reduce the uncertainty

of model estimations of tree growth.

K E Y W O R D S
ecosystem-level model, FORECAST model, forest ecosystem, forest man-

agement, sensitivity analysis, uncertainty analysis

1 INTRODUCTION

In sustainable forest management it is necessary to define management plans, taking into account the
interaction between forestry activities and ecological processes, as well as the predicted long-term out-
comes of alternative management plans. One of the best tools for such tasks are ecosystem-level ecolog-
ical models (Kimmins, Blanco, Seely, Welham, & Scoullar, 2010). However, these models can be diffi-
cult to calibrate due to the high number of parameters and the specific scientific-oriented nature of some
of them. Ideally, calibration values should come from detailed, carefully collected field data that ade-
quately estimate the parameter values (Gárate & Blanco, 2013). However, due to common funding limi-
tations for sampling and monitoring programs in most forestry-related institutions around the world, the
sampling effort is usually focused on the main model parameters that are more prone to influence model
behavior. Such parameters can be identified a priori by sensitivity analysis, which consists of creating
a ranking of the different factors that influence the chosen target variables (Håkanson, 2003), and pos-
sibly identify the most influential factors for model behavior (Kimmins et al., 2010). If the model is run
with different parameter values, but the target variable´s trend is similar over time, the model is consid-
ered robust to the uncertainty surrounding the parameter calibration value, even though the numerical
values are different (Ford, 1999). Such characterization of model behavior improves our understanding
and, therefore, can improve the ability of the model to mimic the natural system it is trying to emulate.
A rigorous sensitivity analysis also provides guidance on formulating a hypotheses of potential model
behaviors under circumstances that would imply recalibrating parameter values, such as when using
the model in ecosystems with different values of ecological parameters (portability of the model) or
when new or novel ecological conditions are simulated (scenario analysis, e.g., climate change).

Model sensitivity analysis is a fast-evolving field, with major breakthroughs in recent years towards
sensitivity analyses that assess global model behavior when multiple parameters are modified simul-
taneously. However, more traditional one-at-a-time (OAT) sensitivity analyses still have importance
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in ecological modelling, as they give detailed assessments on the influence of specific parameters on
model behavior (Saltelli et al., 2008). Such studies are very important to help model users find the
best tool and method for their needs. This is a common situation in management-oriented forest mod-
els. For example, Tatarinov and Cienciala (2006) used OAT methods to develop user guidelines in
the BIOME-BGC model (Running & Coughman, 1988) for four major tree species in Europe. Sim-
ilarly, Rodríguez-Suárez, Soto, Iglesias, and Diaz-Fierros (2010) used OAT methods to estimate the
3-PG model (Landsberg & Waring, 1997) sensitivity to changes in soil fertility. In addition, Blanco
(2012) and Gárate and Blanco (2013) carried out sensitivity analysis of the hybrid ecosystem-level
forest model FORECAST to changes in the decomposition rates of leaves, fine roots, and coarse woody
debris, and indicated that decomposition rates of lignified and fine roots can potentially influence tree
growth simulations.

However, relatively few empirical wood decomposition rates are available for many forest ecosys-
tems (Russell et al., 2015; Petrillo et al., 2016) until the recent development of using standardized
wood stakes to estimate the effects of climatic and soil conditions on wood decomposition (Jurgensen
et al., 2006). The rate of wood decomposition can be used as an index of long-term effect of forest
management effects on soil productivity (either negative or positive). This protocol has been included
on a number of sites in the North American Long-Term Soil Productivity study (LTSP), which is an
international project designed to investigate effects of soil organic matter removal and soil compaction
on forest productivity over the long-term (Powers & Avers, 1995). This provides an ideal template for
evaluating the influence of stand management on surface and belowground changes in site processes
(e.g., decomposition). Organic matter, such as leaves or woody debris from a particular site, gives only
location-specific information on carbon (C) and nutrient turnover rates, but differences in organic mat-
ter quality (lignin, cellulose: lignin or C:N ratios) make it difficult to compare results among sites. In
the context of this research, woody debris refer to lignified material (stems, roots, or branches) with
diameter 2.5 cm or larger.

By using the same organic material on several sites, organic matter quality is held constant and
the decomposition rate becomes a function of soil abiotic and biotic conditions. Therefore, we used
wood from two different tree species (trembling aspen [Populus tremuloides Michx.] and loblolly pine
[Pinus taeda L.]) to make stakes that were placed at two different soil locations (soil surface, and
buried in the mineral soil), as an index to assess the longer-term (5 years) effects of harvest removal
intensity on wood decomposition. These two wood species were selected because they have different
wood properties, which favor the development of different wood-decomposing microbial communities
(Blanchette, 1984). Woody debris are a normal component of forest soils (lignified surface residue,
stumps, roots), and their decomposition is affected by changes in moisture and temperature over long
time periods (Chen et al., 2000).

Using the LTSP study plots and wood stakes provides an opportunity to obtain a unique dataset
of decomposition of standard woody material exposed to a gradient of forest management intensities,
which could be used to obtain a range of wood decomposition rates under different soil microcli-
mate conditions. Therefore, the objective of the research reported here was to assess the influence
of the uncertainty associated with field-based estimations of wood decomposition rates on projec-
tions of future tree growth when using the ecological model FORECAST (Kimmins, Mailly, & Seely,
1999). FORECAST has been used to provide acceptable estimations of tree growth for North Amer-
ican forests, particularly in coastal and interior British Columbia (Blanco, Seely, Welham, Kimmins,
& Seebacher, 2007, 2014; Seely, Welham, & Blanco, 2010), as well as tropical plantations (Blanco &
González, 2010; Wei, Blanco, Jiang & Kimmins, 2012; Wang et al., 2013a; Wu, Lo, Blanco, & Chang,
2015), temperate mixed forests (Candel-Pérez et al., 2017; González de Andrés et al., 2017; Lo et al.,
2015a), and subboreal and alpine forests (Jie et al., 2011; Seely et al., 2010; Wang et al., 2014).
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2 MATERIAL AND METHODS

2.1 Research sites
Data on wood stake mass loss rates on and within the mineral soil were gathered from three research
sites from the LTSP sites in southeastern British Columbia (western Canada), which were established
by the BC Ministry of Forests in the 1990s in co-operation with the U.S.D.A. Forest Service (Holcomb,
1996). Research sites were established in the Interior Douglas-fir (IDFdm2) biogeoclimatic zone
(Meidinger & Pojar, 1991) in 1999–2001 (Table 1). The IDF is characterized by warm, dry summers
and cool winters with mean annual temperatures ranging from 1.6 ◦C to 9.5 ◦C. Mean annual precipita-
tion is between 300 and 750 mm, but can surpass 1000 mm in the wettest subzones, and 20–50% of the
precipitation falls as snow. Main tree species are Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco),
trembling aspen (P. tremuloides Michx.), and lodgepole pine (Pinus contorta Doug.). Common under-
story shrubs are soopolallie (Shepherdia canadensis(L.) Nutt.) and kinnikinnik (Arctostaphylos rubra
(Rehd. & Wilson) Fernald).

Detailed information about the LTSP installations in British Columbia can be found in the establish-
ment report (Hannamet et al., 2008). The three LTSP study sites are located in the Kootenay/Boundary
Region (British Columbia Ministry of Forests, Lands, and Natural Resource Operations) in the south-
east corner of British Columbia. Mud Creek and Kootenay East are on the eastern side of the Rocky
Mountain Trench and Emily Creek is located on the western side. The three sites are located within
13 km of Canal Flats (north of Cranbrook, BC) and all are on Orthic Eutric Brunisols (Soil Classifica-
tion Working Group, 1998; Table 1). The closest weather station with full records since 1983 is Wasa
(49◦ 49′ 26″ N, 115◦ 37′ 53″ W, 970 m a.s.l., Fig. 1). Average temperature in the region is 6.0 ◦C, but
it can reach as high as 37 ◦C in summer and as low as −35 ◦C in winter. Average annual precipitation
is 458 mm, with the driest season occurring in late fall and the wettest in mid-spring. Frost can occur
any time of the year except in July (Fig. 1).

2.1.1 Estimation of wood decomposition rates
At each research site, a 3 × 3 factorial experiment was established in 1999–2001, with three different
levels of organic matter retention and three levels of soil compaction. In the research reported here, only
the data from the no compaction treatments were used, as the FORECAST model does not simulate
bulk density and therefore cannot directly simulate the effects of soil compaction. The organic matter
retention levels were: Control/no management, where the original Douglas-fir dominated stands remain
and neither harvesting nor forest floor or woody debris removal was carried out; M0/moderate man-
agement, where the original forest was clear cut and only the tree boles were removed; and M2/intense
management, where the original forest was clear cut and boles, crowns and forest floor were removed.

T A B L E 1 Main features of study sites (adapted from Norris et al., 2015)

Site Latitude Longitude
Elevation
(m a.s.l.)

Soil texture
(% clay)

Soil deptha

(cm)
Establishment
year

Mud Creek 50◦ 08′N 115◦ 44′ W 1005 Loam (21%) 22 1999

Emily Creek 50◦ 09′ N 115◦ 59′ W 1180 Loam (7%) 48 2000

Kootenay East 50◦ 11′N 115◦ 59′ W 1030 Silt loam
(16%)

24 2001

aDepth to carbonates.
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F I G U R E 1 Left panel: Position of the reference climate station (study sites in its vicinity) in relationship to North
America. Right panel: Climate of Wasa (1983–2016). Blue line: mean monthly precipitation (rainfall + snow) Red line:
mean monthly temperature; y: number of years used to calculate the normals; T: mean annual temperature (◦C); P: mean
annual amount of precipitation (mm); TM : absolute maximum temperature (◦C); tM : mean daily maximum temperature
(◦C); tm: mean daily minimum temperature (◦C); Tm : absolute minimum temperature (◦C). The frost period with an
absolute minimum temperature below 0 ◦C is indicated by the grey area at the bottom of the figure

To estimate wood decomposition rates, wood stakes of aspen (P. tremuloides Michx.) and loblolly pine
(P. taeda L.) were used as standard substrates, following the protocol described by Jurgensen et al.
(2006). We used stakes placed on the soil surface as an index of branch or twig decomposition on the
soil surface. To do this, 50 stakes of each species (2.5 cm × 2.5 cm × 15 cm) were place on top of the
forest floor in 2001 (Mud Creek), 2002 (Emily Creek), and 2003 (Kootenay East). As an index of root
decomposition, another slightly longer set 50 stakes of each species were inserted vertically to a depth
of 20 cm in the mineral soil at each of the study sites, to access for typical soil moisture levels that roots
would encounter. To limit physical damage to the stakes we made a 2.5 cm2 hole with a metal coring
tool and inserted the stake so that the top was level with the mineral soil surface. If a forest floor was
present it was returned to cover the stakes. Ten stakes of each species from each location were removed
from each site yearly in June for 5 years. The stakes were weighed in the field to calculate moisture
content, then were air-dried and sent to Michigan Technological University (Houghton, MI) for final
drying and weighing. Decomposition rates (k) were estimated by fitting the weight loss data to a neg-
ative exponential model (Olson, 1963), using the software JMP 12.0 (SAS Institute, Cary, NC, USA).

2.2 The FORECAST model
2.2.1 Model calibration and evaluation
FORECAST is forest ecosystem simulator which operates at annual time steps and at stand level. It is
deterministic and management oriented. A detailed description can be found in the Appendix A.

The datasets used for the research presented here were based on existing calibration datasets assem-
bled as part of the project funded by the Canadian Foundation for Innovation “The Ecosystem Manage-
ment Simulation Laboratory for research on forest stewardship and sustainability” (Canada Research
Chair Infrastructure awarded to Dr. J.P. Kimmins, University of British Columbia). Previous work done
with the same datasets showed the capability of the model to acceptably simulate aboveground forest
biomass, as well as its capability to simulate different soil types belonging to different biogeoclimatic
zones (Blanco et al., 2014, 2015a). However, those works also warned on the potential influence that
inaccurate estimations of soil organic matter may have on tree growth estimations, without being able to
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quantify such influence given the lack of empirical data at that time. Such work has now been possible
with the data from the LTSP study. Growth and yield tables for the interior B.C. region were combined
with species-specific allometric biomass equations to generate calibration data (biomass accumulation
rates, top height, diameter at breast height, and stand density). Nutrient dynamics in this study were
restricted to N, the most limiting nutrient at these sites (Blanco et al., 2014). To calibrate N flows
and stocks, literature data were used for N concentrations in plant tissues (Kimmins, Catanzario, &
Binkley, 1979; Peterson & Peterson, 1992; Wang, Zhong, Simard, & Kimmins, 1996), leaf and nee-
dle decomposition rates estimated with litter bags (Camiré et al., 2002; Prescott, Blevins, & Staley,
2000a; Prescott, Zabek, Staley, & Kabzems, 2000b), litterfall production rates (Kimmins et al., 1979;
Li, Kurz, Apps, & Beukema, 2003; Peterson, 1988), light transmission through the canopy (Comeau &
Heineman, 2003; Leifers, Pinno, & Stadt, 2002; Messier, Parent, & Bergeron, 1998), and light-limited
growth rates (Claveau et al., 2002; Leifers et al., 2002; Mailly & Kimmins, 1997). Calibration values
are not repeated here as they can be found in those studies.

Previous applications of FORECAST have studied soil productivity and its relationship with soil
organic matter (e.g., Blanco, 2012, Blanco et al., 2015a; Morris, Kimmins, & Duckert, 1997; Seely,
2005; Seely et al., 2010). Particularly, the model has been extensively evaluated and validated against
independent field data for tree growth and other ecophysiological and soil variables for BC´s Douglas-
fir forests, showing acceptable model behavior and accuracy of its estimations (see Blanco et al., 2007;
Seely, Hawkins, Blanco, Welham, & Kimmins, 2008, 2010).

2.2.2 Model initialization
A modified spin-up process was used to reach a stable state to define the simulation´s starting conditions
(Hashimoto, Wattenbach, & Smith, 2011; Shi, Yang, Lawrence, Dickinson, & Subin, 2013). Based on
data on fire return intervals in interior BC, the model simulated seven 125-year cycles for a mixture of
Douglas-fir (1350 trees ha−1) and trembling aspen (450 trees ha−1). The last run ended with a stand-
replacing wildfire (Blanco et al., 2007, 2014). This procedure did not pretend to simulate the past stand
history of the sties, but it just allowed the model to reach stable values of litter and humus in soil.
The ecosystem state at the end of these initialization runs was used as the starting conditions for the
simulation runs.

2.3 Sensitivity analysis of model response to wood decomposition rates
In FORECAST, branches are one unique biomass pool without further differentiation by branch diam-
eter, whereas roots are divided into two different biomass pools: fine roots (diameter ≤3.0 mm) and
woody roots. Branches and roots were simulated independently for conifers and broadleaves. There-
fore, to test the influence of uncertainty of wood stake decomposition rates and their relationship to
tree growth, we selected four parameters for further uncertainty analysis: (1) loblolly pine stakes at the
forest floor surface were used as an index of conifer branches (Conif-Branch); (2) loblolly pine stakes
in the mineral soil were used as an index of conifer roots (Conif-Root); (3) aspen stakes at the forest
floor surface were used as an index of broadleaf branches (Broad-Branch); and (4) aspen stakes in the
mineral soil were used as an index of broadleaf roots (Broad-Root).

To study the influence of wood decomposition rates on tree growth predictions, we carried out
an uncertainty analysis (Saltelli et al., 2008). The pre-treatment forest was simulated by using the
initial densities for lodgepole pine, Douglas-fir, and trembling aspen of 825, 450, and 222 trees/ha,
respectively (following the average densities defined for the same forest types in the region by Blanco
et al., 2015a). The pretreatment simulation lasted for 70 years (a typical harvest interval for Douglas-
fir forests, Hermann & Lavender, 1999), with final densities of 648, 359, and 93 trees/ha of lodgepole
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F I G U R E 2 Distribution of synthetic values of wood decomposition rates generated based on field work observa-
tions. The values from surface stakes were used to calibrate the branch-related parameters, whereas the values from buried
stakes were used to calibrate the root-related parameters. Pine stakes were used to calibrate conifer-related parameters
and aspen stakes for broadleaf-related parameters

pine, Douglas-fir, and trembling aspen, respectively. That point was considered the initial starting point
for the sensitivity analysis runs. For control runs, no management was carried out and therefore the
simulation started with 70-year-old trees present in the stand. The M0–moderate management runs
were carried out by simulating clear-cutting at year 1, followed by stem-only removal and planting 2-
year-old Douglas-fir seedlings at initial density of 2250 trees/ha. The M2–intense management runs
were carried out by simulating clear-cutting at year 1, followed by whole-tree (stem + canopy) and
forest floor (all litter types) removal, and planting 2-year-old Douglas-fir seedlings at initial density of
2250 trees/ha (Hannamet et al., 2008).

To test for the influence of uncertainty of woody debris decomposition rates on the main variables
defining the N and C cycles, empirical data on decomposition rates obtained from stakes of pine and
aspen were used respectively to create the distribution functions of the parameters Conif-Branch, Conif-
Root, Broad-Branch, and Broad-Root. Using a Monte Carlo approach, 50 synthetic decomposition rates
for each combination of wood type and management treatment were generated (Fig. 2). Then, for each
synthetic decomposition rate generated, a simulation was carried with FORECAST keeping the rest
of the parameters with the same value, therefore performing an OAT local sensitivity analysis (Saltelli
et al., 2008). We carried a total of 600 simulations, being the target variables soil C, tree C, total
stand C, annual N released from litter, annual N released from humus and available N. To quantify
the propagation of parameter uncertainty into model output and compare the effects of different input
parameters on all target variables, the uncertainty propagation index (UPI) was defined as (Equation 1):

Uncertainty propagation index(%) =
CVtarget variable

CVinput parameter
× 100, (1)

Where CVtarget variable is the coefficient of variation of each of the six target variables, and
CVinput parameter is the coefficient of variation of each of the four input parameters. The index com-
pares, in a simple way, if the variability around the average of the target variable is larger or smaller
than the variability around the average decomposition rates of each of the four woody materials stud-
ied. Therefore, if UPI is larger than 100%, the model amplifies parameter uncertainty when estimating
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F I G U R E 3 Total soil C (left panels) and tree C (right panels) under three types of forest management. The lines of
the same color above and below the average indicate the confidence intervals (±95%) of the target variables when each
parameter is modified

the target variables, whereas if UPI is lower than 100%, it reduces it (Kirschbaumm, 1999). Analogous
to the ranges defined by Jørgensen and Fath (2011) for the sensitivity index, ranges of the UPI can
be defined as: no propagation (UPI = 0%), low propagation (0% < UPI≤10%), moderate propagation
(10% < UPI≤50%), equal propagation (50% <UPI ≤100%), and high propagation (UPI > 100%).

3 RESULTS

The population of synthetic decomposition rates generated logically followed the observed field data,
with much lower rates for surface wood (used to calibrate the Conif-Branch and Broad-Branch param-
eters) than for wood in the mineral soil (Conif-Root and Broad-Root), and with lower decomposition
rates for pine than for aspen (Fig. 3). It also followed the empirical observation that the more intense the
management, the faster the roots decompose, but the opposite for branches. Such synthetic distributions
were therefore considered an adequate representation of empirically estimated decomposition rates.
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The effect of uncertainty in decomposition rates had a clear interaction with the type of management.
For both the control and the intense management (M2) plots, the effect on tree or soil carbon was
minimal. The same was observed for most moderate management (M0) simulations, except for conifer
roots (Fig. 3). Uncertainty in the Conif-Root parameter could create differences of up to 12.4 Mg/ha and
41.4 Mg/ha for estimations of soil C and tree C, respectively. In relative terms, these results indicate a
potential deviation up to 12.3% and 41.7% from the average for soil C and tree C, respectively.

Uncertainty in soil N flows were mostly related to uncertainty in estimation of litter mass and its
associated N content; whereas for N released from humus the influence of uncertainty of woody decom-
position rates was almost negligible. Only for low-intensity management (M0) a noticeable influence
was observed at about mid-rotation (ages 28–50) for conifer roots, although such differences were
dimmed by the end of the simulation. For the same M0 scenario, uncertainty in decomposition rates
of conifer roots in N released from litter was important for the first half of the simulation, reaching dif-
ferences up to 33 kg N ha/year (41.5% of the average value). More importantly, uncertainty in input in
the Conif-Branch parameter could cause the model to estimate either net mineralization or net immo-
bilization from litter during the first 11 years (Fig. 4).

As for the previous variables, for the control and M2 scenarios the uncertainty in input decompo-
sition rates was minor to almost negligible for available N and total stand C, but for the M0 scenario
the uncertainty in Conif-Root also created noticeable ranges for the estimations of the target variables
(Fig. 5). Differences for available N were higher during the first 20 years of the simulation, reach-
ing a maximum of 81.6 kg N/ha, but later stabilizing in the range of 26–30 kg N/ha for the second
half of the rotation. Such differences in available nutrients had a corresponding effect on tree growth
and organic matter accumulation on the forest floor, bringing total ecosystem C to values into a range
between 145–197 Mg C/ha, or in relative terms, approximately ±30.4% of the average C after 70 years
of simulation.

The model, in general, showed low values of the UPI for most of the variables (Fig. 6). Only for the
moderate management scenarios and the Conif-Root parameter, values of the UPI were in the region
of moderate propagation, with slightly higher values at 35 years of simulation than at the end of the
70-year runs.

4 DISCUSSION

4.1 Effects of type of material
Broadleaf woody debris usually have higher N but lower lignin content than coniferous woody material,
and therefore decompose faster (Shoronova & Kapitsa, 2014). These differences in decomposition
rates were recorded during other wood stake studies (Finér, Jurgensen, Palviainen, Piiriainen, & Page-
Dumroese, 2016; Jurgensen et al., 2006; Risch, Jurgensen, Page-Dumroese, & Schütz, 2013), and they
were reflected in the distribution of the synthetic decomposition rates generated for this uncertainty
study (Fig. 2). However, conifer-related parameters had higher influence on tree growth projections
than broadleaf-related parameters. The explanation is likely related to the minor broadleaf component,
as this type of mixed forest is mostly comprised of pioneer species such as trembling aspen, which
are shaded out during stand development by coniferous, slower-growing species such as Douglas-fir
and lodgepole pine. Therefore, the influence of uncertainty in decomposition rates related to broadleaf
material is almost negligible, and only a minor impact can be seen on N released from litter.

Empirically estimated decomposition rates, both for broadleaf and coniferous woody material were
affected by management treatment, with a decrease from control to M2 in recorded branch decompo-
sition rates. This is likely caused by the drying effect on wood stakes on the soil surface void of forest
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F I G U R E 4 Total N released from litter (left panels) and from humus (right panels) under three types of forest
management. The lines of the same color above and below the average indicate the confidence intervals (±95%) of the
target variables when each parameter is modified

floor and without an overstory; thereby reducing decomposer activity. For the stakes buried in the min-
eral soil there was an increase in decomposition. Such increase was likely caused by increased water
and radiation reaching the soil surrounding the decomposing roots, causing an increase in soil tem-
perature and therefore in decomposer biological activity (Crockatt & Bebber, 2015; Finér et al., 2016;
Fissore et al., 2016). A clear increase in wood stakes decomposition in the mineral soil as management
intensity increased was recorded. Although the population of synthetic decomposition rates followed
the same pattern, the clear treatment effect on decomposition rates was not propagated to estimations
of tree growth for Control and M2 treatments. The effect of the M0 treatment on decomposition rates
was not so evident and is likely associated with an increase in the variability of recorded decompo-
sition rates. The highest dispersion of synthetically generated root decomposition rates was observed
for conifers in the M0 scenario, likely reflecting the high heterogeneity of microclimate conditions
after harvesting. Higher uncertainty of empirically measured decomposition rates for M0 compared
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F I G U R E 5 Available soil N (left panels) and total stand C (right panels) under three types of forest management.
The lines of the same color above and below the average indicate the confidence intervals (±95%) of the target variables
when each parameter is modified

to control and M2 can also be a factor influencing the higher UPI values estimated for the Conif-Root
parameter in the M0 scenarios.

4.2 Effects of management treatments
Our results highlight the important interaction that exists between management scenario and uncer-
tainty. Although most of our results show the uncertainty from the input parameters related to wood
decomposition rates is scarcely propagated to the target variables, there is one important exception:
decomposition of modeled coniferous roots under moderate management. Such scenario (managing
coniferous forests in a moderate fashion, removing only the stems but without removing the forest
floor layer) is actually the most common form of forest management in most of the Pacific Northwest
of North America. The reasons for the observed interaction between management regime and wood
decomposition rate are several. In mature stands such as in the control plots, there is already a large
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F I G U R E 6 Uncertainty Propagation Index of four wood-decomposition related parameters into six target variables
under three different types of management

amount of biomass accumulated on the forest floor and soil. An important part of this organic matter is
composed by organic matter in different stages of decomposition. Mineralization of decomposing leaf
litter and humus are the main sources of nutrients for vegetation and the uncertainty of wood decompo-
sition rates does not affect N availability. Similarly, Wang, Mladenoff, Forrester, Keough, and Parton
(2013b) also found changes of less than 6% in total C estimated by the CENTURY model in response
to uncertainty of woody biomass decomposition and removal. As in our case, Wang et al. (2013b) sug-
gested that such small sensitivity was a consequence of the small N flow that woody residues provided
to trees.

In addition, as mature trees grow older, most of their nutrient requirements are met through the
resorption of nutrients from leaves and twigs prior to their senescence. This is particularly important
in the case of conifers, as they maintain needles for several years, using the old needles as nutrient
reservoirs (Blanco, Imbert, & Castillo, 2009). As trees simulated in the control plots gradually reduce
growth rates as they slowly reach maturity and old-growth stage, their nutrient requirements also
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F I G U R E 7 Diagram of the most important ecosystem processes and interactions among them included in the
model (black dotted lines). Mass and nutrient flows connect the main ecosystem pools (black solid lines). Effects of
limitation and competition for light and nutrients are explicitly simulated, whereas soil moisture limitation is simulated
implicitly

gradually decline. These stages of tree growth are only slightly dependent on nutrients coming from
the mineralization of woody debris. As a consequence, the uncertainty around wood decomposition
rates barely influence tree growth.

In contrast, the opposite occurs in stands under intensive management, as was the case of the M2
plots. In these plot, where the organic layer has been removed together with the woody debris on the
soil surface, all N released from mineralization comes from the decomposition of dead roots from the
trees harvested prior to the establishment of the new plantation. This N is depleted relatively quickly
as roots have higher decomposition rates than branches, due to their higher moisture content and con-
tact with soil (Ganjegunte et al., 2004). As a consequence, the impact of uncertainty in woody debris
decomposition rates that can be seen in the first 10 years of N release from residual roots (Fig. 4 bottom
left) does not translate into additional tree growth because the planted seedlings are small and cannot
use all the nutrients that are potentially available.

After the first ∼10 years, when most roots from previous trees are likely completely decomposed,
most available N originates from three sources: (1) mineralization of humus, which remains unaltered
by uncertainty in decomposition because after removing most of the organic layer new humus is formed
slowly, (2) mineralization of litter produced after tree establishment, which remains a small pool as
newly planted trees need time to produce and accumulate a significant litter layer and the shrub layer is
not fully developed, and (3) nonsymbiotic N fixation, which also remains relatively low in temperate
coniferous forests (Blanco et al., 2017; Wei & Kimmins, 1998). Hence, available N is relatively unaf-
fected by uncertainty and remains limiting for tree growth for all scenarios with different wood decom-
position rates. This process is already being documented in the field where periodic measurements
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F I G U R E 8 Order of simulated events to estimate annual available soil N. Step 1: inputs from geochemical flows are
calculated, lumping together all different forms of N. Step 2: inputs and outputs of biochemical fluxes. Step 3: Available
N is uptaken by the vegetation. Step 4: N is retained in soil CEC (as ammonium) or AEC (as nitrate). If N exceeds soil´s
retention capacity, any excess is considered to be lost as leaching and denitrification losses and removed from the soil.
After Step 4, any N remaining in the soil then passes to the next year, becoming the initial value of available N for the
next year

of planted trees in the LTSP experimental plots in British Columbia show significantly lower growth
rates in M2 plots (Kamaluddin, Chang, Curran, & Zwiazek, 2005; Kranabetter, Dube, & Lilles, 2017;
Ponder et al., 2012). Therefore, uncertainty in decomposition rates has almost no influence on estimates
of tree growth, as also Wang et al. (2013b) have reported for the CENTURY model.

An intermediate case is the situation estimated for the moderate management (M0) plots. This man-
agement regime only removed tree boles and left crowns (stem tops and branches) and the entire forest
floor (inclusive of the Oa, Oe, and Oi horizons). Therefore, the length of time woody material from
tree crowns remains, mostly in the form of branches from coniferous species Douglas-fir and lodgepole
pine, is critical. In addition, the parameter Conif-Root becomes increasingly important and influential
on tree growth. The confluence of N being released from roots together with N released from the decom-
posing organic horizons make a difference and significantly increase tree growth. Similarly, Krankina,
Harmon, and Griazkin (1999) also reported the importance of woody debris as an N source following
disturbance. In fact, under the M2 management, the lowest values of Conif-Root could cause N immo-
bilization during the first years following harvesting and tree establishment, changing roots from being
a source to a sink of available N (Laiho & Prescott, 1999). Similar behavior has been described in the
field by Palviainen and Finér (2015), who reported that most of the N can be still be sequestered in the
decaying roots of Norway spruce after 40 years. In the runs with the highest Conif-Root decomposition
values increases in estimated available N had a direct translation in greater tree growth. This differ-
ence has important forest management implications, as differences between the highest and lowest
estimation of stand C can be up to 42% after 70 years.

An important management implication from our results is that forest floor (composed of several
types of leaf and woody debris in different decomposition stages), even if it represents only a small
portion of the total ecosystem C, it can have important influence on forest productivity, as it is the main
source of mineralized N (Blanco, Imbert, & Castillo, 2011). Previous studies from British Columbia
have shown the importance of forest floor on determining forest productivity (Seely, Welham, & Kim-
mins, 2002, 2010), and forest floor C has been proposed as an indicator of reductions of ecosystem
productivity (Blanco et al., 2014; Yanai et al., 2003). In addition, although forest floor can contain up
to 10 times the amount of nutrient than woody debris (Klockow, DÁmato, & Bradford, 2013), important
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interactions between decomposition of woody debris and forest floor litter have been reported stimulat-
ing the release of N from litter in the short term but helping to stabilize more N in the soil in the long
term (González-Polo, Fernández-Souto, & Austin, 2013; Kim et al., 2017). Our results corroborate
such reports, as shown by the important uncertainty associated to available N under the M0 manage-
ment. Therefore, given the uncertainties associated with the estimations of wood decomposition rates
presented here, the precautionary principle should be followed when managing forest soils, discourag-
ing the removal of forest floor and tree roots or stumps just to remain on the safe side of maintaining
forest productivity in the long term.

4.3 Model limitations and further work
The parameters values used to simulate woody material decomposition rates were directly based on
field data from wood stakes placed on the surface of the forest floor or buried in the first 20 cm of
mineral soil, as described in Jurgensen et al. (2006). Although such standardized material provides
an index of the influence of soil micro-climate on wood decomposition, stake decomposition rates
do not directly estimate woody debris decomposition rates because stakes have uniform dimensions
and lack bark. Relative masses and nutrient concentrations in different woody debris could cause that
average actual decomposition rates be slightly different from the ones used here. However, we think
that such differences between actual woody debris decomposition rates and the index from wood stakes
would be of lower magnitude than the uncertainty ranges already incorporated in our research, and
therefore the trends in uncertainty propagation and tree growth would be very similar. In addition,
FORECAST has previously shown acceptable agreement with empirical data in young and mature
Douglas-fir forests in British Columbia, both for the coastal and interior regions (Blanco et al., 2007;
Seely et al., 2010). In particular, model projections have been well in range for empirical estimations
of ecosystem C by Harmon et al. (2004) and Sollins et al. (1980). Previous sensitivity analyses have
also shown that the model responded with moderate sensitivity to changes in tree and soil parameters
(Blanco, 2012). Such moderate sensitivity shows FORECAST´s capability to contain error propagation
when simulating the long-time influence of parameter uncertainty (Kimmins et al., 2010). Similarly,
previous sensitivity analyses for fine root-related parameters have shown that the model is able to
capture the observed variability without magnifying or minimizing it when estimating tree growth
(Gárate & Blanco, 2013). As the model has already shown acceptable performance, we are confident
on the estimations of temporal evolution and relative differences among management option. However,
as this study involves the simulation of several decades of stand development, the exact values predicted
for each variable should be taken with caution.

A final consideration is that FORECAST does not implicitly simulate the effects of microclimate and
soil moisture regime. As a hybrid model, its working assumption to estimate tree growth in the future is
using data on past tree growth assuming that climate will remain stable inside the same observed range
during the period to be simulated. Obviously, if future climate is significantly different from the past
such assumption may not be valid. We believe that for the research presented here this is not an issue as
we are trying to analyze how the model reacts to different values of empirically estimated decomposi-
tion rates, rather than predicting future tree growth for a specific site. We consider that the influence of
climate on decomposition rates is already implicitly included in the simulations through the use of field
data which already reflect macro- and micro-climate influence on wood stake decomposition. However,
climate change may be an important influencing factor leading to altered woody debris decomposi-
tion rates (Mazziotta et al., 2014; Risch et al., 2013). Therefore, when simulating actual management
scenarios or predictions of tree growth under potential future climates, an explicit representation of soil
moisture regimes will be needed. Given the increased complexity of the potential interactions between
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climate-related parameters and tree- and soil-related parameters, a global sensitivity analysis would
likely be also needed to complement the results of OAT sensitivity analysis presented here.

5 CONCLUSIONS

The FORECAST model showed a moderate- to low-sensitivity to uncertainty in parameters related
to wood decomposition. However, an important interaction between uncertainty and management was
found, indicating that uncertainty in model calibration can be propagated more directly into uncer-
tainty of tree growth projections in situations where nutrients from woody debris are critical to reach
or maintain high tree growth rates. Therefore, for uncertainty in model predictions of tree growth and
C sequestration to be reduced, it is necessary to use empirically-recorded decomposition rates from
field studies in which the uncertainty in estimated decomposition is reduced by controlling experimen-
tal conditions and standardizing both the woody material and the treatments. Such uncertainty on tree
growth is partially caused by uncertainty of available N released from forest floor and woody debris,
which can have important consequences on tree growth estimations. A way to deal with such uncer-
tainty in forest management plans is to follow a precautionary principle in which the removal of forest
floor and root systems (stumps) is avoided.
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APPENDIX A: BASIC DESCRIPTION OF THE FORECAST MODEL
The FORECAT forest ecosystem model is designed to account for biomass flows among carbon

stocks (aboveground biomass, belowground biomass, forest floor, dead wood and mineral soil organic
carbon, as defined by Penman et al., 2003). An early version of the model (named FORCYTE) was
originally created to estimate the effects of forest harvesting for energy production, as commissioned
by the Government of Canada program “Energy from the Forest (ENFOR)”, following the energy
peak prices that followed the oil embargo in the 1970s (Kimmins et al., 1979). It was quickly apparent
to the model designers that to understand the impact of intensive tree harvesting, cycles of nutrients in
addition to only growth should be included (Kimmins, 1993). Over the years, the FORECAST model
has outgrown its original purpose and it has been applied to multitude of forest types (from tropical
to boreal) and management regimes (from unmanaged old-growth forests to intensive plantations,
see Kimmins et al., 2010). Through all these applications, the model suitability to acceptably
estimate tree growth and nutrient flows has been established, but also the sensitivity of the model to
decomposition rates but the difficulty to obtain accurate estimations for the woody fractions (Blanco,
2012; Gárate & Blanco 2013). It has not been until the recent establishment of the wood stake
decomposition protocol, combined with the use of the LTSP network that an accurate, empirical-based
sensitivity analysis on woody fractions decomposition rates has been possible, as it is reported in this
work.

The model uses a mass balance approach to account for C and nutrients flows through the ecosystem.
Although water flows are not simulated, soil moisture is still accounted for by the use of the parameter
“maximum leaf biomass,” which is directly correlated with soil moisture availability (see a detailed
discussion on this topic in Kimmins et al., 1999). Stand growth is calculated by simulating ecosystem
dynamics through the representation of the most important ecological processes that regulate com-
petition and availability of natural resources for tree growth (Fig. 7). To calculate rates of these key
ecological processes, FORECAST uses a hybrid approach combining empirical data on tree growth
(from inventories, permanent plots, growth and yield tables, etc.) with calculations of net primary pro-
duction as limited by nutrient and light availability (Blanco & González, 2010; Wang et al., 2013a).
Details and explanations of the algorithms used in the model can be found in Kimmins et al. (1999)
and Lo et al. (2015a), and only a basic explanation is provided here.

The model works in two consecutive stages. First, the model produces a series of equations for
tree growth and ecological processes that include (among others), photosynthesis and light levels
through the canopy, litterfall production, mortality, and nutrient uptake. Mortality for each species
is estimated depending on species-specific minimum light levels. FORECAST uses data on observed
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tree growth patterns combined with empirical data on nutrient concentration, biomass distribution
among different tree components and mortality to estimate the rates of key ecosystem processes (such
as nutrient uptake, litterfall production, litter decomposition, etc.) as they should had happened to pro-
duce the observed stand development patterns provided by the model user, including minor vegetation
(Kimmins, Blanco, Seely, Welham, & Scoullar, 2008). Detailed descriptions of decomposition, vege-
tation uptake and biogeochemical cycles have been described before (Kimmins, 1993; Kimmins et al.,
1999, 2010). Therefore, for each plant species for which historical data are provided, the total net pri-
mary production (TNPP) that occurred for each annual time step (t) is calculated with Equation (2).

TNPP𝑡 = Δbiomass𝑡 + litterfall𝑡 + mortality𝑡, (2)

where Δbiomasst = the sum of the change in mass of all the biomass components of the particular
species in time step t; litterfallt = the sum of the mass of all litter fractions that are lost in time step
t; and mortalityt = the mass of plants that die in time step t. Change in biomass (Δbiomasst) in each
time step is derived from a series of age–biomass curves created with empirical data (see a detailed
description of the process in Kimmins et al., 1999).

After the self-calibration of ecosystems processes is finished, the model proceeds to the second stage
to simulate the scenarios defined by the user. At this stage, the model adjusts the growth and mortality
curves estimated during the first stage to the stand density to be simulated. In FORECAST, foliar N
efficiency is used as the driving function, effectively linking C and N cycles (Agren & Bossata, 1996).
Such driving function estimates the amount of biomass produced by unit of foliar N, but taking into
account that not all foliage is fully under the sun, and therefore light absorption through the canopy
profile is estimated to generate corrected N foliage efficiency. This is the Shade-Corrected Foliage N
content (SCFN), which represents the amount of N in fully illuminated foliage that was required to
produce the calculated historical total net primary productivity (TNPP), as estimated during the first
stage. FORECAST then calculates the equivalent N content after correcting for self-shading (SCFN,
Equations 3 and 4).

𝑆𝐶𝐹𝑁𝑡 =
𝑛∑

𝑖=1
(𝐹𝑁𝑡,𝑖 × 𝑃𝐿𝑆𝐶𝑖), (3)

𝐹𝑁𝑡,𝑖 = foliage biomass𝑡,𝑖 𝑥 foliar N concentration, (4)

where FNt,i = mass of foliage N in the ith quarter-meter height increment in the live canopy at
time t, PLSCi = photosynthetic light saturation curve value for the associated light level in the ith
quarter-meter height increment in the live canopy, n = number of quarter-meter height increments in
the live canopy at time t. Finally, the adjusted driving function curve for potential growth of a given
species in FORECAST is the Shade-Corrected Foliar N Efficiency (SCFNE) calculated for each annual
time step (t) with Equation (5):

SCFNE𝑡 = TNPP𝑡∕SCFN𝑡 (5)

The calculation of N in foliage depends on the capability of trees to uptake N, which depends on
nutrient availability. Nutrient availability is calculated with data from litter decomposition rates, inputs
and outputs from the biogeochemical cycle (e.g., deposition, seepage, N fixation), and soil and humus
chemical features (cation exchange capacity [CEC] and anion exchange capacity [AEC]). In FORE-
CAST, litterfall is divided into different pools (up to 50) each of them simulating different kinds of litter
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(leaf litter, branch litter, root litter, etc.). Humus is simulated by using two different pools: the “active”
humus and the “passive” humus, depending on the level of stabilization reached by the organic matter
in each humus fraction. The turnover of active humus was set for the research presented here to 50 years
(Seely et al., 2010). The turnover for passive humus, which accounts for organic matter very resistant
to decomposition and includes physically and chemically stabilized SOM, was set to 588 years for
this research (Seely et al., 2010). Simulating stable soil organic matter by using two different humus
pools has also been previously used in models such as CENTURY (Parton, Schimel, Cole, & Ojima,
1987), ROMUL (Chertov, Komarov, Nadporozhskaya, Bykhovets, & Zudin, 2001), or ICBM (Andrèn
& Kättere, 2001), among others. FORECAST also uses a mass balance approach to track changes in N
stocks and flows (Fig. 8). In the model, N can be found in the vegetation biomass, the soil organic mat-
ter (humus and litter) and the mineral soil (CEC and AEC). In addition, the model simulates external
inputs into soil N from nitrogen deposition and biological N fixation (Fig. 7). All the interchangeable N
present in the soil during 1 year either as NH4

+ , NO3
− or labile organic N fractions with turnover rates

shorter than 1 year is clumped as annual available N. How these processes are simulated in FORECAST
is described in detail in Kimmins et al. (1999) and Blanco, Wei, Jiang, Jie, and Xin (2012).

The simulation of litter (both woody and non-woody types) in FORECAST is very straightforward,
and driven by empirical input data. Each kind of litter type (in the research presented here, 20 types were
used) losses weight from the time it is shredded and falls on the soil at a user-defined rate, depending
on the decomposing material and its age. Therefore, the model does not explicitly simulates decom-
poser activity (i.e., microfauna, microflora, and microorganisms), only their effects on remaining litter
biomass (Kimmins, 1993). Such empirical approach has the advantage of using real data as observed in
the field, and therefore the underground nutrient cycles are acceptably estimated (Blanco, 2012; Blanco
et al., 2014; Gárate & Blanco, 2013). However, the main limitation is that as no direct decomposer
activity is simulated (either with metabolic rates, respiration, or by other means), it is not possible to
simulate the influence of microclimate (particularly soil moisture and temperature) on decomposition
rates. Such limitation would be important when simulating future scenarios of tree growth including
climate change. To address this issue, a new version of the model has been developed (FORECAST
Climate, see Seely, Welham, & Scoullar, 2015). However, as discussed in the main text, in the research
presented here we do not think is an important limitation as our projections are theoretical and just focus
on the model sensitivity to observed decomposition rates. Detailed discussions on other strengths and
weaknesses of the followed simulation approach and its comparison to other forest models can be found
in Blanco et al. (2007), 2015b, Kimmins et al. (1999), and Lo et al. (2015b).


