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Bark beetle-induced tree mortality alters stand energy budgets
due to water budget changes
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Abstract Insect outbreaks are major disturbances that affect a
land area similar to that of forest fires across North America.
The recent mountain pine bark beetle (Dendroctonus
ponderosae) outbreak and its associated blue stain fungi
(Grosmannia clavigera) are impacting water partitioning pro-
cesses of forests in the RockyMountain region as the spatially
heterogeneous disturbance spreads across the landscape.
Water cycling may dramatically change due to increasing spa-
tial heterogeneity from uneven mortality. Water and energy
storage within trees and soils may also decrease, due to hy-
draulic failure and mortality caused by blue stain fungi follow-
ed by shifts in the water budget. This forest disturbance was
unique in comparison to fire or timber harvesting because
water fluxes were altered before significant structural change
occurred to the canopy. We investigated the impacts of bark
beetles on lodgepole pine (Pinus contorta) stand and ecosys-
tem level hydrologic processes and the resulting vertical and
horizontal spatial variability in energy storage. Bark beetle-

impacted stands had on average 57 % higher soil moisture,
1.5 °C higher soil temperature, and 0.8 °C higher tree bole
temperature over four growing seasons compared to
unimpacted stands. Seasonal latent heat flux was highly cor-
related with soil moisture. Thus, highmortality levels led to an
increase in ecosystem level Bowen ratio as sensible heat
fluxes increased yearly and latent heat fluxes varied with soil
moisture levels. Decline in canopy biomass (leaf, stem, and
branch) was not seen, but ground-to-atmosphere longwave
radiation flux increased, as the ground surface was a larger
component of the longwave radiation. Variability in soil, la-
tent, and sensible heat flux and radiation measurements in-
creased during the disturbance. Accounting for stand level
variability in water and energy fluxes will provide a method
to quantify potential drivers of ecosystem processes and ser-
vices as well as lead to greater confidence inmeasurements for
all dynamic disturbances.

1 Introduction

Forest mortality is increasing worldwide in recent decades
(Allen et al. 2010; van Mantgem et al. 2009). An increase in
both extreme heat and drought stress in the coming decades is
hypothesized to decrease forest resistance to other stressors
(Niinemets 2010), including air pollutants and nitrogen
(McNulty et al. 1996) and ozone deposition (Panek et al.
2002; Tingey et al. 2001). Additionally, global warming is
increasing fire frequency in forests (Flannigan et al. 2005;
Minckley et al. 2012; Tymstra et al. 2007; Westerling et al.
2006). Insect outbreaks, including budworms (Bergeron et al.
1995), forest tent caterpillars (Man and Rice 2010), and bark
beetles (Edburg et al. 2012; Kurz et al. 2008b; Raffa et al.
2008), are altering forest composition, biogeochemical cy-
cling, and function.
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Insect disturbance directly increases forest heteroge-
neity (Turner 1989) and can have wide-ranging effects
including radiation distribution throughout canopies
(Asrar et al. 1992) and altering mechanisms that control
mass exchange (Amiro et al. 2010; Baldocchi et al.
2000; Prescott, 2002) and energy fluxes within ecosys-
tems (Baldocchi et al. 2000). Ecosystem nutrient cycling
and water quality are also impacted by disturbances
(Mikkelson et al. 2013; Rhoades et al. 2013), which
are difficult to generalize due to complex spatial hetero-
geneity across landscapes (Mikkelson et al. 2013).
Understanding how disturbances change biosphere-
atmosphere exchange mechanisms is important both for
process level understanding and improving predictions
of forest response (Edburg et al. 2012; Pugh and
Gordon 2013).

The magnitude of the current mountain pine bark bee-
tle outbreak in Western North America is larger than any
previously recorded infestation (Kurz et al. 2008a; Raffa
et al. 2008; Safranyik et al. 2010). This ongoing bark
beetle disturbance first affects the water cycle by causing
hydraulic failure within host trees during initial infestation
(Hubbard et al. 2013; Yamaoka et al. 1990). This may
lead to hydrologic impacts on stream flow at the ecosys-
tem level if the mortality is high (Potts 1984), although
recent work has shown no substantial impact on snow-
pack (Biederman et al. 2014a; Biederman et al. 2015).
However, snowpack melt rates can change (Pugh and
Small 2012) and overall water cycling results are complex
and results are not consistent between studies (Mikkelson
et al. 2013).

Eddy covariance methods have become a standard
approach to quantify mass and energy fluxes between
ecosystems and the lower atmosphere (Baldocchi et al.
2001), with recent studies focused on disturbance effects
from mountain pine beetles in British Columbia (Brown
et al. 2010; Brown et al. 2012). Bark beetle infestation
at the study site (Chimney Park, Wyoming) began in
summer 2007 and ecosystem fluxes, stand level temper-
ature, and moisture have been measured since 2009
(Reed et al. 2014). Objectives of this work are to quan-
tify the extent of mortality throughout the initial infes-
tation and test the following hypothesis. (1) Throughout
the course of the outbreak, soil water will increase
while canopy water will decrease. (2) Surface outgoing
shortwave radiation will decrease as the canopy goes
from green to gray and then outgoing longwave radia-
tion will increase as more longwave radiation from the
warmer soil surface passes through the canopy as the
canopy opens. Overall, there will be little change to
net radiation. (3) Because of the decrease in tree tran-
spiration, the site’s sensible heat and Bowen ratio will
increase.

2 Methods

2.1 Site description

Eddy covariance-based fluxmeasurements of water vapor and
energy were conducted at the Chimney Park study site in
Medicine Bow Range in Southeast Wyoming (41.37 N,
106.53W) at 2770 m elevation. The tower footprint is primar-
ily a near-even-aged forest of lodgepole pine (Pinus contorta,
81.2 %) with small amounts of aspen (Populus tremuloides,
11.2 %), Douglas fir (Pseudotsuga menziesii, 5.0 %), and
Engelmann spruce (Picea engelmannii, 0.8 %). The most re-
cent stand-replacing fire was 135 years ago (Knight et al.
1985), while thinning over the past 40 years has resulted in
only a small unmanaged (i.e., unthinned) area with the re-
maining forest stands having similar canopy heights, nearly
closed canopies, and little to no under canopy vegetation be-
fore the onset of the current outbreak. Mountain pine beetles
(Dendroctonus ponderosae) and the associated symbiotic blue
stain fungi (Grosmannia clavigera) have infected a high pro-
portion of large lodgepole pine trees in the region. Soils were
shallow at the site, with >90 % of roots found within 40 cm of
the surface (Knight et al. 1985). The soil was classified as a
Typic Cryoboralf from granite, amphibolite, and felsic gneiss
parent materials (Ponton et al. 2006).

Bark beetles are highly selective on tree bole diameter mea-
sured at breast height (DBH) (Negrón and Popp 2004), and
individual forest stand measurements of water and energy
within the tower footprint are delimited based on year of at-
tack. The selection of beetles leads to common stand condition
classes as well as characteristics, primarily DBH and density
(Table 1). Stands named based on the first year bark beetles
were found in the stand. For example, BB07 first had bark
beetles present in 2007. One unthinned stand had smaller
DBH and higher tree density than beetle-attacked stands and
experienced virtually no beetle infestation (unimpacted stand).
For DBH and basal area measurements, each stand had five
subplots. Tree condition was categorized in five classes: Bdead
standing^ for trees that died previously to this study from non-
beetle causes but remain standing, the Buninfected phase^ for
no signs of beetle attack, the Bbeetle green phase^ for infested
trees but with green needles, the Bbeetle red phase^ for
infested trees with red needles, and the Bbeetle gray phase^
when needles began to fall. This is similar to the classification
of Pugh and Small (2012). Trees classified as beetle green,
beetle red, and beetle gray were all considered as dead within
the growing season of measurement. Although beetle green
trees were classified as infested, transpiration rates decrease
rapidly throughout the early growing season in the year when
they are infested (Hubbard et al. 2013; Yamaoka et al. 1990).
The surface area of canopy biomass (leaf, steam, and branch),
per unit ground area, was measured as the leaf area index
(LAI) and multiple repeated measurements were taken with
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a plant canopy analyzer (LAI-2000; Li-Cor Inc., USA) at five
randomly selected points in each stand over several days in
2009.

Vegetation characteristics within the entire 800-m by 450-
m tower footprint that is described below were sampled fol-
lowing Burrows et al. (2002)) with a cyclic sampling grid of
15 repeated 175-m by 150-m blocks spaced as a 3-m × 5-m
rectangle. Sampling blocks were each subsampled at 0, 25,
and 75 m for a total of 106 plots. This provides an efficient
way to measure spatial variability of parameters with individ-
ual sample plots being separated from neighboring plots by
multiple distances. Access issues prevented sampling in one
footprint corner. Cyclically sampled grid data were collected
August 17 and 26, 2010. These plots were compared with
replicated stand level DBH, basal area, tree condition, and
mortality data from the same time period and located within
the cyclic grid, in order to scale four instrumented stands to the
entire footprint by a Bpaint-by-numbers^ approach (Burrows
et al. 2002; Mackay et al. 2002).

Over the years 2009–2012, mean annual temperature was
6.1 °C; monthly average temperatures varied from −7.3 °C in
January to 14.6 °C in August. Average precipitation was
662 mm with only 264 mm of precipitation in the summer
months (Biederman et al. 2014b). Maximum snow accumula-
tion of 28.6 cm snow water equivalent (SWE) in 2010 and
27.0 cm SWE in 2011 based on measurements approximately
1 week before the snowpack turned isothermal (Biederman
et al. 2014a). 2012 was a particularly dry year (Hoerling
et al. 2014), with a 32 % reduction of annual precipitation to
448 mm (125 mm summer precipitation) and SWE of
26.6 cm. Snow melt typically occurred during late April or
May, with soils being fully saturated at the conclusion of
snowmelt in 2010 and 2011, as evidenced by soil moisture
probes, soil pit observations, and shallow surface ponding
lasting 5–10 days after the end of snowmelt (J. Biederman,
personal communication).

2.2 Sensible and latent heat flux measurements

An 18-m eddy covariance tower was located within BB09,
with stand and eddy covariance instruments running at the
field site since January 17, 2009. The tower was equipped
with an open path infrared gas analyzer (IRGA) (LI-7500;

Li-Cor Inc., USA), which measures CO2 and water vapor
gas densities, and with a sonic anemometer (CSAT3;
Campbell Scientific Inc., USA), which measures three-
dimensional wind velocity and air temperature, both at
17.7 m height. A four-component radiometer (CNR1; Kipp
& Zonen, the Netherlands) was mounted at a lower height but
still above the canopy (17.1 m). Temperature and relative hu-
midity were measured above (17.7 m) and below (3.7 m) can-
opy (HMP45A; Vaisala, Finland). Photosynthetic photon flux
density (PPFD) wasmeasured with a quantum sensor (LI-190;
Li-Cor Inc., USA) at a height of 16.7 m. Data signals were
recorded at 10 Hz for fast response eddy covariance instru-
ments (LI-7500, CSAT3) with a digital data logger (CR5000;
Campbell Scientific Inc., USA). Other sensors were recorded
using digital data loggers (CR1000 and CR10X; Campbell
Scientific Inc., USA) as 30-min averages.

Ecosystem flux data were processed following standard
practice outlined in Lee et al. (2004). These include de-
spiking data (Frank et al. 2014), correction from calibration
drifts (Loescher et al. 2009), spatially separate sensor correc-
tion (Horst and Lenschow 2009), planar fitting (Finnigan et al.
2003), spectral corrections (Horst 2000; Massman 2000), and
the Webb-Pearman-Leuning density fluctuation correction
(Webb et al., 1980). A friction velocity threshold of
0.089 m s−1 was established using a statistically blind test of
Gu et al. (2005) which due to low site turbulence only 1.37 %
of the data was removed.

The Bowen ratio (β) was defined as the ratio of sensible
heat flux (H) to latent heat flux (LE) as proposed by Bowen
(1926) (Eq. 1):

β ¼ H
LE

ð1Þ

A model based on average friction velocity, sensor height,
zero plane displacement, and roughness (Monin and
Obukhov, 1954; Schuepp et al., 1990) was used to determine
the distance from the instrumented flux tower that would com-
prise the tower’s footprint. The study site is 35 ha in size, with
a maximum straight line distance of flux contribution of
875 m. The stands used in the study area (Table 1) were cho-
sen to be within the 99 % contribution of flux density area
under stable atmospheric conditions. Wind directions were
almost exclusively from the west, with 95 % of the wind

Table 1 Average diameter breast height (DBH), leaf area index (LAI), tree density of all tree conditions (not including dead standing trees), and
footprint percentage for stands examined in this study (standard error). The LAI values apply to the 2009 season.

Stand DBH (cm) Canopy height (m) LAI (m2 m−2) Tree density (stems ha−1) Scaled percent of footprint

BB09 14.3 (0.15) 13.2 (0.30) 2.44 (0.10) 2531 (14) 15.8 %

BB08 24.1 (0.29) 18.6 (0.54) 2.34 (0.13) 1013 (6) 40.0 %

BB07 21.9 (0.34) 18.3 (0.38) 1.80 (0.24) 600 (22) 40.0 %

Unimpacted 7.5 (0.17) 12.05 (0.61) 2.91 (0.28) 17,556 (145) 4.2 %
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coming from between southwest (225°) and northwest (315°),
and 87 % of the footprint was located west of the tower. The
overall slope of the site is less than 2%. Under neutral stability
atmospheric conditions, the flux tower at the site has peak flux
density from a distance of 47 m.

2.3 Energy storage measurements

Energy balance for the field site was defined with net radiation
(Rn), measured latent (LE) and sensible (H) heat fluxes, soil heat
flux (G), and energy storage (J) at each 30-min time scale (Eq. 2).
The net radiation is positive for energy flux toward the surface;
the other values are positive for energy leaving the surface.

Rn ¼ LEþ H þ Gþ J ð2Þ

Energy storage (Eq. 3) was determined from the sensible
(Ja, Eq. 4) and latent energy (Jw, Eq. 5) within canopy, energy
storage by soil (Jg, Eq. 6), and energy storage within vegeta-
tion biomass (Jv, Eq. 7) (McCaughey 1985).

J ¼ J a þ Jw þ J g þ J v ð3Þ

In Eqs. (4)–(7), specific heat of air (CP) and the psychomet-
ric constant (γ) were assumed to be stationary in time while air
densities (ρ) were assumed to be constant between measure-
ment heights. Measurement height (z) was based on sensor
height. Air temperature (Ta) was measured and vapor pressure
(e) was calculated from relative humidity below canopy at a
height of 3.7 m. Specific heats of soil water and soil
solids(Cw,Cs), and soil bulk density (ρs) were assumed to be
stationary in time. Volumetric soil water (θw) and soil temper-
ature (Ts) were both measured at 10 cm depth (zsoil), with
water mass (msw) assumed to be stationary. Vegetation mass
and vegetation water mass mveg;mH2O

� �
were based on

lodgepole pine allometric relationships developed in the re-
gion (Pearson et al. 1984), and measured wet/dry biomass
ratios were estimated from dried biomass weights. Specific
heats of vegetation and water Cveg;CH2O

� �
and vegetation

density (ρveg) were assumed to be stationary in time. Canopy
height (h) was based on stand height, 16.2 m at the BB07 and
BB08 stands, 11.1 m at the BB09 stand, and 8.7 m at the
unimpacted stand. Included in the vegetation energy storage
term is energy stored by water mass (Meyers and Hollinger
2004). Vegetation temperature (Tveg) was measured at breast
height (1.3 m).

J a ¼ ρ CP T a z ð4Þ

Jw ¼ ρ CP e z

γ
ð5Þ

J g ¼ G zsoilð Þ þ θw msw Cw þ ρs Csð Þ T s zsoil ð6Þ

J v ¼ mveg Cveg þ mH2O CH2O

� �
Tveg h ð7Þ

Each stand (BB07, BB08, BB09, and the unimpacted
stand) had one instrumented profile of soil moisture and heat
storage installed during October 2009. Soil temperature pro-
files were recorded with copper-constantan thermocouples at
depths of 10, 20, 30, 50, and 70 cm. Soil moisture probes were
30 cm in length (CS616; Campbell Scientific Inc., USA) were
deployed to integrate soil water content over depths of 0 to 15,
15 to 45, and 45 to 75 cm. At BB09, two self-calibrating soil
heat flux plates (HFP01SC; Hukseflux, Netherlands) were
installed at a depth of 5 cm and were paired with a water
content reflectometer probe (CS616; Campbell Scientific
Inc., USA) and two soil thermocouples at that same depth.
Bole temperatures were recorded via copper-constantan ther-
mocouples at a height of 1.3 m and a depth of 2 cm into the
bole and sealed with silicone. Six infected and six uninfected
trees were instrumented at the BB09 stand, and two infected
and two uninfected trees were instrumented at the BB07 stand.
Air temperature was measured at 17.7 m height at the BB09
stand. Air temperature above canopy was assumed to be sim-
ilar across all stands at half hour time scales because of high
wind speed and turbulence across the study site.

Atmospheric stability ξ was calculated from

ξ ¼ z−d
L

ð8Þ

where z is sensor height (m), d is zero plane displacement
height (m), and L is Monin-Obukhov length (m) (Monin and
Obukhov 1954). Due to sensor noise, air and soil temperature
time series were smoothed by a weighted central difference
function before application in energy storage terms.

For this study, stands were grouped based on average tree
density and tree diameter for biomass calculations and average
tree height was calculated for atmospheric storage. Stand level
energy storage measurements from 2010 and 2011 were used
with forest inventory and mortality data from 2009 to 2011 to
calculate the parameters of the energy storage equations.
Scaling from the stand level to the ecosystem level (Table 1)
was done with a simple weighted ground area calculation
based on average tree diameter of stands compared with di-
ameters measured in 106 plots spanning the entire footprint, as
described in Section 2.1 (Burrows et al. 2002).

2.4 Water measurement comparison

Stand level water balance was calculated by selecting periods
of time between rain events based on the water content
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reflectometer probe time series, similar to the work of Ewers
et al. (1999), which simplifies water budgets and removes
issues of drainage from consideration. Time periods were se-
lected based on shallow (0–15 cm) depth probes. There were a
total of 11 periods and the length of each period varied be-
tween 7 and 58 days. Total soil water depletion (Δθ) was
based on an average of shallow and deep (15–45 cm) soil
water layers. Due to >90 % of the rooting zone being
encompassed in the soil water measurement layers (Ponton
et al. 2006) and observations of a perched water table just
below rooting depth (J. Biederman, personal communication),
soil drainage did not need to be accounted for. Soil water
depletion was based on water content differences from start
to end of time periods while evapotranspiration was summed
over those same time periods. Error in summation of water
flux was calculated as standard error over the entire time pe-
riod between rain events, with daily sums of water flux as
individual replicates (Moncrieff et al., 1996). Analysis was
restricted to the growing season, defined as May to
September. All data were processed using MATLAB (2010a,
The MathWorks). Bagplots were created following
Rousseeuw et al. (1999).

3 Results

3.1 Bark beetle-induced mortality

Average tree diameter over the eddy covariance tower foot-
print was 16.6 cm, ranging from 7.5 to 24.1 cm among stands
(Table 1). Tree mortality in the tower footprint was positively
correlated to tree diameter, with historical records showing a
minimum DBH needed for infestation to be 13 cm (Hopping
and Beall 1948). At the end of the study, in plots with an
average 7.5 cm DBH, mortality was low (1.0 %); wherein
plots with a larger average DBH of 24.1 cm, mortality levels
were 94.5 %.We observed an increase of mortality from 30%
in the second year to 78 % by the fourth year following initial
infestation, across the entire flux tower footprint (Fig. 1).

During the first 2 years of beetle infestation, there was little
to no effect of canopy structure on light interception. Healthy
and infected stands had 2.34 (±0.13) LAI (±standard error)
and 2.44 (±0.10) m2 m−2, respectively, while needles were still
attached. Only after needles began to fall after two seasons did
LAI drop to 1.80 (±0.24) m2 m−2 (Table 1), and neither of the
beetle red (p = 0.31) nor beetle gray (p = 0.15) stands were
significantly different from healthy stands, although the per-
cent of gray phase tree was low (<20 %) in 2009.

3.2 Vegetation water and energy changes

While a large amount of mortality was noted, little change in
environmental drivers of above canopy radiation (Fig. 2a),

above canopy air temperature (Fig. 2b), and soil temperature
(Fig. 2d) was seen between years. The timing and magnitude
of diurnal variations in bole temperature from a representative
gray phase tree fromBB07 are shown in Fig. 3 as compared to
above canopy air temperature. A combination of heat capacity
of the bole as well as radiation and air temperatures drove this
temperature difference as the tree cooled more slowly over-
night and warmed more rapidly during the day, relative to air
temperatures. Bole temperature in a representative live tree
from BB09 reached a maximum ∼3 h earlier than the air and
had a wider diurnal range than the air temperature by ∼4 °C.
As shown in the inset of Fig. 3, bole minus air temperatures
between BB07 (gray) at night and BB09 (green) during mid-
day for the month of August 2010 were significantly different
from each other (p < 0.05). When temperature records were
averaged across the entire month, including variation due to
synoptic weather, temperature differences were minimized but
remained up to 2 °C (p < 0.05) between infected and live tree
bole temperatures. This translates to 50 W m−2 differences in
biomass energy storage at the stand scale. Time series hyster-
esis analysis between tree bole temperatures and above cano-
py air temperatures shows maximum differences of 1 °C for
live trees and 2 °C for dead (Fig. 4) showing that living tree
boles are undergoing smaller changes in temperature over a
24-h period compared to the dead and dry tree boles. This is
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due to the higher water content of the living trees acting as a
larger thermal mass relative to the dry boles. All tree boles are
colder than air temperatures early in the day and warmer than
air temperatures during late evening and early night.

Detailed 6-day temperature and energy storage are shown
with a large change in location from canopy energy storage in
low mortality stands and soil energy storage in high mortality
stands in Fig. 4. We selected a 6-day time series that coincided
with nearly clear skies throughout and a cold front passage
during the period in order to illustrate impacts of air tempera-
ture changes (Fig. 5). Net radiation stayed high throughout the
period, with only minimal afternoon clouds. There was a
sharp decline in air temperatures on the seventh of
September due to the frontal passage. This drove decreased
vegetation energy storage in higher mortality stands as shown
in Fig. 4h because of change to bole temperature measure-
ments from the stands (Eq. 5). Maximum average energy

storage within vegetation biomass of the impacted stand was
half of that in the unimpacted stand, based primarily on ther-
modynamic differences between living tree boles with high
water content and dry, dead tree boles (Figs. 3 and 4).
Nighttime energy storage in an impacted stand was also half
compared to an unimpacted stand, although in both stands,
daily summed energy storage was not different significantly
from zero based on 24-h averaging.

3.3 Soil water and energy changes

Given high mortality, soil moisture was on average 57 %
higher (Fig. 2e) in the heavily impacted BB07 stand than in
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the unimpacted stand for the entire growing season. At the end
of the growing season, stand level soil moisture was lowest in
intermediate mortality stands (BB09) at 7.95 %. Soil moisture
increased in both stands responding to small rain events as
expected, but soil moisture in the unimpacted stand decreased
faster than in the impacted stand throughout the course of the
study period (Fig. 2e).

Soil temperature was 1.5 °C higher in the high mortality
BB07 stand (Fig. 2d). In the detailed 6-day time series
(Fig. 5c, d), soil temperatures in both stands dropped following
cold front passage, more so the following night due to clear
skies and continued low air temperatures (Fig. 5a). Because
there was a negligible drop in moisture (<0.1 %) over the 6-
day period and no recorded rainfall, soil moisture is not shown.

Soil energy storage (Eq. 6) (Fig. 5f) shows a doubling of
storage in the impacted stand, from both increased amplitude of
diurnal soil temperatures (Fig. 5d) and increased soil moisture
(Fig. 2e). Aswith vegetation energy storage, integrated over the
course of 24 h, soil energy storage was not significantly differ-
ent than zero (p > 0.05), meaning there was no net energy being
stored in the soils over time scales longer than 1 day.

The relationship between eddy covariance water flux (LE)
and soil water depletion (Δθ) shows average agreement be-
tween water flux and soil water depletion, with a slope of 0.93
(R2 = 0.43; F = 6.69) (Fig. 6). Time between rain events was
highly variable, with many small precipitation events in 2009
compared with much longer time periods in between rain
events in 2010 and 2011 (Fig. 2e). High soil water content
values early in 2010 and 2011 (Fig. 2e) were due to late snow-
pack melt and were removed from this analysis due to large
amounts of overland flow. Seasonally, daily averaged soil
moisture (Fig. 7) showed little yearly variation between soil
depths; however, the variation in soil moisture was larger in

2010 and 2011. Average soil moisture increased approximate-
ly 10 % between shallow and deep layers as expected.

On a seasonal time scale, averaged latent heat fluxes
displayed good agreement with seasonal average soil moisture
(Fig. 8a). Similar to soil moisture variability, the relationship
between soil moisture and latent heat was more variable in
2010 (Fig. 8c) and 2011 (Fig. 8d).

3.4 Surface radiation changes

Plots of daily averaged latent heat flux by year (Fig. 9a) cor-
respond primarily with inter-annual variability in soil water,
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while sensible heat flux (Fig. 9b) was unchanged between
years. Variability in latent heat was larger in 2010 and 2011,
while variability in sensible heat did not change between
years. The seasonally averaged Bowen ratio shows a large
increase of approximately 0.4 in 2012 (Fig. 9c), which was
record drought year across the USA (Hoerling et al., 2014),
leading to low soil moisture and low latent flux.

Solar outgoing (ground to sky) radiation did not change
between years (Fig. 10a) along with solar albedo (not shown)
with maximum difference between years <4 W m−2 s−1.
Variation in solar outgoing radiation was higher in 2010 and
2011. Longwave outgoing radiation increased in 2012
(Fig. 10b) and had large variability in 2011. Incoming solar
and longwave radiation were similar between years (not
shown). These changes in the components of the radiation
budget largely canceled each other out, and net radiation
was similar between years with 2011 variability being notable
(Fig. 10c) due to high variability in the component radiation
terms.

4 Discussion

In an even-aged lodgepole pine forest, 4 years after a moun-
tain pine bark beetle outbreak, spatially heterogeneous tree
mortality reached 78 % within the footprint (Fig. 1e). Within
infected stands, mortality is expected to level off as the bark
beetles do not have enough large diameter trees to act as suit-
able hosts for subsequent generations (Pelz and Smith 2012;
Raffa et al. 2008; Reid 1962). Mortality under 100 % allows
re-establishment of pine at a faster rate than other disturbance
types such as clear-cutting, fire, blow-down, or avalanche
(Oliver 1980; Rammig et al. 2006) and would have significant
impacts on ecosystem and canopy mechanisms that control
recovery. The percentage of the forest consisting of small di-
ameter, non-suitable host trees was expected to vary between
5 and 20 % across the region based on forest surveys
(Thompson et al. 2005).

As a result of beetle outbreak and tree mortality, variability
in many ecosystemmeasurements was high in 2010 and 2011.
Atmospheric latent heat flux, soil moisture, and radiation mea-
surements all showed an increase in variability during the
middle of the outbreak, when mortality levels were over
70 %, but before the understory regrew. Co-located soil nitro-
gen and methane fluxes (Norton et al. 2015) show disequilib-
rium for up to 5 years following disturbance, with staggered
responses from different gas species. Inter-annual variability
of soil respiration was comparable to the variability attribut-
able to tree mortality across the same ecosystem during the
same period (Borkhuu et al. 2015). A period of ecosystem
transition was hypothesized (Edburg et al. 2012), and changes
in multiple ecosystem processes during the disturbance are
thought to be driving this increase in measured variation from
soils to above the canopy.

Following our predictions of hypothesis 1 that moisture
increases as the canopy dries following mortality, we see that
soils in a stand that was unaffected by beetles were wet at the
start of the growing season and dried over the course of the
summer. When transpiration declines in a stand with high
mortality like BB07 (Edburg et al. 2012; Mikkelson et al.
2013; Yamaoka et al. 1990), water cycling ends up being
altered. As a result of the reduction in transpiration, we ob-
served that tree boles and canopy biomass dried out and soil
moisture remained high in stands with high mortality through-
out the summer. In a stand with a mix of uninfected and in-
fected trees (BB09), soil water content was lower than in the
high mortality stand. Tree ring analyses (Romme et al. 1986)
and basal area growth rates (Szwagrzyk and Szewczyk 2001)
have shown that the surviving trees grow faster after release
from competition, suggesting that stand level transpiration
rates do not decline much in stands with >60% surviving trees
(Hubbard et al. 2013). With basal areas of surviving trees
being positively correlated with the amount of recently dead
basal area in a similar montane forest (Szwagrzyk and
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Szewczyk 2001), and the formation of root gaps only in clus-
ters of less than 30 dead trees (Ponton et al., 2006), this may be
the mechanism responsible for observed low soil water con-
tent in stands with mixed amounts of mortality.

Water budget changes in stands can also impact carbon and
downstream watershed processes of the ecosystem. The
results of Brown et al. (2010) and Frank et al. (2014) show
remaining healthy trees and regenerating understory still up-
take carbon and transpire water at similar rates. This was pri-
marily due to the opening of the over-story canopy, allowing
more light to the understory and surviving trees. Soil ground-
water in stands as well as the contribution to streams from
beetle-impacted stands has been shown to increase in late
summer throughout beetle-impacted watersheds (Bearup
et al. 2014).

Hypothesis number 2 predicted altered radiation fluxes at
the site following changes in the canopy. As the canopy was
expected to change first in color and then open, this would
impact first outgoing shortwave radiation and then longwave
radiation. However, in contrast to our expectations, we ob-
served only an insignificant declining trend in LAI following
beetle infestation. This is thought to be caused by the low
number of gray needle phase trees in the high mortality stand
at the time of sample and the remaining high amounts of non-
leaf biomass (boles and branches) that are not expected to be
impacted by bark beetles. Due to higher amounts of non-leaf
biomass in coniferous canopies, statistically significant de-
clines are unlikely to be observed, even when all needles are
lost in a high mortality stand (Gower et al. 1999). If LAI
continues to decline as expected (Edburg et al. 2012), in-
creased solar radiation would reach the forest floor as ob-
served in other studies (Brown et al. 2010; Pugh and Gordon
2013). Similar processes of canopy opening after disturbance
are also noted in other deciduous forest mortality studies
(Hardiman et al. 2013).

The observed changes of outgoing solar and longwave ra-
diation of hypothesis 2 are potentially explained by canopy
defoliation and support the conceptual predictions of Pugh
and Gordon (2013). However, a more open canopy would
mean the longwave radiation observations are dominated by
longwave emissions from the soil surface and not the canopy
surface. The soil surface is expected to be warmer. Hence,
when the canopy opens, longwave emissions increase, oppo-
site of what was predicted by Pugh and Gordon (2013). In this
work, there were only small observed changes in outgoing
shortwave and longwave radiation during the study and
hypothesis 2 was largely rejected, with more change
observed in the variability of radiation terms than the
average amount of radiation. Scaling observations from a
single stand to the ecosystem level model put forth by Pugh
and Gordon (2013) remains a challenge.

The observed impacts on sensible and latent heat fluxes as
well as the Bowen ratio of the site partially supported the

predictions of hypothesis 3. Where we thought mortality
would drive a decline in tree transpiration, instead we ob-
served greater soil moisture evaporation contribution to the
site’s latent heat flux. Biederman et al. (2014b) showed water
isotopic results that suggest evaporation is making up a larger
component of the ecosystem water vapor flux, and Reed et al.
(2014) modeled increasing ecosystem level canopy conduc-
tance following bark beetle mortality, suggesting more evap-
oration than transpiration at the ecosystem level. Without the
observed decline in latent fluxes, the expected change in sen-
sible heat did not follow. However, the increase in Bowen
ratio at the site in 2012 partially confirms hypothesis 3 and
may be explained by the mortality levels, combined with ex-
treme warm and dry conditions for the year (Hoerling et al.
2014). Similar shifts in fluxes and Bowen ratio were observed
in forested sites over a fire chronosequence, where post-fire
regeneration was not uniform across the affected site (Liu
et al. 2005). Latent heat fluxes should increase in sites that
are recovering from fire due to high amounts of shrub and
deciduous tree cover and the transpiration flux from the un-
derstory, while sensible heat fluxes decrease. However, in this
study, we see an overall good agreement between seasonally
averaged latent heat and soil moisture amounts and no in-
crease in sensible heat as predicted by hypothesis 3.
Previous studies have shown an increase in understory and
soil evaporation response from bark beetles and very small
total changes in latent heat fluxes (Brown et al. 2014; Reed
et al. 2014).

Site water budget changes were observed as soil energy
storage increased and canopy energy storage decreased
2 years after infestation at our study site. In a healthy
stand, energy storage is normally high in the vegetation
biomass, due to canopy light interception and water stor-
age in tree boles. The canopy shades the dry soil, so energy
storage is relatively low. After mortality, the two processes
of declining transpiration and opening of the canopy end
up causing more energy storage in soils and less in the
canopy biomass.

The high levels of variability in measurements convey im-
portant information about the underlying ecosystem processes
(Fraterrigo and Rusak 2008). In this study, variability of soil
moisture, latent heat fluxes, and radiation terms all increased
in the middle of the beetle outbreak, when mortality levels
were the most heterogeneous across the landscape.
Measuring and detecting variability in ecosystems processes
require both temporal and spatial measurements (Turner et al.
1993). Combining multiple measurement techniques allows
for the same process to be examined from different points of
view, such as the opening of the canopy during a disturbance
being quantified from an LAI, soil moisture, and energy stor-
age angle. This gives greater insight into the duration of com-
peting ecosystem processes, in a way that a single measure-
ment often cannot.
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5 Conclusions

Four years after initial bark beetle infestation, there was
78.4 % mortality at our lodgepole pine site in southeastern
Wyoming. This mortality caused heterogeneity within the
footprint of an eddy covariance tower and a redistribution of
water from living tree boles to soil water. This altered the
thermodynamic energy storage at the individual stands, in-
creasing the energy storage in the soils and decreasing energy
storage in the vegetation as the bark beetle outbreak contin-
ued. The total magnitude of water and energy storage was
similar and tends to offset throughout the outbreak but was
in different spatial locations, in biomass, and soil, respectively.

Seasonal latent heat fluxes were more dependent on inter-
annual soil water and showed no correlation with mortality.
Ecosystem transpiration was assumed to decline on an eco-
system scale and soil evaporation increased to compensate. A
large increase in ecosystem Bowen ratio was noted in 2012
which corresponded to a dry (low latent heat) and high mor-
tality year. Variability of soil, atmospheric flux, and radiation
measurements were observed to be higher during the distur-
bance. As disturbances and ecosystem transitions become
more likely in the future, ecosystems observations will be-
come increasing variable. Instead of treating this variability
as simply noise within the observation, quantifying variability
will give greater insight to the organizing processes and a
better understanding of the seeming randomness of distur-
bances. Only with an understanding of the causes of the var-
iability can the underlining mechanisms be included in pro-
cess models of ecosystem recovery after disturbance.
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