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Abstract: The United States Forest Inventory and Analysis (FIA) program has been monitoring national forest resources in the
United States for over 80 years; presented here is a synthesis of research applications for FIA data. A review of over 180 publica-
tions that directly utilize FIA data is broken down into broad categories of application and further organized by methodologies
and niche research areas. The FIA program provides the most comprehensive forest database currently available, with perma-
nent plots distributed across all forested lands and ownerships in the United States and plot histories dating back to the early
1930s. While the data can be incredibly powerful, users need to understand the spatial resolution of ground-based plots and the
nature of the FIA plot coordinate system must be applied correctly. As the need for accurate assessments of national forest
resources continues to be a global priority, particularly related to carbon dynamics and climate impacts, such national forest
inventories will continue to be an important source of information on the status of and trends in these ecosystems. The
advantages and limitations of FIA’s national forest inventory data are highlighted, and suggestions for further expansion of the
FIA program are provided.
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Résumé : Le programme d’analyse et d’inventaire forestier (AIF) des États-Unis assure le suivi des ressources forestières aux
États-Unis depuis plus de 80 ans. Nous présentons ici une synthèse des applications des données de l’AIF en recherche. Une revue
de plus de 180 publications qui utilisent directement les données de l’AIF est subdivisée en grandes catégories d’applications et
subséquemment organisée par méthodologies et créneaux de domaines de recherche. Le programme d’AIF fournit la plus
complète base de données forestière couramment disponible, avec des placettes échantillons permanentes réparties à travers
toutes les terres boisées et tenures aux États-Unis, ainsi que l’historique des placettes depuis le début des années 1930. Bien que
les données puissent être incroyablement puissantes, les utilisateurs ont besoin de comprendre que la résolution spatiale des
placettes échantillons sur le terrain et la nature du système de coordonnées des placettes de l’AIF doivent être appliquées
correctement. Étant donné que l’évaluation exacte des ressources forestières nationales demeure globalement la priorité,
particulièrement en lien avec la dynamique du carbone et les impacts du climat, de tels inventaires forestiers nationaux vont
continuer à être une importante source d’information sur l’état et l’évolution de ces écosystèmes. Les avantages et limites des
données d’inventaire forestier national de l’AIF sont soulignés et des suggestions pour l’expansion future du programme d’AIF
sont présentées. [Traduit par la Rédaction]

Mots-clés : suivi, carbone, planification, échantillonnage, télédétection.

Introduction
National forest inventories (NFIs) are critical for generating na-

tional estimates of carbon stocks and fluxes, as well as for sup-
porting long-term forest planning and product utilization. Carbon
stocks in forest ecosystems comprise a large percentage of global
carbon, and carbon sequestration in forests and forest products is
important for the mitigation of net greenhouse gas emissions
(Fahey et al. 2010). Regional-scale data are therefore needed to
address large-scale questions about forest resources and carbon
stocks and fluxes in these pools over time. Since the 1928 Forestry
Research Act, the United States Forest Service (USFS) has been
charged to “make and keep current a comprehensive inventory

and analysis of the present and prospective conditions and re-
quirements for the renewable resources of the forest and range-
lands of the United States and cooperate with the appropriate
officials of each State, territory, or possession of the United
States.” This charge makes the USFS responsible for not only in-
ventorying forests in the continental United States, but also
Hawaii, Alaska, and all forested territories, including Puerto Rico,
the U.S. Virgin Islands, Guam, Palau, the Republic of the Marshall
Islands, American Samoa, The Commonwealth of the Northern
Marianas, and the Federated States of Micronesia. Early NFI efforts
were conducted under the title “Forest Survey,” ultimately re-
named “Forest Inventory and Analysis” (FIA) to highlight use of
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the data and not just data collection. The FIA program has gone
through numerous changes in protocol and design following in-
ternal agency and national policies (Fig. 1). Program management
was originally organized under five separate regions, each with
unique inventory protocols and frequencies, making data com-
parisons between regions difficult and unreliable. The United
States 1998 Farm Bill included language mandating a unified NFI
protocol that integrates the Forest Health Monitoring (FHM) pro-
gram on a subset of FIA ground plots (Bechtold and Patterson
2005; McRoberts et al. 2005). This led to the current FIA sampling
frame and plot design. The FIA program currently provides data to
monitor carbon stocks and changes across all forest carbon pools
and supports national and international reporting in the forest
land category. In terms of spatial and temporal extent, the FIA
program is one of the largest natural resource datasets globally
(Gelfand et al. 2013). While there are other NFI programs that
share many elements of design with FIA, and even a few utilizing
higher sampling intensities such as in Finland, Italy, Germany,
and France, none of the other large-scale NFIs match the range of
ecological diversity that FIA must represent (Tomppo et al. 2010).
The scope of the program has expanded since the 1930s, when it
solely focused on assessing timber resources, to the present struc-
ture that includes additional variables to facilitate assessments of
carbon, wildlife, forest health, insects and disease, and invasive
species (Shaw 2008). Many of the studies evaluated in this synthe-
sis couple FIA with other data such as laser altimetry data
(Pflugmacher et al. 2008) or use statistical approaches to model
multivariable forest composition and structure from remotely
sensed data (Hudak et al. 2008; Brosofske et al. 2014). One distinct
advantage of FIA over similar databases is that it has no geospatial
bias as the plots are distributed evenly across the entire United
States on all forest lands (Smith 2002). FIA data are publicly avail-
able for all United States forest lands, though the actual locations
of these plots are protected (Shaw 2008). This synthesis extends a
previous review by Rudis (2003) by evaluating research that has
directly utilized FIA program data and makes recommendations
for future uses.

This synthesis is organized thematically, with each subsection
seeking to address the following three questions. (1) What subject
areas can the data be effectively used for? (2) What analytical
approaches are being used with the data? (3) What are the related
challenges and opportunities of FIA data?

Review process
The objective is not to provide an exhaustive review of all liter-

ature relating to FIA, but rather to provide a synthesis highlight-
ing the diversity of research and applications for FIA. This
synthesis was achieved by searching for all publications contain-
ing the words forest, inventory, and analysis within Thomson ISI
Web of Science (n = 336). These publications were then filtered for
publications longer than four pages, this eliminated many pro-
ceedings, data summaries, and agency publications that were in-
formational instead of research oriented (leaving n = 287).

This selected literature shows how the FIA program has grown
in its research significance over the last three decades, with the
number of publications per year increasing by �0.90 research
manuscripts per year since 1991 (Fig. 2). This increasing trend is
attributed to the standardization of the FIA data collection pro-
cess, the move to annual inventories, and advances in remote
sensing and statistical analysis techniques. The remaining publi-
cations were evaluated for their ability to support the background
of the FIA program, explicitly using FIA data within their analyses,
and the novelty of the FIA data application to avoid redundancy
(n = 195). Of this literature, a consistent proportion of the candi-
date literature was cited in this synthesis from each of the last
three decades (Fig. 2). From this three-decade period, more than
50% of the publications using FIA data in their analysis have been Fi
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related to forest health and carbon cycle applications (Table 1).
Notably, some of these articles may have also been related to
remote sensing applications, but these articles were attributed to
the first section of the synthesis in which they appeared.

FIA sampling procedures
Detailed descriptions of the FIA sampling protocol have been

widely described in the forestry literature (e.g., Bechtold and
Patterson 2005; Shaw 2008; McRoberts et al. 2005; Hoffman et al.
2014), thus only a brief description follows. The FIA program con-
ducts inventories in multiple phases and uses stratified estimation
to estimate population parameters for most variables (McRoberts
and Miles 2016). In Phase 1, remotely sensed products are used in a
pre-field process to stratify the population area to reduce the vari-
ance of estimates by determining land use (e.g., forest land or
cropland) at all plot locations. In Phase 2, which is a subsample of
the initial phase, permanent ground plots are randomly distrib-
uted without regard to land cover, land use, ownership, or other
factors, approximately every 2428 ha across the 48 conterminous
states of the United States. The intensity of sampling is reduced
within Alaska and increased within some United States territo-
ries. If any portion of a plot is determined to contain a forest land
use, it is measured by a field crew. Forest land plots provide the
basis for all summaries and products available from FIA and are
freely accessible from the FIA program (FIA DataMart 2018, https://
apps.fs.usda.gov/fia/datamart/datamart.html, accessed 11 October
2018). While the original intent of the FIA sampling design was to
provide broad-scale estimates of forest statistics, it is increasingly
common for users to directly utilize the field plot observations.

To preserve the ecological integrity of plot locations, protect
proprietary information (e.g., plots on privately owned land), and
provide unbiased forest resource information, the FIA program
has established a policy of not disclosing exact plot locations
(McRoberts et al. 2005). Publicly available coordinates are trun-
cated (sometimes referred to as “fuzzed”) to be within roughly
1 km of the actual plot location, and up to 20% of the plots on
private land in each county have their coordinates swapped to
further obscure their true location (Gibson et al. 2014). Thus, the
highest spatial resolution to which public FIA data can be resolved
is the county, where in some cases, particularly in the eastern
United States, small counties are aggregated to obtain desired
precision standards. Therefore, while FIA plots have a spatial dis-
tribution of one plot for every 2428 ha in the continuous 48 states,
the resolution of summarized data is not spatially explicit, as each
county has a different area. An exception occurs when single plots
are tracked over successive inventories, as the location does not
change once a plot is established. By United States federal law, the
confidentiality of true plot locations must always be maintained
in use of FIA data and therefore may not be published.

Each permanent ground plot comprises four subplots arranged
in a cluster, with one plot in the center and three plots arranged
radially 36.6 m from the center plot at azimuths of 0°, 120°, and
240° (Fig. 3). All permanent ground plots with at least one forest
land condition (i.e., domains mapped on each plot using land use,
forest type, stand size, ownership, tree density, stand origin, and
(or) disturbance history — there may be multiple conditions on
a single inventory plot; Bechtold and Patterson 2005) are re-
measured every 10 years in the west and every 5–7 years in the
east, resulting in a 10%–20% sample annually. Each subplot has a
7.3 m radius, and all live and standing dead trees over 12.7 cm
diameter at breast height (DBH) are inventoried. Within each sub-
plot, there is a 2.1 m radius microplot 90° from plot center. Live
saplings and seedlings are recorded within each microplot. Each
subplot is nested within a 17.95 m radius macroplot on which
additional attributes are measured on intensive plots. The mac-
roplot is also used in some regions to capture rare occurrences
such as large trees and mortality, which would otherwise be
missed due to the rare event phenomenon (Bechtold and Patterson
2005). Additionally, on 5%–15% of ground plots, additional site-level
(e.g., litter and soil) and tree-level (e.g., crown condition) variables are

Fig. 2. Number of published papers by year identified for potential
inclusion and number cited in the synthesis.

Table 1. Breakdown of cited literature by the section of occurred.

FIA data applications
No. of papers
cited

Proportion
(%)

Carbon cycle applications 45 23.1
Forest products and forest growth

applications
27 13.8

Climate applications 15 7.7
Forest health applications 57 29.2
Remote sensing applications* 33 16.9
Introduction, design, and discussion

sections
18 9.2

Total 194 100

*May be underrepresented as articles were attributed to the first section in
which they appeared.

Fig. 3. Current FIA plot layout.
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measured in what are referred to as FHM plots or Phase 3 of the
design (Bechtold and Patterson 2005; Shaw 2008; Domke et al. 2017).

Carbon cycle applications
Assessment of carbon pools, sequestration rates, and trading

each rely on estimates of forest biomass as a proxy for forest
carbon. Within the ground-based plots of Phase 2, commonly used
forest inventory variables (i.e., DBH, total height, and crown base
height) for biomass assessment through allometric relationships
are collected. These variables and the FIA sampling strategy lend
themselves to both plot- and county-level summarization through
the FIA database (FIA DataMart 2018, https://apps.fs.usda.gov/fia/
datamart/datamart.html, accessed 11 October 2018) and its associ-
ated tools (e.g., EVALIDator) for generating biomass summaries.
The standardization and temporal continuity of the FIA database
make it uniquely suited for assessing trends in biomass levels,
which can be directly and empirically linked to storage and fluc-
tuations in elements such as carbon and nitrogen in trees through
previously established allometry. When augmented by Phase 3’s
additional measurements of parameters such downed woody ma-
terial (DWM), soil chemistry, and understory plant composition,
these observations can be used to look at things such as
ecosystem-level carbon pools and fluxes. Although studies using
FIA data for carbon cycle applications have broadly varied in their
scale, nearly all have focused on one of four applications: (1) direct
observation or assessment of change, (2) calibration or training of
a model, (3) validation of model outputs, or (4) a combination of
calibration and validation.

Many studies have used FIA data to look at either static snap-
shots of carbon and nitrogen pools or their fluctuations through
repeated measurement cycles. For example, Goodale et al. (2002)
used net annual growth and age-class structure data from the FIA
database to estimate the amount of nitrogen sequestered annu-
ally by forests in 16 large watersheds across the northeastern
United States. Using a similar approach, Hu and Wang (2008)
tracked carbon sequestration over a 70-year period in the Pied-
mont forest in South Carolina. In terms of aboveground biomass
and carbon, Brown et al. (1997) used FIA data to estimate the
difference in biomass between old growth (>70 cm DBH) and saw-
timber forest types, while Gray et al. (2014) took this a step further
and used successive FIA inventories to track changes in carbon
flux from aboveground biomass change and linked the changes in
biomass to different causes. In more targeted efforts, several stud-
ies have used FIA data to estimate standing dead trees and DWM,
along with the carbon stocks and dynamics associated with DWM
in forest ecosystems (Chojnacky and Heath 2002; Chojnacky and
Schuler 2004; Woodall et al. 2008, 2012a, 2012b, 2015; Domke et al.
2013a). Specifically, Chojnacky and Schuler (2004) used FIA to es-
timate biomass in DWM per acre for mixed-oak forests in four
states in the eastern United States, noting that while FIA provided
an adequate per acre summary, the resolution is coarse due to the
nature of the database. More recently, Hoover and Smith (2012)
utilized FIA site productivity condition class indicators to provide
broad guidance about the use of different forest types in carbon
offset projects. The study found that all but the lowest quality and
lowest productivity have potential as forestry-based greenhouse
gas mitigation projects.

Taking the use of the data a step further, many studies have
combined FIA data with other datasets to develop and calibrate
models of forest biomass and carbon stocks. Building on some of
their earlier work, Brown and Schroeder (1999) used FIA data to
map annual aboveground biomass flux at a county level across the
eastern United States. In a similar effort by Jenkins et al. (2001)
focused on mapping biomass stocks, plot-level FIA data were res-
caled from the county-level resolution of publicly available FIA
summaries to a half-degree resolution for the entire mid-Atlantic
region. He et al. (2012) developed complete carbon budgets for

different forest types based on age by utilizing aboveground NPP
from FIA data and estimates of belowground NPP from remotely
sensed maps of leaf area index. Taking model development to a
finer spatial scale, Williams et al. (2012) used FIA data to examine
relationships between aboveground biomass fluctuations and
stand age, as it related to disturbance and recovery cycles. In a
more specific study, Chojnacky and Heath (2002) used Phase 3
plots to explore the relationship of DWM to other plot variables
measured by FIA to identify which had the most predictive power
in Maine forests. Dead standing trees and stumps proved to have
the most predictive power for estimating DWM, each of which are
standard measurements in Phase 2 of the FIA system, while live
tree variables showed almost no relation to DWM. In an effort to
model carbon fluctuations, Nunery and Keeton (2010) used FIA as
a source dataset for FVS estimations of aboveground biomass un-
der different management regimes over a 160-year period. In a
more direct use of FIA to model carbon fluctuations, Gan and
Smith (2006) estimated biomass residues from harvesting and
their potential use in bioenergy production, but excluded losses
due to silvicultural treatments. Taking this a step further,
Perez-Verdin et al. (2009) used FIA data to estimate biomass vol-
umes in Mississippi for use in bioethanol conversion. The most
complete look at the influence of management and disturbance
on carbon stocks came from Bradford et al. (2013), who used FIA
data to model the influence of natural disturbance rates and har-
vesting on carbon dynamics on the Superior National Forest; they
found that regional harvest projections continued to increase to-
tal terrestrial carbon stores, but that the projected increases in
disturbance frequency due to climate change would have a long-
term negative impact.

The next class of studies used FIA data to validate either local
FIA summaries or outputs from another model. In terms of vali-
dation of the FIA system, Karlik and Chojnacky (2014) destruc-
tively sampled blue oak (Quercus douglasii Hook. & Arn.) in
California to develop models of total biomass and biomass car-
bon, finding that the results compared well with biomass summa-
ries for blue oak from FIA. In a similar study, Sabatia et al. (2013)
used FIA to validate local allometric biomass estimates of eight
FIA plots in southern Appalachian hardwood forests, demonstrat-
ing that local estimates were generally significantly higher than
biomass estimates taken directly from FIA data, but they could
not discern the reason for these differences. There are also a num-
ber of efforts that have used FIA data to validate other modeling
platforms. Cartus et al. (2012) utilized FIA aboveground biomass
summaries at multiple scales to validate remotely sensed biomass
estimates from the Advanced Land Observing Satellite (ALOS)
30 m pixels to county scales. This study demonstrated that the
ALOS estimates were more strongly correlated with FIA biomass
summaries when pixels were aggregated to >500 m pixels.
Hudiburg et al. (2013) improved the model form of the Commu-
nity Land Model through FIA statistical training of the model’s net
primary production (NPP) equations. The study improved esti-
mated precisions for stem biomass and NPP by 50% and 30%,
respectively, by incorporating more variables based on physio-
logical tree characteristics. Lichstein et al. (2014) improved
large-scale aboveground biomass models by accounting for
wider margins of error in parameter data. FIA data were used to
explore how assumptions on data errors in climate and soil vari-
ables affect modeled estimates of biomass. FIA plot data were used
to validate biomass estimates modeled under assumptions of very
small error and very large errors. FIA data have long served as the
foundation for estimates of carbon stocks and stock changes on
forest land for the National Inventory Report of greenhouse gas
emissions and removals in the United States submitted each year
to the United Nations Framework Convention on Climate Change
(U.S. Environmental Protection Agency (EPA) 2016). An early effort
by Wilson et al. (2013) attempted to look at how nearest neighbor
imputation routines could be trained by the FIA dataset for carbon
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project planning and reporting but determined that refinement
in the modeling process was necessary to be useful at the project
level. Domke et al. (2016) developed a modeling framework to
estimate litter carbon stocks and stock changes on forest land
from Phase 3 FIA plot attributes and auxiliary climate variables.
When compared against a coarser national model of litter carbon
stocks, their field-based approach showed a 44% reduction, sug-
gesting a gross overestimation of the national model.

The final set of studies use FIA data in a more intricate way to
either develop and validate the same model or to develop and
then validate another model. Building on their earlier work,
Domke et al. (2017) develop a model of litter carbon stocks and
their changes from FIA Phase 3 inventory and biophysical attri-
butes that they applied to all Phase 2 locations in a nonparametric
modeling framework. This approach of using site-specific infor-
mation yielded a 75% increase over State Soil Geographic Database
estimates, demonstrating a substantial increase in the impor-
tance of soil carbon in total forest carbon budgets. When looking
more broadly at aboveground biomass, Mickler et al. (2002a) linked
biomass fluxes to different forest types and regionally modeled
net primary productivity (Mickler et al. 2002b), with a focus on fire
risk. Westfall et al. (2013) did a detailed assessment of above-
ground biomass fluxes in the Great Lakes region using FIA data and
found no net change in the carbon pool. Losses in biomass from
reduction of DWM were balanced by gains in biomass from the
growth of live woody plants, making the net carbon flux indistin-
guishable from zero by standard FIA summaries. Chojnacky et al.
(2014) developed updated biomass models using individual-tree
data from FIA and compared the results of individual-tree model-
ing back to generalized FIA biomass summaries. They found that,
on average, FIA biomass summaries were 20% lower than biomass
estimates produced from individual-tree modeling. Nay and Bormann
(2014) developed site-specific biomass models for Douglas-fir
(Pseudotsuga menziesii (Mirb.) Franco) in a single stand in the Siskiyou
Mountains of southern Oregon. Biomass models were developed
from 32 trees in the selected stand, and the results were compared
with general regional and FIA models, respectively. The FIA-
based models outperformed the regional biomass models that
each led to a higher bias. MacLean et al. (2014) compared FIA
estimations of aboveground biomass carbon to estimations from
three different Forest Vegetation Simulator runs under different
parameters: two calibrated tests and one uncalibrated test. Re-
sults showed little similarity between any of the biomass estima-
tions, the point of the study being that we as scientists must be
very careful about correctly calibrating models and using consis-
tent inventory methods.

Similar studies have used FIA data in efforts to validate remote
sensing products. For example, Li et al. (2009) coupled FIA data
and Landsat TM data to improve the accuracy of remotely sensed
forest types. Zheng et al. (2007) attempted to resolve the resolu-
tion issues between FIA estimates and MODIS-derived biomass
estimates using empirical models developed from Landsat data.
MODIS provides higher spatial resolution (500 m) than FIA data
and synoptic coverage; hence, the combined product provides
more spatially detailed biomass estimations for each forest type
in the Lake States. Kellndorfer et al. (2006) used FIA biomass data
to train and validate model projections derived using data from
the Shuttle Radar Topography Mission of dry biomass and forest
canopy height in Utah as part of a larger scale project to develop a
nationwide model for mapping biomass, carbon, and canopy
heights across the entire United States. Several studies have eval-
uated biomass fluctuations from disturbance events using FIA and
remote sensing products. Chen et al. (2011) used FIA, Landsat, and
LANDFIRE data to map aboveground biomass carbon and biomass
loss due to fire. FIA data were used to train a regression model and
then additional data were used to validate the output of that
model. By combining FIA with the higher resolution data from
Landsat and LANDFIRE, Chen et al. (2011) produced maps at a 30 m

resolution. Williams et al. (2014) used Landsat imagery to estimate
areas of disturbance and then stratified those disturbed areas with
FIA data; stand age was used to constrain a carbon model to quan-
tify the effect of stand age on biomass carbon fluxes. Sheridan
et al. (2015) integrated LiDAR with FIA data to explore the ability of
such systems to improve FIA biomass estimates at varying scales.
The results demonstrated that LiDAR could reliably estimate bio-
mass per FIA protocols and that potential existed to integrate
LiDAR into standard FIA data collection procedures.

Schroeder et al. (1997) developed expansion factors for temper-
ate broadleaf forests in the United States to convert timber vol-
ume to aboveground biomass carbon, highlighting a limitation in
FIA summaries because they were based on merchantable timber
volumes and did not include branches, foliage, etc. When com-
pared with FIA-derived biomass, the predictions from Schroeder
et al. (1997) produced predictably higher carbon estimates. For
more accurate total biomass estimation, it is important to include
all parts of the tree, not just the merchantable volume. This cri-
tique was addressed in the FIA program by adopting a component
ratio method of biomass estimation, which provides separate es-
timates for each part of the tree (Woodall et al. 2011). Domke et al.
(2012a) showed that the recently adopted component ratio
method produced lower estimates of biomass than those previ-
ously produced, but speculation is that that these new estimates
are more accurate because they incorporate tree height data by
species and more locally derived components. The resulting
changes in biomass estimations nationwide impact not only the
FIA database, but also related programs such as the National
Greenhouse Gas Inventory.

It is understood that long-lived old-growth trees can contribute
a large percentage to total carbon sequestration, but it has been
shown by Roesch and Van Deusen (2010) that the low plot density
implicit within the sampling design of FIA misses a large percent-
age of large-diameter trees in three-quarters of the sampling re-
gions. To overcome this issue, the Pacific Northwest Region of the
FIA program implemented an additional protocol to capture rare
large trees with high accuracy, highlighting that a similar proto-
col could be applied nationally to capture other rare conditions of
interest.

Forest products and forest growth applications
One of the primary objectives behind NFIs is to track forest

products and forest growth rates in support of sustainable forest
management planning. Consistent, repeat measurements at the
same sampling locations and inclusion of measurements beyond
minimal inventory standards such as age and diameter growth
increments from tree increment cores make FIA data useful for
tracking forest products and growth. Although the number of
studies using FIA data to assess forest products and growth are
numerous, most of them can be placed in a few categories: (1) di-
rect observations of products and growth, (2) development of
models from FIA data, or (3) validation of an external model out-
puts. Of these, most assessments use traditional metrics of forest
growth, but there are also a few more novel applications to be
considered.

Studies that used FIA data to directly quantify forest products
and growth were focused on either explaining the mechanisms
controlling the distribution and growth of products or using the
information in a supply chain modeling exercise. Bechtold et al.
(1991) used FIA data from two successive inventory periods (1961–
1972 and 1972–1982) to track changes in basal area growth rates in
Georgia pine plantations to evaluate causes of reduced growth
over the two inventory periods. Following this work, Reams (1996)
used FIA to identify 20 plot locations of loblolly pine (Pinus taeda L.),
which were sampled to provide radial growth data from tree in-
crement cores. The previous study suggested that loblolly pine
stands had shown decreased growth rates through the 1970s and
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early 1980s; however, this study updated growth data through
1989 and showed that while there was a trend of decreased growth
in the 1970s, radial growth rates had recovered in the 1980s, which
is in line with growth and yield estimates from FIA data for that
period. Reams (1996) also noted that radial growth in loblolly pine
follows a cyclical trend, with periods of reduced growth rates
followed by periods of increased growth. Using a similar ap-
proach, Elias et al. (2009) used periodic mean annual volume in-
crement growth data from repeat measurements of 30 accurately
located FIA plots and local soil and acid deposition data to deter-
mine the effect of acid deposition on forest growth. Results
showed that growth data from forest inventories could be used as
potential predictors of acid deposition. Berguson et al. (1994) used
FIA data from the Lake States region to develop stocking indices
based on relations between tree height and canopy density. Long
and Shaw (2005) developed density management diagrams from
FIA plot data for even-aged stands of ponderosa pine (Pinus
ponderosa Douglas ex P. Lawson & C. Lawson) for western United
States land managers, and in a follow-up study, Long and Shaw
(2012) developed density management diagrams for managers of
even-aged stands of mixed coniferous forests in the Sierra Nevada
range.

Other efforts have tried to link forest products and growth in-
formation with management decision making. Moser et al. (2009)
linked landowner objectives to forest volume and diversity on
small private woodlands owned by Midwest farmers. This study
provided a more localized assessment of forest products that has
applicability for small private landowners and could demonstrate
the value of FIA data to groups such as family forest owners, state
forest owners’ associations, and the American Tree Farm System.
Butler et al. (2014) used FIA data to provide variables used to model
and map forest ownership categories; variables used included
stand-level attributes and road density. Siry and Bailey (2003) used
FIA data to track increased growth rates in pine plantations across
13 southern states, linking this to increased merchantable volume,
harvest removals, and implications for lumber supply. Prestemon
and Wear (2000) took a similar approach and used FIA data to
track growth in southern pine stands in North Carolina. Harvest
decisions and lumber supply were then modeled based on current
timber values, operating costs, and the opportunity cost of non-
timber forest products. Smidt et al. (2012) used FIA data and FVS-
modeled growth to estimate the volumes of logging residue and
non-merchantable biomass resulting from hypothetical harvests
of forests in the southeastern United States. These volumes were
used to explore the feasibility of using harvest residues for bioen-
ergy production and the loadings of residues required to break
even on production costs. Canham et al. (2006) and Papaik and
Canham (2006) each conducted studies of forest competition in
northern and southern New England forests, respectively. Each
used data from FIA plots located across New England to parame-
terize models to explore the effects of competition on growth and
yield. Following this, Canham et al. (2013) focused on forest dis-
turbances in the northeastern United States and developed a
model to predict stand harvesting based on total tree biomass and
the proportion of basal area that could theoretically be removed
from the stand. This approach is well suited to northeastern
United States silvicultural practices; different parameters would
be needed for the western United States where clearcuts, shelter-
woods, and thinning treatments are more frequently applied.

Other approaches to using FIA for forest products and growth
assessments have directly used FIA data to develop models of both
individual-tree and stand-level attributes. Prestemon (1998) devel-
oped a model to predict merchantable tree and stand attributes
from FIA data. Model outputs were validated with FIA data; mod-
els for softwoods and large-diameter hardwoods were found to be
the most accurate for predicting log grade. Cao et al. (2002) pre-
sented a methodology for modeling individual-tree growth using
FIA-based models specified for loblolly pine – shortleaf pine for-

ests in Louisiana. Individual models for tree height, diameter,
crown percent, and survival were developed based on FIA data
from two subsequent inventory periods and integrated to produce
a combined individual-tree model. Zobel et al. (2011) used FIA data
from 1977, 1990, and 2003 to fit a series of empirical models for
basal area growth in aspen forest types of Minnesota and deter-
mined that each period produced estimates nearly identical to
those from simple empirical models, but that with increasing
model complexity, the variance in the estimates from each data-
set increased. Although the lack of older aspen stands prevented
the fit of the best overall model, the authors believed that their
model development approach could prove useful in other forest
systems.

The final major use of FIA data for assessing forest products and
growth has been the validation of outputs from modeling plat-
forms external to the FIA program. Siry et al. (2001) compared FIA
growth projections with productivity models for high-intensity
management pine plantations in the southern United States. For
these intensively managed areas, FIA data were found to underes-
timate growth by up to 94%. Siry et al. (2001) theorized that higher
than expected growth and yield in southern pine plantations
could be beneficial economically, as the southern pine market
had been predicted to experience supply shortages. Pan et al.
(2004) modeled foliar nitrogen concentrations and net primary
productivity in mid-Atlantic forests and used FIA biomass data to
validate wood production rate projections. Results showed that
observation of foliar nitrogen concentration significantly in-
creased predictions of wood production rates. Russell et al. (2013)
used FIA data to spatially calibrate outputs from the Forest Vege-
tation Simulator – Northeast variant for 20 common species. After
calibration, the submodel was found to underestimate 5-year
basal area growth for all forest types across the northeastern
United States, suggesting that it may be necessary to refit or re-
engineer the variant to more accurately represent the region’s
growth dynamics. Waring et al. (2006) developed a model to esti-
mate site index and forest growth potential across the northwest-
ern United States from MODIS remote sensing observations and
climatic variables, validating model outputs using FIA data from
5263 plots distributed longitudinally along a steep climate gradi-
ent in Oregon.

In an application assessing a nontraditional forest product,
Farrell (2013) used FIA data on the abundance, stand composition,
and proximity to roads of both sugar maple (Acer saccharum
Marsh.) and red maple (Acer rubrum L.) trees in 20 northeastern
states. The goal of this study was to estimate the production po-
tential of maple syrup in each of these regions, where several
states with historically high syrup production were evaluated for
how each state either fully utilized or underutilized its potential
for syrup production. This study helps to demonstrate the value of
FIA data for nontimber forest products and reminds the reader of
the breadth of resources that forests can provide.

While the FIA program provides robust data for assessing forest
products and their growth, data usage has faced challenges as the
range of applications continues to grow. To increase the utility of
FIA reports for timber applications, Teeter and Zhou (1999) devel-
oped a method for breaking FIA summaries into more detailed
product groups such as sawtimber and pulpwood. With a targeted
return interval of 5–10 years for each plot in the FIA system but a
program desire to provide annual summaries, Lessard et al. (2001)
developed a nonlinear, individual-tree, distance-independent an-
nual diameter growth model to improve annual summaries by
accounting for tree growth of plots that are not re-measured in a
given year. Advances in wood utilization within the forest prod-
ucts market have changed the assessment of merchantable bio-
mass (Domke et al. 2012b). Merchantable volume estimates have
traditionally been measured to a minimum small-end diameter
and any portion of the bole below this diameter has been left on
site and not utilized in any way. Domke et al. (2013b) describe a
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method to estimate the volume within this previously missing
portion of the dataset from already available FIA data.

With an increasing focus on ecosystem management and the
spatial patterns that drive ecosystem functions, Woodall and
Graham (2004) proposed a method for conducting point pattern
analysis using clustered FIA subplots. While each individual sub-
plot (0.01 ha) is too small for this analysis to be effective, the
combined area of all four subplots (0.04 ha) on any given FIA plot
can be re-arranged. Woodall and Graham (2004) observed that the
arrangement of subplots does not have a significant impact on the
results. Application of point patterns derived from FIA data could
significantly improve our understanding of local competition and
its effect on forest growth.

Climate applications
FIA data can be highly effective for monitoring and analyzing

climate-related forest issues because of the tremendous spatial
and temporal breadth of the program. The FIA program encom-
passes a vast spatial area larger than any other similar database
(Gelfand et al. 2013). The database is free from any geographic
bias, providing a proportionally representative sample in all for-
ested areas (DeRose et al. 2013). The long-term nature of the data’s
collection with a near century-long field campaign provides the
continuity necessary to detect long-term changes. Finally, the
standardized methods used to summarize data at the county level
present a tractable resolution for large-scale climate applications.
Generally, these studies attempt to either detect changing climate
conditions or predict future climate conditions, based on cur-
rently available FIA data, but in all of these studies, the use of FIA
data can be broken into a few categories: (1) direct observations of
change, (2) development and training of a model, and (3) valida-
tion of model outputs.

Several recent studies have used FIA data to link shifts in species
distributions to changing climate. One of the first studies to iden-
tify shifts in species distributions was Woodall et al. (2009), which
related species regeneration density to species biomass density
and found that regeneration was preferentially occurring at more
northern latitudes. Woodall et al. (2009) estimated that some spe-
cies were migrating north at a rate of 100 km per century. Brady
et al. (2010) took a predictive approach in which FIA data were
used to develop a model for detecting changes in climate at large
spatial scales. Desprez et al. (2014) and Hanberry and Hansen
(2015) took a different approach, tracking geographic shifts in
species distributions using FIA data. Desprez et al. (2014) tracked
the distribution of blackgum (Nyssa sylvatica Marshall) in the east-
ern United States from two separate inventories in the 1980s and
2000 and showed how its abundance changed in different sections
of its biological range. Hanberry and Hansen (2015) took a much
larger and comprehensive approach, tracking changes in species
distribution of 74 different species found across the United States
over roughly the same 28-year period as Desprez et al. (2014). This
study detected distribution shifts in 26 of the 74 species but found
that this shift was not uniform. Roughly half of the species in
Hanberry and Hansen (2015) showed shifts toward the north,
while the other half showed distribution shifts toward the south;
additionally, limber pine (Pinus flexilis (E. James) Rydb.) showed an
expanding distribution in both directions. A key limitation in the
use of FIA data is that the data do not extend past the United States
(Hanberry and Hansen 2015), which means that some critical
points of the spatial distribution may be missed. To get at some of
the species-specific stand dynamics that climate might drive, Zhu
et al. (2014) modeled the climate space of juvenile and adult trees
using FIA data and found that for 77% and 83% of species, respec-
tively, regeneration was occurring in warmer and moister areas
than occupied by the adults.

Other studies have utilized FIA data for climate change model-
ing applications (Coops et al. 2009; Gelfand et al. 2013; Iverson and

Prasad 1998; Iverson et al. 1999; Jiang et al. 2015; Pan et al. 2009).
Gelfand et al. (2013) utilized FIA data to increase the projection
scale of an integral projection model (IPM) for use in climate
change. IPM modeling is typically a small-scale projection, often
done at a plot level, which makes it unsuitable for large-scale
climate applications. Linking plot-level projections from IPMs to
FIA data allows the model to be scaled up to encompass large
areas; in this study, the entire eastern United States is projected
from IPMs. FIA is invaluable for this type of model scaling as it is
a ground-based dataset that encompasses large enough areas to be
suitable for climate analysis. Jiang et al. (2015) used FIA data for
model development by linking current FIA-derived site index to
soil and climate data. Modeled site indices were mapped under
assumed conditions to produce forest productivity maps under
varying scenarios. Pan et al. (2009) modeled changes in carbon
sequestration due to changes in atmosphere, climate, and land
use, while using FIA data to validate the output of their model.
Iverson and Prasad (1998) and Iverson et al. (1999) used regression
tree analysis of FIA data along with soil, climate, elevation, and
land use data to predict changes in species distributions under a
given future climate condition associated with a twofold increase
in atmospheric CO2 level.

The last set of studies used FIA data to validate outputs of mod-
els for current conditions. Coops et al. (2009) modeled species
presence or absence for 3737 FIA plots across the west coast of the
United States based on mean monthly climate conditions. The
output was then compared back with the observed species on
each FIA plot for model validation, resulting in 87% accuracy, but
Coops et al. (2009) hypothesized that a broader set of climate
factors would produce more accurate results. DeRose et al. (2013)
exploited the incredibly high temporal resolution of FIA tree ring
data by using dendrochronology for climate reconstruction to
spatially track the El-Niño Southern Oscillation (ENSO) dipole,
showing large shifts in the latitudinal range of the ENSO during
recent centuries. This study also compared FIA tree ring data with
equivalent data available from the International Tree-Ring Data
Bank (ITRDB) and found that tree ring data from FIA had less
variation than data from ITRDB. A possible explanation offered in
this paper is that the ITRDB chronologies tended to be from highly
drought-sensitive trees, while the FIA chronologies are taken
from a systematic sample of the entire population of trees. In one
of the largest forest inventory synthesis efforts, Hember et al.
(2017) combined FIA data with other large-scale North American
inventories to model the effect of drought on tree mortality for
65 species. Results showed that average mortality rates have in-
creased over the last 50 years, but that mortality has also become
increasingly episodic due to higher severity droughts.

While most of these studies have contributed new ways of un-
derstanding climate effects on tree species, a couple have brought
out interesting discussions of FIA programmatic changes and lim-
itations. Lintz et al. (2013) demonstrated that the change in sam-
pling protocol in 2000, from a regional to a unified national
approach, did not appreciably impact sampling errors when mod-
eling the effect of climate on species distributions. Gibson et al.
(2014) compared publicly available coordinates with true (untrun-
cated) FIA coordinates for species distribution modeling in re-
sponse to climate change for several juniper and piñon pine
species and showed similar results. This, however, is one example
of an application on a set of species that occupy a widespread dry
and warm climate space. Although these results are promising, it
is quite possible that the effect of plot location “fuzzing” could be
quite dramatic on species that require more localized mesic grow-
ing environments. As modeling efforts proceed to increasingly
finer resolutions, the demand for unperturbed plot coordinates
will likely continue to increase as this will become one of the
greatest bottlenecks to these efforts.
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Forest health applications
Land managers are faced with the prospect of a changing cli-

mate and must deal with the implications that this has on forest
health and disturbance patterns. The periodicity of FIA invento-
ries, their large spatial scale, and the accessibility of the data
make it a powerful resource for monitoring forest health. Simi-
larly, their spatiotemporial balance and standardized collection
protocols facilitate assessment of forest disturbance and recovery.
Using FIA to predict forest health vulnerability and merchantable
species availability following future composition shifts due to cli-
mate is a valuable application of FIA data (Smith et al. 2014). The
use of FIA data in analyzing forest health and disturbances is
among the most diverse covered in this synthesis, as it includes
areas of general forest health, fire hazard, insects and pathogens,
invasive species, and habitat suitability.

General forest health
In terms of monitoring general forest health, studies can be

divided by the scale at which they analyze their FIA response
metrics. Many studies operated at broad spatial or temporal
scales, looking at trends in successional stages and forest struc-
tures, while others operated at finer plot- and tree-level scales to
try to explain the mechanisms behind changes in forest health.
Miles (2002) looked at the potential to use FIA data to monitor
biological indicators of trends in forest health. From a group of 67
internationally recognized indicators, 11 were determined to be
directly obtainable from FIA data alone, including assessing
trends in forest type, area, and successional stages and diversity of
forest species. Liu et al. (2003) and Zhang et al. (2004) both used FIA
data to classify FIA plots into six ecological habitat types. These
closely related studies applied different techniques, with Liu et al.
(2003) using a k-nearest neighbor method to classify plots, while
Zhang et al. (2004) used a Gaussian mixture model, but both
showed accuracies in the 90th percentile. He et al. (2011) used
Landsat TM/ETM+ imagery at a 500 m resolution to detect areas of
disturbance in forests and used FIA data to identify the time of
disturbance and subsequent regeneration. Schaberg and Abt
(2004) assessed the impacts of hydrological data on the likelihood
and impacts of harvesting by linking FIA data with specific water-
sheds from the USGS 6-digit hydrologic unit code (HUC6) data-
base. Estimates of forest growth, mortality, and harvesting were
projected forward to 2025, and the overall hydrological impacts
on each watershed were estimated from these projections. In a
more temporally focused effort, Sohl and Sayler (2008) used FIA
data to provide stand age data for modeling changes in forest
cover in the southeastern United States, linking historical
changes in forests to local effects of climate. Dyer (2001) used
witness trees from survey data from the 1787 Ohio Company Pur-
chase to approximate presettlement forest conditions. These as-
sumed conditions were then compared with current forest
conditions taken from FIA data for the study area and the differ-
ences were used to infer forest changes. A similar approach was
applied by Wang et al. (2009) to evaluate forest changes in New
York State. Frelich (1995) used FIA data and old land survey data to
track changes in old-growth forests around the Lake States from
presettlement conditions. Hanberry et al. (2012) used a combina-
tion of historical survey data and current FIA plots to track trends
of species homogenization and forest habitat mesophication in
Minnesota. This study showed a general trend towards a later
successional stage forest type, likely due to reductions of frequent
disturbance in the subject forests.

At finer scales, studies have attempted to use FIA data to explain
stand dynamics related to forest health such as regeneration,
competition, and mortality. In a cross-scale analysis, Puhlick et al.
(2012) used FIA plots and field soil samples to determine which site
and stand factors had the most significant impact on regeneration
of ponderosa pine (Pinus ponderosa) stands in the southwestern

United States. FIA data were used at a more regional scale, while
soil samples were used at a more local scale. Wang et al. (2013)
used FIA data to drive the LANDIS PRO model, which predicts
competition factors and disturbances from small processes at a
tree level and scales up projections to a landscape level. Westfall
and Morin (2013) used FIA data to model crown cover of individual
trees based on tree-level attributes and established crown width
models. Morin et al. (2015) looked at trends in mortality related to
various crown health codes recorded by FIA; 2616 plots from the
1999 inventory were resampled in the eastern United States to
assess which recorded crown health conditions resulted in even-
tual mortality. Meng and Cieszewski (2006) used data from the
1989 and 1997 FIA inventories in Georgia to look at the effect of
spatial clusters on tree mortality; the results have the potential to
explain the spatial spread of different agents of mortality.

Fuels and fire hazard
Following a century of fire suppression and other management

actions that have increased stand densities and fuel loadings,
wildfires are the most highly publicized disturbances to forested
ecosystems. When compared with physical modeling of target
forest structures, the geospatially uniform distribution of FIA data
can be used to assess fuel and fire hazard spatially. Arriagada et al.
(2008) used FIA data to estimate the gross cost of fuel reduction
treatments ($1000–$9000 per hectare) based on harvesting smaller
diameter trees in the western United States. This study did not
consider the commercial value of the volume being removed,
which could offset some costs. Chojnacky et al. (2004) modeled
DWM based on FIA Phase 2 plots in the eastern United States and
validated it against FIA Phase 3 plots. Chojnacky et al. (2013) then
estimated DWM across the entire United States and made the
resulting map available as an online web tool. Keane et al. (2013)
looked at the accuracy of fuel classification systems, using two
established systems and one new classification developed in their
study from over 13 000 FIA plots. Low accuracies were found when
fuel loadings from the classification were compared against ac-
tual plot values, which was attributed to high variability in fuel
component loading even within classification categories. As one
pathway to improve such assessments, Hudak et al. (2012) and
Hudak et al. (2016) demonstrate the utility of k-nearest neighbor
imputation for estimating fuel loads, which relies on the associa-
tion between surface fuels and the overstory to estimate surface
fuel loads indirectly as ancillary variables, rather than directly as
the response variable in the model. By imputing a single nearest
neighbor (k = 1), the variance in the imputed fuel loads preserved
the variance in observed fuel loads.

In terms of crown fire assessments, Cruz et al. (2003) modeled
canopy fuels and structure based on FIA plot-level attributes such
as stand height and basal area. Estimates of canopy fuel loading
were then produced for areas highly susceptible to crown fire in
the western United States. Skowronski et al. (2007) used a combi-
nation of LiDAR and FIA data to model canopy structure and lad-
der fuels for New Jersey pinelands. The study found relatively high
accuracy at larger scales but noted increased variability at plot
scales. Woodall et al. (2005) linked fuel loads with atmospheric
data to estimate fire risk level under variable fuel moisture levels.
The end product was a large-scale fire risk map based on fuel
loading and moisture levels. Through coupling United States cen-
sus and FIA data, Zhai et al. (2003) linked fire probability, road
proximity, wildland urban interface (WUI) proximity, education
level of local residents, stand composition, management history,
and fire history. A similar study by Munn et al. (2002) focused on
harvest trends with increased proximity to urban areas by com-
bining harvest data from FIA with census data in the southern
United States. In general, the closer a stand is to urbanized areas,
the less likely it is to be harvested, potentially due to impacts of
public perception and opinion.
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Insects and pathogens
Numerous studies have also taken advantage of FIA’s damage

codes to study the impacts and spread of forest insects and patho-
gens. One of the impetuses of this was when Cowling and
Randolph (2013) called for increased collaboration between FIA
and forest pathologists, specifically those working on fusiform
rust, which primarily affects southern pine plantation species.
Baker et al. (2012) used FIA and Minnesota DNR data from over 200
stands to evaluate the frequency of dwarf mistletoe in black
spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) stands.
They found that FIA and Minnesota DNR databases underestimate
the abundance of dwarf mistletoe by a large margin — roughly a
factor of five. Similarly, Lamsal et al. (2011) used FIA data and a
local northern California plot network to map the distribution of
oak species susceptible to sudden oak death, the current status of
infection, and the potential for future spread of the disease. Sev-
eral studies have used FIA data to evaluate oak decline (Kromroy
et al. 2008; Fei et al. 2011; Hanberry 2013; Knoot et al. 2015), which
is a serious forest health issue that is attributed to a variety of
causes including changes in climate, fire regimes, invasive spe-
cies, insects and disease, and forest management practices.
Randolph et al. (2013) investigated the potential to use FIA to track
the presence of thousand cankers disease in black walnut (Juglans
nigra L.) from tree attributes such as overall health and crown
condition. Though the study saw limited temporal change in the
abundance and presence of thousand cankers disease, the authors
noted that this could have been due to an actual absence of the
disease or an inability of the FIA program to detect the disease’s
presence. The authors discuss that accurately assessing the cau-
sality of tree mortality in the FIA database can be difficult with
return intervals of 7–10 years. In a similar study, Shearman et al.
(2015) used FIA to track changes in redbay (Persea borbonia (L.)
Spreng.) resulting from laurel wilt disease and demonstrated po-
tential in tracking mortality at plot, county, and state levels. Fi-
nally, Witt (2010) used FIA data to examine tree- and stand-level
attributes associated with heart rot in aspen species. The results
showed that older trees and larger trees were more susceptible to
heart rot, but the author points out that this may be due to a
longer exposure time to potential pathogens. The author also
noted that FIA lacks any sort of genetic data that could be useful in
detecting susceptibility to various forest pathogens.

Many other studies have focused on insect disturbance agents,
including Thompson (2009), who coupled aerial detection surveys
with FIA annual inventories in Colorado to track insect-caused
mortality in lodgepole pine (Pinus contorta Douglas ex Loudon),
finding a 10-fold increase over a 10-year period. Haavik et al. (2012)
used FIA to identify red oak stands in Arkansas and then surveyed
those stands to look for red oak borer presence. Not surprisingly,
stands with increasing numbers of red oak borer showed in-
creased red oak mortality. Moser et al. (2003) used FIA in a model
run to provide recommendations to land managers on which pine
species to favor in southern plantation forestry based on a com-
bination of growth rates and predicted volume loss from various
insects and diseases.

Invasive species
There has been a rise in the number, range, and severity of

invasive species outbreaks impacting forests in the United States
over the last several decades. The temporal continuity and spatial
distribution of FIA plots allows analysts to identify and monitor
the spread of these organisms to better understand mechanisms
promoting their spread. Huebner et al. (2009) used FIA data to
quantify the abundance of exotic and invasive plants in the Al-
legheny National Forest, Pennsylvania. The abundance of invasive
species was linked to stand characteristics and to further identify
potentially vulnerable areas prior to establishment of invasives.
Similarly, Lemke et al. (2011) used FIA data to model the potential
for invasion of Japanese honeysuckle in the Cumberland Plateau

and Mountain region located in the southeastern United States.
Japanese honeysuckle is a highly prolific invasive plant; using FIA
to identify areas prone to invasion allows land managers to pre-
pare for and possibly prevent the spread of invasive species.
Hussain et al. (2008) used FIA data to identify common stand
characteristics for areas with invasive plants, similar to the work
done by Huebner et al. (2009). Hussain et al. (2008) also included
economic and social factors such as land ownership and proxim-
ity to large cities as factors contributing to vulnerability to inva-
sive species. DeSantis et al. (2013), in a study focusing on the
emerald ash borer, linked FIA and climate data to map how the
spatial distribution of ash species (Fraxinus spp.) overlapped with
the optimal temperature range of emerald ash borer. They
showed that ash species growing in the most northern latitudes of
the range have potential to survive despite the tenacity and pro-
lific nature of emerald ash borer, but the study was limited by lack
of data outside the United States. Riitters et al. (2018) used over
20 000 FIA plots to quantify landscape pattern effects on the prob-
ability of invasive plant invasion and found that while proximity
to road impacted invasion probability, proximity to agricultural
land and forest fragmentation had the greatest impact. One of the
more sophisticated approaches utilized a spatial association of
scalable hexagons analysis in combination of FIA field plots, For-
est Health Protection aerial surveys, and the MODIS active fire
product to run Getis–Ord hotspot analysis to identify clustering of
invasive plant occurrences, bark beetle activity, and fire ignitions
(Potter et al. 2016). Such an analysis has widespread applications
for identifying the origin and vector of invasive species.

Habitat suitability
Several studies have applied FIA data directly to wildlife-related

research questions. Two of these studies explored the relationship
between tree and stand attributes and the abundance of cavity
trees, which are often favored as nesting sites by birds (Fan et al.
2003; Temesgen et al. 2008). Fan et al. (2003) used FIA to identify
plots that had at least one cavity tree present and then evaluated
common stand characteristics, with stand age and basal area iden-
tified as the most predictive attributes. Temesgen et al. (2008) also
used FIA to identify common stand characteristics for sites with
cavity trees but found stronger relationships with stand composi-
tion, density, site index, and quadratic mean diameter. Brooks
(2003) used FIA data to track trends in early successional stage
forests in the northeastern United States. Despite their temporary
nature, these forests provide critical habitat for wildlife species
across the country. A similar study used FIA to examine relation-
ships between birds and forest habitats at large spatial scales
(Fearer et al. 2007), where FIA data were used to produce a bird-
habitat database by combining FIA’s forest habitat data with in-
formation from the USGS Breeding Bird Survey database to model
bird–habitat relations across ecoregions. Similarly, Twedt et al.
(2010) combined FIA and Breeding Bird Survey data to predict how
decadal changes in forest conditions will impact avian species
abundance and identified species that will be winners and other
species that will be losers. Zielinski et al. (2006) and Zielinski et al.
(2012) in two consecutive studies used forest attributes in FIA data
from northern California to model resting habitat for fishers. Fi-
nally, Welsh et al. (2006) described a methodology to model wild-
life habitat from FIA variables that could be applied to any species.
Such models could be developed from co-occurring forest inven-
tory and wildlife species use observations, potentially highlight-
ing an area for future joint data collection efforts.

While FIA data have informed findings across an amazing range
of applications in assessing forest health, use of the data has not
been without its challenges. A consistent and repeated criticism
of the dataset is confusion surrounding the FIA damage codes,
with many studies remarking that it is necessary to have an FIA
expert involved to decipher the data structure and coding proto-
cols. Prior to the consolidation of FIA programs that resulted in
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the annualized FIA inventory, problems with data continuity and
consistency made the temporal tracking of mortality agents
nearly impossible from the dataset. Following the program
change, Shaw et al. (2005) used FIA annual inventory plots to track
mortality in Pinyon–Juniper forests and were able to discern in-
terannual variations in drought-induced mortality. Westfall and
Woodall (2007) examined the reliability of fuel estimated from FIA
data and observed that many of the measurements were not re-
peatable and that roughly one-third of all measurements had bi-
ases that made the data unreliable. The paper further discussed
the causes of measurement error and suggested that small tweaks
in FIA protocols such as emphasizing key measurements in train-
ing and eliminating recording errors through electronic systems
could increase measurement consistency and overall data reliabil-
ity. Another study noted that certain forest pathogens such as
Armillaria fungi, which are associated with root decay in many
western plant species, are difficult to detect when signs are found
on the tree roots and require destructive sampling. In response,
Hoffman et al. (2014) surveyed established FIA plots in Arizona for
the presence of Armillaria fungi, utilizing a new supplemental
subplot 36.6 m away at 300° azimuth from the center of the exist-
ing FIA subplot. The destructive nature of the sampling necessi-
tates that a new subplot be established outside the current FIA
plot. The method presented can be used successfully to sample for
Armillaria without disturbing the rest of the FIA plot and can be
readily incorporated into the current FIA sampling protocol.
While the method is feasible, its implementation would require
increased time and cost in sampling and data archiving.

Remote sensing applications
The association of FIA with remote sensing datasets has been a

two-way street, with early mergers of the datasets focusing on
improving regional- and national-level reporting of FIA (McRoberts
et al. 2002a). FIA started using remotely sensed imagery in the
1960s via aerial photography to increase the precision of inven-
tory estimates by improving the identification of forest type and
their extents (Hansen 1990). Although satellite sensor data were
later employed to improve forest area estimates (Hansen and
Wendt 2000), the limited temporal availability of these data led to
studies not meeting FIA precision standards (McRoberts et al.
2002a). Most modern studies attempting to develop models from
field observations with remote sensing data utilize some form of
multivariate regression or classification scheme. Brosofske et al.
(2014) provided a summary of the advantages and limitations of
various modeling and mapping methods, e.g., regression, deci-
sion tree, and imputation, for use with remotely sensed datasets.
Plot data imputation techniques have been demonstrated with
LiDAR and Landsat remote sensing datasets to produce forest type
assessments with improved spatial precision (Ohmann and
Gregory 2002; Ohmann et al. 2011; Hudak et al. 2008, 2012;
McRoberts et al. 2002b, 2007; Powell et al. 2010). Although the
earlier sections of this synthesis already highlight many studies
that have utilized FIA data in combination with well-established
remotely sensed image datasets, these studies were not self-
identified as being remote sensing studies. Within all of the re-
viewed applications of FIA for remote sensing, FIA data have been
used for both model development and validation by the different
authors. Most of the studies identified as serving remote sensing
purposes attempt either to create broad-scale forest biomass esti-
mates or to classify and map forest types and their characteristics.

One of the earlier uses of FIA with remote sensing for biomass
mapping was when Blackard et al. (2008) used FIA estimates of
total biomass to develop unique total biomass regression tree
models for 65 ecological zones across the conterminous United
States, Alaska, and Puerto Rico. The model-predicted biomass es-
timates came from MODIS, National Land Cover Dataset, and cli-
mate observations and were validated through a randomized

block withhold of FIA plots from each ecological zone. Model
predictions narrowed the range of local biomass values but
seemed to accurately represent regional and national estimates
from both FIA summaries and other mapping efforts. At an even
broader scale, Pflugmacher et al. (2008) developed a biomass
model based on tree heights from FIA plot data and applied the
model to forest heights derived from the Geoscience Laser Altim-
eter System (GLAS) to estimate global forest biomass. Results from
this biomass estimation were validated against a separate set of
FIA plots. GLAS is the first spaceborne LiDAR system, and the
sensor is carried onboard NASA’s Ice, Cloud and Land Elevation
Satellite (ICESat). The use of GLAS for biomass estimation allows
for estimation of biomass at a scale not previously possible. How-
ever, if the area of interest is particularly large, e.g., the entire east
coast of the United States or an entire nation, then the coarser
resolution MODIS dataset may be more practical as it will provide
a sufficient pixel density each day, as compared with Landsat
every 16 days. In a smaller scale application, Kwon and Larsen
(2012) used FIA plots located across eastern United States forests to
validate gross primary production (GPP) estimated from MODIS
data. A set of screening variables was applied to the FIA plots used
in validation, which improved the correlation between MODIS
GPP and FIA NPP from 0.01 to 0.48. Following this, Kwon and
Larsen (2013) identified an optimal mapping resolution for
MODIS-based biomass estimation at 390 km2, this time using NPP
from MODIS. Finally, looking at temporal biomass changes,
Powell et al. (2010) developed models of biomass fluxes from FIA
data and annual Landsat images over a 20-year period. Once the
annual Landsat response parameters were smoothed, the pro-
jected maps were able to depict the location and timing of forest
disturbances and their subsequent regrowth, providing a finer
temporal and spatial representation of biomass flux. Landsat
products, at a 30 m pixel resolution, will provide a more detailed
estimation than a 500 m resolution MODIS pixel. Each of these
models employs different model development and validation
techniques, which makes their direct comparison difficult. After
noticing these inconsistencies in the broader remote sensing lit-
erature, Riemann et al. (2010) proposed a method for evaluating
the effectiveness of a remotely sensed dataset using FIA as a ref-
erence to validate remote sensing data. Utilizing such a consistent
framework for validation provides essential information on the
type, magnitude, frequency, and location of errors in a dataset,
allowing for direct comparison between multiple model develop-
ment techniques.

Forest type classification and estimation of forest structure and
composition parameters are also common applications of remote
sensing data that are integrated or validated using FIA data.
Haapanen et al. (2004) used the k-NN imputation method with FIA
and Landsat TM/ETM+ data to map land cover types in the Great
Lakes area with accuracies around 90%. Land cover was classified
as forest, nonforest, and water at the 30 m resolution of Landsat
TM/ETM+. White et al. (2005) used FIA and Southwest Regional
GAP plots to validate estimates of tree canopy cover from the
vegetation continuous field (VCF) tree cover product derived from
MODIS. Results compared with FIA and Southwest Regional GAP
plots were similarly biased, while the MODIS VCF consistently
underestimated canopy cover and the negative bias increased as
canopy cover increased. Sivanpillai et al. (2007) evaluated the use
of Advanced Very High-Resolution Radiometer (AVHRR) imagery
to replace aerial photo methods used in Phase 1 FIA estimates of
forest cover. AVHRR produced lower accuracies than the aerial
photography at a plot level, misidentifying fields with sparse trees
as forest and recently harvested pine stands as nonforest. How-
ever, at the county level, estimation accuracies were within 95%.
Chojnacky et al. (2012) developed a Phase 1 mask with MODIS to
increase vegetation cover types from 2 to 5 to improve forest
attribute data from FIA in these sparse pinyon–juniper wood-
lands, which had been a noted limitation from previous FIA-

1260 Can. J. For. Res. Vol. 48, 2018

Published by NRC Research Press



related research efforts in the region. Leefers and Subedi (2012)
used FIA data to validate forest type estimates in Michigan derived
from other state and national forest inventory programs and a
state remote sensing dataset. Although field-based inventories
showed a higher level of agreement with FIA observations of for-
est type, the authors suggest that their inability to access unper-
turbed FIA plot locations may have significantly increased the
predicted errors of the remote sensing dataset. Each of Sader et al.
(2005), Thomas et al. (2011), and Schroeder et al. (2014) combined
annual Landsat imagery with FIA data to improve estimation and
detection of forest disturbance. Given that the FIA sampling pro-
tocol only has each plot re-measured every 5 to 10 years with a
spatial resolution of roughly 2428 ha, use of annual Landsat im-
agery can provide additional data to detect disturbance events.
With the launch of Landsat 8 in 2013, the proposed launch of
Landsat 9 in December 2020, and the goals of the Data Continuity
Mission, the potential applications integrating FIA and Landsat
will only increase (Landsat 2016; Fig. 1). FIA plots also work well to
approximate the size of 30 m Landsat image pixels that are
roughly equal to the area of one macroplot, and each subplot is
roughly one-fifth the area of a Landsat pixel (Fig. 4). On the other
hand, the round macroplots and systematic subplot configuration
do not align well with the square pixel grid, which inevitably adds
noise to relationships, especially wherever different condition
classes prevail due to forest edges in the scene (Ohmann and
Gregory 2002).

Although Landsat and other moderate- to high-resolution data-
sets have been shown to typically provide fairly accurate esti-
mates of stand variables, within highly variable landscapes,
accuracies can break down when trying to estimate tree species,
understory species, successional stage, and age class (Liu et al.
2008). One of the earliest uses of FIA with remote sensing to esti-

mate tree and stand parameters was when Gill et al. (2000) used
FIA data to validate tree size and crown closure estimates from
Landsat-derived vegetation maps for northeastern California,
demonstrating the strength and cost effectiveness of using FIA
data for validation purposes. Zhang et al. (2009) used Landsat TM
data and FIA data to map species composition and tree age in the
Missouri Ozark Highlands. Landsat imagery was used to define
ecotypes, which were then stratified by composition and age from
FIA data. Taking this further, Al-Hamdan et al. (2014) used Landsat
TM data to develop a model to predict the size class and wood type
of stands in the southeastern United States. Size class was catego-
rized as either sawtimber or saplings, and wood type was catego-
rized as either hardwood or softwood. FIA data for the study
region was used to validate the model predictions, which showed
high predictive power. Wang et al. (2006) created a three-
dimensional map of the forest landscape in the Washburn District
of Wisconsin by integrating FIA, Landsat, and the Forest Vegeta-
tion Simulator (FVS). Forest types were classified using Landsat
imagery, and data from FIA plots within each forest type were
used in a 50-year FVS simulation. The most recent integration of
Landsat imagery with FIA data came from Wilson et al. (2018), who
demonstrated that the Landsat time series can be utilized through
harmonic regression to achieve a two- to three-fold increase in
explained variance over using monthly image composites. The
ability to fully utilize time series observations along with the
report FIA field plots could greatly advance our ability to map
forested landscapes. Popescu et al. (2002) highlighted the poten-
tial of airborne LiDAR data to be integrated into FIA by modeling
tree heights and validated the measurements using ground plots
established following the FIA protocol (not actual FIA program
plots). Such integrations of LiDAR with FIA plot data have become

Fig. 4. Example FIA plot, overlaid on imagery from (a) Landsat OLI, 30 m pixels, and (b) NAIP, 1 m pixels, and (c) sample photos of subplot 1
taken from plot center and arranged clockwise: north, east, south, west. [Colour version online.]
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much more frequent and have been leveraged to characterize
highly heterogeneous landscapes such as Hawaii and Alaska.

While the combination of FIA and remotely sensed data are well
established, there are some limitations that need to be addressed.
Most applications of remotely sensed data require highly accurate
ground control points, which become increasingly important at
higher spatial resolutions. Even when researchers undertake the
legal requirements to have access to untruncated FIA plot loca-
tions, most FIA plots are located using recreational-grade GPS
systems, which typically have accuracies of less than 3–7 m
(Anderson et al. 2009). While this accuracy level is not limiting
with MODIS pixels, reliable use with 30 m Landsat pixels and
spatially precise, point-based LiDAR datasets requires accurate
plot location data.

Discussion of FIA program
The temporal continuity, spatial balance, and consistent proto-

cols of the FIA program make the dataset particularly well suited
for the incredible range of applications that have been described.
Although much knowledge has been amassed through the synthe-
sis and application of FIA data, advances in statistical techniques
and remote sensing methodologies are pushing the dataset limits
and there is increasing acknowledgement of these new limita-
tions within the FIA program and its protocols. As the FIA pro-
gram has grown in both scope and complexity since the United
States 1998 Farm Bill, which incorporated many elements of forest
health monitoring into the FIA inventory protocols, a growing list
of limitations has been formed. While this list has continued to
grow, many solutions have been put forward and some have al-
ready been adopted by the FIA program, potentially opening other
exciting avenues of investigation.

Limitations
Perhaps the most widely recognized limitation of working with

FIA data is the confusion that exists around data coding, interpre-
tation, and definitions. As Kromroy et al. (2008) remarked, dam-
age codes in FIA data are unique to the program and are difficult
to interpret and understand to non-FIA users. Although studies
such as Bechtold and Patterson (2005) provide detailed descrip-
tions of the program and many resources can be found related to
the program, there is still a lack of clear definitions. Currently, the
simplest solution is to collaborate with an FIA researcher who
understands the intricacies of the program. Because of this, there
has been a growing call for improved user manuals designed for
non-FIA researchers such as industry and academic scientists or
even the general public, which could greatly improve user under-
standing. Such a manual could also make the data more appealing
to a larger audience and increase the utilization of this vast and
powerful resource. Revised user manuals and a simplified version
of the program framework could also make it more feasible for
other countries to adopt and implement similar monitoring pro-
tocols based on the FIA design, extending the scope and inference
of future datasets available more broadly to researchers.

In a study by Roesch et al. (2012), it was revealed that FIA’s
current techniques for area estimation of forest land categories
suffers from higher bias and mean squared error than two more
recently developed techniques. While not presently addressed,
adopting one of these new approaches has the potential to reduce
error in all FIA reports beyond the plot level as errors in area
estimation will propagate through. Such changes are particularly
important for broad-scale applications such as carbon pool mon-
itoring and greenhouse gas modeling.

Another complicated and growing limitation of FIA is access to
untruncated sample locations. FIA has long been conscious of this
concern and took time to demonstrate that the “fuzzing” process
has minimal impact on remote sensing models developed with
moderate-resolution imagery (Healey et al. 2011). However, this

issue has only increased as modeling efforts and remote sensing
capabilities have advanced to finer spatial resolutions. The “fuzz-
ing” of publicly available plot locations is congressionally man-
dated by the need to protect data integrity from being used
against private landowners for various reasons (McRoberts et al.
2005). However, empirical models associating plot-level FIA data
with spatially precise remote sensing data require accurate plot
locations. Furthermore, imputation of forest inventory parame-
ters using technologies such as LiDAR requires that plot locations
are recorded and documented to sub-meter precision, which
greatly exceeds that of the recreational-grade GPS systems cur-
rently in use throughout much of the FIA program. In the near
future, FIA will increasingly be called upon to streamline access to
accurate, untruncated plot locations, while maintaining the legal
obligation to protect data integrity. Creating a simplified pathway
to grant researchers access to untruncated sample locations will
facilitate more accurate modeling and mapping of forest param-
eters from increasingly resolute remote sensing products.

Recent improvements
FIA has already implemented improvements to address other

acknowledged limitations. FIA’s prior focus on purely merchant-
able biomass allometric relationships received criticisms, largely
as a result of technological advances in utilization of non-
merchantable biomass. It has been noted that the older methods
did not account for biomass in a tree bole past a small-end diam-
eter or the contribution of other biomass pools such as tree
branches and foliage. To resolve this issue and provide a more
robust estimate of total biomass, Domke et al. (2012a and 2013b)
demonstrated how estimating biomass with the component ratio
method and refining total stem biomass estimates can improve
accuracies when estimating both merchantable and total bio-
mass. These new methods have since been adapted into the FIA
program for biomass summarization.

An additional long-standing consequence of the FIA systematic
sampling design is the limited representation of rare objects of
interest such as very large diameter trees. In response to this issue
within the Pacific Northwest Region of the FIA program, Roesch
and Van Deusen (2010) demonstrated that inclusion of 17.95 m
radius macroplots can capture rarer large trees with high accu-
racy and discussed how such a protocol could be adapted to mon-
itor most other rare objects of interest in different regions. Other
similar criticisms and resultant research have resulted in pro-
posed changes in FIA sampling protocols to allow for additional
monitoring of specialized observations. To allow for destructive
measurements such as root samples for Armillaria monitoring,
Hoffman et al. (2014) suggested installing a supplemental subplot
located 36.6 m from the existing plot center. This subplot could be
rotated circularly around the plot center for each measurement
cycle to allow locations of destructive samples to recover and not
impact the primary sample.

In recent years, there have also been concerted efforts to im-
prove both the spatial and temporal representativeness of FIA
data. Although the area encompassed by the FIA program is al-
ready vast, two efforts have sought to increase the area surveyed.
The early history of forest inventory work within United States
territories and Hawaii is relatively sparse and sporadic, with only
Puerto Rico and Hawaii having ever received more than one in-
ventory prior to 2000 and many territories never having been
inventoried. Following the 1998 Education and Reform Act that
charged FIA to standardize the sampling of all United States forest
lands, including Alaska, Hawaii, and all territories, the FIA Trop-
ical Island Forest Inventory Work Group put forward a proposal to
adapt the common FIA protocols for working in tropical environ-
ments (Willits et al. 2000). Following the standard FIA protocols
implemented in the continental United States, inventories of Ha-
waii and the island territories were planned and began in 2001.
However, to ensure that these inventories were representative of
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the ecological complexity found in these tropical systems, after
the initial hexagonal grid was installed for plot selection in for-
ested areas, unique forest types found to be underrepresented had
additional sample locations randomly selected until 10–15 samples
were located in each forest type (Brandeis 2003). Due to logistical
challenges of working in these regions, inventories of each of the
United States territories is implemented on a focused 5-year
schedule instead of on the annual cycle as within the coterminous
United States. The use of a similar minimum number of represen-
tative samples for unique forest systems could address related
user critiques to improve our understanding and modeling of
these smaller populations. Within these tropical systems, emerg-
ing novel research into the spatial distribution and abundance of
endemic endangered species is highlighting the importance of
FIA in the tropics (Rojas-Sandoval and Meléndez-Ackerman 2013).
Additionally, work is starting to investigate the effects of FIA plot
phase intensity and density, along with the benefits of merging
FIA and LiDAR data in quantifying the forests of Hawaii, finding
that the more intensive plots have a greater benefit over standard
Phase 2 plots in quantifying aboveground forest carbon and that
LiDAR is a logical and affordable way to significantly improve
these estimates in heterogeneous areas (Hughes et al. 2018).

In a further effort to expand the inferential utility of FIA data,
Barrett and Gray (2011) argued for a more intensive FIA monitor-
ing system in the boreal region of Alaska; this has high impor-
tance given that extreme northern regions are proving to be the
first to show effects of altered climate conditions. Since this pub-
lication, the FIA program has begun establishing and inventory-
ing plots in the Alaska interior boreal forest at the proposed
density of one plot for every 12 000 ha, or one-fifth of the FIA plot
density in the coterminous United States. Utilizing the first Alaska
interior boreal forest FIA acquisition of 67 plots in 2014, Ene et al.
(2018) demonstrated that merged FIA plots with aerial LiDAR sam-
pling over such large landscapes can significantly enhance esti-
mates of forest characteristics. While many of these changes have
long been sought by users, there is still a large user base that
would also ask the FIA to reduce or eliminate methodological
changes as these will introduce issues for the long-term continu-
ity of the dataset.

Future directions
FIA is a continuously evolving program in response to a growing

list of user needs. FIA priorities are based on its Strategic Plan,
which is currently framed by the United States 2014 Farm Bill. To
meet program requirements and user needs, FIA has outlined the
following focus areas: (i) bring data collection to “full field opera-
tions,” which means annually measuring 10% of the plots in the
west and 15% in the east and providing an annualized program in
all of Alaska; (ii) enhance timber products monitoring; (iii) en-
hance forest landowner studies; (iv) improve carbon and biomass
estimates; (v) expand land use and land cover monitoring to in-
clude all lands; and (vi) adapt and expand the inventory to urban
forests. Funding increases are prioritized to bring data collection
to the 20% annual measurement specified in the United States
1998 Farm Bill. Other identified focus areas include increasing
outreach, engagement, communication, and dissemination ef-
forts (Shaw 2017). These efforts will have a multipronged ap-
proach that will be split between online content, interactive
content, and workshop and training opportunities. The hope is
that through these efforts, user knowledge and understanding
gaps such as that of database coding can be significantly narrowed
and that accessibility to the FIA database will be substantially
eased. To address some of these issues, the FIA program has cre-
ated tools such as the Spatial Data Services team (https://www.
fia.fs.fed.us/tools-data/spatial/) to assist the public with data acqui-
sition, spatial summaries, spatial overlays with geospatial data,
and gaining access to actual plot coordinates in some cases.

Following direction from the United States 2014 Farm Bill, the
FIA program was expanded to create Urban FIA (UFIA) with its own
sampling protocols. The UFIA protocols were piloted in 2014 in
Austin, Texas, and Baltimore, Maryland (Vogt and Smith 2017).
Importantly, UFIA’s implementation has been intensified to one
plot for every 354 ha, and existing FIA plot locations that fall
within forested areas of defined city limits will in the future be
inventoried using both FIA and UFIA protocols. Plans for the pro-
gram are to expand as funding and partnerships allow, with
14 cities participating in UFIA in 2016, and further expanding to
include all UFIA regions in 2017 (Vogt and Smith 2017). Recent
work is investigating ways of merging these datasets for rural–
urban landscape assessments (Westfall et al. 2018).

There are other ongoing efforts focused on expanding the tem-
poral inference and, thereby, the temporal applications of the FIA
database. DeRose et al. (2017) outlines the efforts behind develop-
ing a tree-ring dataset based on >14 000 tree cores from the Inte-
rior West region of the FIA program. Although this is an ongoing
effort, more than 3000 tree cores have already been fully cross-
dated for the eight-state region. One of the initial goals of the data
is to link it with the FIA plot database for use in development,
calibration, and validation of forest growth and yield models such
as the Forest Vegetation Simulator. In the last few years, the Pa-
cific Northwest region of the FIA program has begun providing
additional tree cores for processing within the database. As the
database continues to grow, it will represent the highest resolu-
tion means of reconstructing climatological records across the
western United States. Efforts such as these are only possible be-
cause of the individuals involved in the FIA program and will
result in additional future research opportunities. In addition, the
FIA program and other NFI datasets have considerable potential to
be used as baseline and monitoring data when assessing vulnera-
bilities to critical ecosystem goods and services or in the develop-
ment of spatially explicit disaster early warning systems (Smith
et al. 2014).

Conclusion
The FIA program provides a comprehensive forest inventory

annually to inform a wide and rich range of natural resource
science and management applications. The public availability and
use of the data for any purpose further increases their value. The
intricacies of the FIA inventory design can be confusing for non-
FIA users and the exact definitions can be difficult to interpret.
The data are excellent for large-scale analysis and are more appli-
cable over larger areas than smaller ones. The large spatial and
temporal scales make FIA excellent for long-term analysis on mul-
tiple themes such as climate monitoring, trends in carbon stocks,
and changing forest growth rates.

Most applications of FIA data have attempted to use it in a few
ways. At its most basic application, FIA data summaries have been
mined to understand coarse-scale forest distributions and owner-
ships either at the county scale or through course-resolution re-
mote sensing products. The next level of application commonly
utilizes FIA data in the development or validation of a modeling
system. To date, the majority of FIA-related research has operated
in this way. Finally, the more unique applications of FIA data are
those that have tried to extend data utility by assessing character-
istics and process mechanisms not found in the FIA database such
as creating point process models or using FIA to impute and then
model landscape respiration processes. For either of these last two
application categories to continue to expand, certain challenges
need to be overcome within the FIA program. For researchers to
effectively embrace the FIA database and utilize it in the most
cutting edge ways, they will need to be able to utilize the FIA
database in conjunction with statistical processes and remote
sensing datasets that are continually being designed for finer res-
olutions. This means two things: (i) the FIA will need to provide
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users with a simplified and more understandable key to FIA data
collection and coding protocols and (ii) the FIA will need to find
ways to more readily assist an expanding subset of users who need
to accurately associate remote sensing data to plot-level FIA data
at the untruncated plot locations.
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