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Abstract. Remotely sensed radiation, attractive for its spatial and temporal coverage, offers a means of inferring energy
deposition in fires (e.g. on soils, fuels and tree stems) but coordinated remote and in situ (in-flame) measurements are

lacking. We relate remotely sensed measurements of fire radiative energy density (FRED) from nadir (overhead)
radiometers on towers and the Wildfire Airborne Sensor Program (WASP) infrared camera on a piloted, fixed-wing
aircraft to energy incident on in situ, horizontally oriented, wide-angle total flux sensors positioned,0.5 m above ground
level. Measurements were obtained in non-forested herbaceous and shrub-dominated sites and in (forested) longleaf pine

(Pinus palustrisMiller) savanna. Using log–log scaling to reveal downward bias, incident energy was positively related to
FRED from nadir radiometers (R2¼ 0.47) and WASP (R2¼ 0.50). As a demonstration of how this result could be used to
describe ecological effects, we predict stem injury for turkey oak (Quercus laevisWalter), a common tree species at our

study site, using incident energy inferred from remotely sensed FRED. On average, larger-diameter stems were expected
to be killed in the forested than in the non-forested sites. Though the approach appears promising, challenges remain for
remote and in situ measurement.
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Introduction

Airborne, space-borne and near-ground sensors with nadir
(overhead) perspective have shown promise for spatially

quantifying fireline progression (Paugam et al. 2013), fire
intensity (Kremens et al. 2012; Johnston et al. 2017), area
burned (Giglio et al. 2006), biomass consumption (Wooster
et al. 2003, 2005), emissions production (Ichoku and Kaufman

2005) and post-fire effects (Lentile et al. 2006; Kremens et al.
2010). Energy production, transfer and deposition on fuels drive
wildland fire ignition, rate of spread (ROS) and intensity

(Anderson 1969; Yedinak et al. 2006; Anderson et al. 2010),
while first-order fire effects are determined by heat deposition
on plants and soils (Butler and Dickinson 2010). However, even

basic understanding of energy transfer in wildland flames is

limited (Sacadura 2005; Viskanta 2008; Finney et al. 2010;
Finney et al. 2015), likely owing to complex logistics associated
with sensor deployment, measurement uncertainty, the high-

temperature environment and high-frequency temporal vari-
ability (Freeborn et al. 2008; Hiers et al. 2009; Frankman et al.
2013). At the same time, the accuracy of remotely sensed
data remains uncertain (Schroeder et al. 2014; Kremens and

Dickinson 2015; Dickinson et al. 2016).
Advancing understanding of energy transfer and deposition

in wildland fires, based generally on in situ (in-flame) measure-

ments and modelling, in concert with the continued develop-
ment of active-fire remote sensing, promises a stronger
foundation for describingwildland fire behaviour and predicting

effects (Butler and Dickinson 2010; Kremens et al. 2010).
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Efforts continue to develop more physically based fire effects

models that promise to be more generally applicable than
statistical models (Dickinson and Ryan 2010; Chatziefstratiou
et al. 2013; Massman 2015). These models generally require
measured or modelled heat deposition from fires but options are

limited by which heat deposition can be inferred frommeasured
or modelled fire characteristics (Butler and Dickinson 2010).
We explore how well energy incident on in situ (in-flame)

sensors can be inferred from ground-leaving fire radiated energy
density (kJ m�2, FRED)measured from nadir (overhead) tower-
based radiometers and an airborne longwave infrared sensor

during spreading experimental fires in south-easternUS fuels. In
turn, we demonstrate how inferred energy deposition can be
used to predict tree stem injury, an important ecological effect,
for a common south-eastern tree species.

Methods

Datawere collected in early November 2012within an 8� 4-km
area of Eglin Air Force Base in north-western Florida during the
Prescribed Fire Combustion and Atmospheric Dynamics

Research Experiment (RxCADRE), a coordinated measure-
ments campaign described in Ottmar et al. (2016a) and associ-
ated papers. Nadir radiometer (Dickinson and Kremens 2015)

and airborne (Hudak et al. 2016a) data used here are available on
the USDA Forest Service Research Data Archive (https://doi.
org/10.2737/RDS-2016-0007, accessed 29 January 2019). Burn
blocks were characterised by either a herbaceous and shrub

fuel mix maintained as open range through mowing, fire and
herbicide application (hereafter termed non-forested), or fire-
maintained pine savanna with fuel beds including needle

cast, turkey oak litter, herbaceous and shrub vegetation, and
woody material (hereafter termed forested). Non-forested
blocks included large (L1G and L2G) and small (S3, S4, S5, S7,

S8, and S9) burn blocks while there was a single large forested
block (L2F). Burn blocks, fuels and fire behaviour are described
in Hudak et al. (2016b), Ottmar et al. (2016b) and Butler et al.
(2016) and are summarised in Table 1.

Measurements from two in situ instruments (incident flux

sensors and cameras) and two remote radiation sensors (tower-
mounted and airborne) are considered in the present study.
In situ measurements were made with a horizontally viewing,
wide-angle, incident total flux sensor housed with electronics in

a fire-hardened container placed on a tripod 0.5 m above ground
level (agl) and typically viewed from a perpendicular perspec-
tive by a visible video camera housed in a separate container

(Butler et al. 2010; Butler et al. 2016). The incident total flux
sensor is one of two sensors in MedTherm Corporation’s
uncooled dual-sensor. The other is a radiant flux sensor, the

data from which are not used in the present study. The incident
total flux sensor (hereafter the incident flux sensor) has near-
hemispherical sensitivity to fire radiation incident on a black
high-emissivity surface over a thermopile detector contained

within a copper plug. The sensor surface is also heated by
convection. Raw voltages were recorded at 10 Hz and calibrated
to incident flux (kW m�2; see Butler and Jimenez 2009;

Frankman et al. 2013), which was then time-integrated to
provide incident energy (kJ m�2) used in the present study. For
the 26 datasets forwhich video analysis is available, 87%showed

fire approaching the face of the incident flux sensor from within
�608, formerly shown to be the acceptance angle within which
fire approach angle has no effect on measurements.

Single-pixel dual-band radiometers were placed on towers
with a downward (nadir) perspective (Dickinson et al. 2016).
The nadir radiometers include a mid- (3–5 mm, Dexter Research
LWPSiL2) and long-wave (6.5–20 mm, Dexter Research MW)

sensors. See further details in Dickinson et al. (2016) along with
information on data analysis and application provided in
Kremens et al. (2010, 2012), Cannon et al. (2014) and Hudak

et al. (2016b). The nadir radiometers were mounted 5.5 m agl
and, at that height, detect radiation from an area of regard of
,23m2 (,2.7-m radius) based on their 528 field of view (FOV).

Voltage output from each sensor was logged at a 5-s interval.
Fire Radiated Flux Density (FRFD, kW m�2) is the

instantaneous, spatial average aerial emission from the frac-
tion of the nadir radiometer area of regard (pixel) that is

Table 1. Averaged characteristics of fires in non-forested and forested burn blocks from the RxCADRE 2012 fires

Surface fuels were dominated by a herbaceous and shrubmix in non-forested blocks, and amix of litter, herbaceous and shrub vegetation andwoodymaterial in

the pine savanna (forested block). Fuel consumption (W) and fireline intensity (I) are inferred fromnadir radiometermeasurements using equations in Kremens

et al. (2012, see details on fireline intensity in supplementary material) while whole-block estimates of consumption from Hudak et al. (2016b) are included

for comparison. Estimates of flame length and depth and fire rate of spread are from video analysis that is not currently available for all blocks (see Butler

et al. 2016). Sample sizes and standard deviations are provided where relevant (in parentheses)

Nadir radiometers Hudak et al. (2016b)

Fire Fuel Date I (kWm�1) W (Mg ha�1) W

(Mg ha�1)

Flame

height (m)

Flame

depth (m)

Spread

rate (m s�1)

L2F Forested 11-Nov-2012 907 (9, 670) 5.0 (9, 2.6) 6.36 0.9 (5, 0.5) 1.3 (5, 0.7) 0.04 (2, 0.05)

L1G Non-forested 4-Nov-2012 529 (9, 316) 1.3 (9, 0.5) 1.54 0.7 (6, 0.5) 1.1 (5, 0.8) 0.24 (4, 0.30)

L2G Non-forested 10-Nov-2012 739 (12, 358) 1.5 (12, 0.6) 3.09 0.5 (9, 0.2) 0.8 (9, 0.4) 0.89 (3, 0.38)

S3 Non-forested 1-Nov-2012 479 (5, 79) 1.7 (5, 0.2) 2.56

S4 Non-forested 1-Nov-2012 234 (4, 172) 1.6 (4, 0.7) 2.04

S5 Non-forested 1-Nov-2012 564 (5, 269) 2.2 (5, 0.6) 2.19 0.4 (4, 0) 0.8 (4, 03) 0.36 (2, 0.28)

S7 Non-forested 7-Nov-2012 1179 (4, 641) 3.3 (4, 1.8) 1.80

S8 Non-forested 7-Nov-2012 512 (4, 318) 1.9 (4, 0.7) 2.80

S9 Non-forested 7-Nov-2012 861 (5, 115) 1.8 (5, 0.9) 1.40
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radiating above background (also known as the fire fractional
area, Af, which varies from 0 to 1; see supplementary material
available online):

FRFD ¼ eAfsT4 ð1Þ

where e is emissivity (0 to 1), s is the Stefan–Boltzmann
constant and T is effective temperature of the scene determined

by blackbody calibration from the ratio of mid- and long-wave
infrared (LWIR) signals. The calculation of FRFD from a dual-
band nadir radiometer is described in Kremens et al. (2010).

Peak FRFD was used to estimate fireline intensity (see supple-
mentary material). FRFD was integrated through time (from
first rise above background to first fall to background during
cooling) to provide FRED (kJ m�2).

The distribution of in situ sensors across large and small burn
blocks is mapped in Butler et al. (2016). A nadir radiometer was
co-located with each in situ package so that the incident flux

sensor faced inward from the margin of the nadir radiometer’s
area of regard. Given occasional instrument failures, we report
data from n¼ 7 co-located measurements in the large forested

block and n¼ 42 co-located measurements in non-forested
blocks. All ground sensors were geolocated with sub-metre
accuracy with a survey-grade global positioning system (GPS).

The Wildfire Airborne Sensor Program (WASP) LWIR
camera was flown 1550–3160 m agl on a piloted, fixed-wing
aircraft that made repeated passes over the three large burn
blocks (see Hudak et al. 2016a, 2016b for data and more detail

respectively). TheWASP passband is 8–9.2mmwith the spectral
response function on file with the Rochester Institute of Tech-
nology, CarlsonCenter for Imaging Science. TheWASP camera

collected image frames at a 3-s interval as it passed over burn
units and there was a 3–4-min gap between the last image frame
on a pass and the first frame on the next pass made after turning.

Image frames were georectified with GDAL based on inertial
measurement unit data. Measured voltages, blackbody calibra-
tion and a model of radiation from pixels containing a mix of

combusting fuels and background were used to calculate FRFD
as described in Kremens and Dickinson (2015) and Dickinson
et al. (2016). Time series for each pixel of radiated flux greater
than the background of 1070 W m�2 (FRFD) were time

integrated as follows:

FRFDobs ¼
Xn

i¼initial
0:5ðFREDiþ1 þ FREDiÞðtiþ1 � tiÞ ð2Þ

where i is image frame number, t is time (s), and the integration

is performed from the initial to final (n) frame containing
above-background values. A burn-block average correction of
resulting FREDobs maps was applied to account for temporal

undersampling and the occasional lack of full coverage of burn
blocks by image frames on every pass. Finally, kriging of the
resulting FREDestimates where only the pixels with the greatest

FRED values (primarily those along flame fronts) were interpo-
lated providing a spatially continuous map of FRED more
accurate at the burn block level (see details in Klauberg et al.

2018). Average FRED was then calculated for each nadir

radiometer (circular) area of regard by re-sampling FREDmaps
from Klauberg et al. (2018).

Results and discussion

Fig. 1 is a first examination of how to infer in situ energy
deposition from spatially extensive remotely sensed active-
fire measurements. The highest incident energies were in the

forested block where surface-leaving radiative energy was
greatest. We can also conclude that the highest incident ener-
gies were where fuel consumption was greatest as confirmed

by both measurements (Hudak et al. 2016b) and the well-
established correlations between FRED measured from nadir
or near-nadir sensors and fuel consumption (Wooster et al.

2005; Freeborn et al. 2008; Kremens et al. 2012). Higher fire
intensities also lead to greater incident energy (Bova and
Dickinson 2005) and intensities estimated for the forested
block included some of the highest in our dataset (Table 1).
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Fig. 1. Total energy (both convective and radiative) incident on in situ

incident flux sensors as a function of remotely sensed fire radiated energy

density (FRED) measured by nadir radiometers (a), and the Wildfire

Airborne Sensor Program (WASP) longwave infrared camera (b). Nadir

radiometers were used in all burn blocks whereas WASP measurements

were only conducted for fires in large blocks. One excessively low incident

energy outlier (0.26 kJ m�2) from a non-forested block is excluded from the

figures.
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Relationships between incident energy and fire characteristics,
however, are not likely to be universal across fuel types and fire
environments (Kremens et al. 2012; Frankman et al. 2013;

Smith et al. 2013) and, as such, the relationships in Fig. 1 are
not likely to be universal.

Uncertainty in incident energy inferred from remote mea-

surements is particularly evident for the non-forested blocks
where incident energy is plotted against FRED measurements,
both log scaled to reveal bias (Fig. 1). For the five incident

energy estimates with the greatest deviation from the trend lines
in Fig. 1, the three for which we analysed coincident video all
had flame heights below the sensor face. In future work, in situ
sensor heights should better match expected flame heights. As

well, a more physical approach to linking flame characteristics
with incident energy is needed where radiative and convective
heat fluxes to surfaces and objects of interest are modelled

explicitly (e.g. Bova and Dickinson 2008). Apart from other
benefits, a physical model could help rescale measurements to a
common basis, for instance, maximum incident energy or

incident energy at mid-flame height. A physical model will
have to account for the often substantial variation in the partition
of incident energy between convection and radiation (Frankman

et al. 2013).
Despite interpolating FRED using primarily flame front

values (Klauberg et al. 2018), we suspect that there remains a
downward bias in WASP FRED related to temporal under-

sampling that would particularly affect measurements of low-
energy flame fronts. The apparent bias is evident in lower
estimates of FRED for WASP (Fig. 1b) than nadir radiometers

(Fig. 1a). FRED measurements with high temporal frequency
that include peak FRFD (such as collected by nadir radiometers)
are required because the time period around the peak accounts

for a large fraction of the radiation. High-spatial-resolution
airborne data in Riggan et al. (2004) show this clearly. In
relatively low-frequency airborne imagery collected from a
piloted, fixed-wing aircraft that makes repeated passes over a

fire, peak FRFD is only captured where image pixels coincide
spatially with a flame front. If the return time is short enough
relative to the residence time of the fire and the cool-down

period, one can expect a reasonable estimate of time-integrated
FRED for those flame-front pixels. Return intervals of 3–4 min
were achieved here (Dickinson et al. 2016; Hudak et al. 2016b)

and were ,10 min in other studies (e.g. Peterson et al. 2013;
Schroeder et al. 2014). Even a 3–4-min sampling interval
resulted in large parts of fire area in our non-forested burn

blocks where FRED could not be estimated because of a lack
of above-background FRFD measurements in time series
(Klauberg et al. 2018). Although spatial interpolation allows
continuousmaps to be produced, andwas used to provide data in

Fig. 1, it will always be an averaged representation of fire that is
dynamic in time and space (Hiers et al. 2009; Hoffman et al.

2012) and will underestimate FRED to the extent that the

interpolation process includes pixels where flame-fronts were
not captured. Spatial interpolation of FRED could likely be
improved in future work by data-driven fire spread simulation

(e.g. Rochoux et al. 2014, 2015).
The relationships in Fig. 1 are unlikely to be universal not

only because of the likely effects of fuel and fire variability
across ecosystems and temporal undersampling of fire

radiation but also because of challenges for remotely sensed
measurement and contrasts among remote sensors (Dickinson
et al. 2016). We sometimes obtain non-physical estimates of

the emissivity–area product (eAf) (values .1) with the nadir
radiometers that may be related to bias induced by non-ideal
(i.e. non-greybody) radiation from hot gases (e.g. Dupuy et al.

2007; Boulet et al. 2009; Parent et al. 2010). Hot gas radiation
(especially from CO2 and CO; Boulet et al. 2009) is sensed
because of the wide-band mid- and long-wave infrared sensors

used in our nadir radiometers. A further potential source of
error arises from the fact that tall flames are closer to the nadir
radiometer than small flames, the effect of which could not be
included in the current analysis for lack of co-located flame

height measurements (see Kremens et al. 2010). In contrast, the
WASP LWIR sensor has a narrow passband designed to avoid
the influence of radiation absorption and emission by gases

(Kremens and Dickinson 2015). Nadir radiometer FRED is
greater than WASP FRED perhaps because it is a better
estimate of total fire radiation, which includes both radiation

from hot gases and greybody radiation from hot soot, fuels and
substrate whereas WASP FRED may be a more accurate
measurement of greybody radiation alone (Dickinson et al.

2016). Almost all airborne and satellite measurements in the
literature likely provide better measurements of greybody than
total radiation from fires (e.g. see measurements in Wooster
et al. 2005). Differences among sensing systems in what they

are measuring and measurement challenges generally (e.g.
smoke absorption of radiation, Koseki and Mulholland 1991)
show that we need to develop a more sophisticated understand-

ing of wildland fire radiation and its measurement.
We now demonstrate how remotely sensed data could be

used to assess woody stem mortality during surface fires.

Incident energy inferred from FRED measured by nadir radio-
meters and WASP is used to predict depth of necrosis and, in
turn, depth of necrosis is compared with bark thickness to
determine threshold diameters at which turkey oak stems would

survive a fire (Fig. 2). Bark thickness is whole-bark thickness,
that is, depth from the bark surface to the vascular cambium,
which, if killed by heating during fires around the stem’s

circumference, kills the stem. Note that stem death does not
necessarily mean death of the entire woody plant, as many
species resprout from the roots or the base of the stem.

FireStem2D was previously used to simulate tree stem heating
and stem death over a wide range of incident energy, showing a
close relationship between depth of necrosis and incident energy

across a range of species (Chatziefstratiou et al. 2013). We
relatedmodelled depth of necrosis to incident energy (EIT) using
a power-law fit to modelled data from fig. 7 in Chatziefstratiou
et al. (2013). The relationship is:

DN ¼ 0:0021ðEIT Þ0:99 ð3Þ

where necrosis depth (DN) is in units of millimetres and EIT in
units of kilojoules per metre squared, and the relationship is

limited to necrosis depths below 16 mm as appropriate for the
fires in the present study. The relationship between bark thick-
ness and turkey oak diameter is from Lutes (unpubl. data).

The median diameters of turkey oak stems that would have
been expected to be killed were larger in the forested block than
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in the non-forested blocks (Fig. 2), consistent with the greater

fuel consumption and, often, fireline intensities in forested burn
blocks. Two countervailing biases may affect our predictions.
We would have expected tree vulnerability to be overestimated

because convective energy, and thus incident energy, is likely to
be higher for the copper-plug in situ incident flux sensors than
for tree stems. Overestimation is likely because the copper plug

rapidly conducts heat away from the sensor’s surface and
maintains lower surface temperatures than adjacent, low-con-
ductivity tree bark, and convection is proportional to the
temperature difference between the hot flame gases and the

surface to which heat is being transferred. In contrast, it appears
that a handful of incident energy measurements in both forested
and non-forested blocks were underestimated (see Fig. 1),

probably related to small flames at some locations.
In future work, energy incident on tree stems needs to be

evaluated directly in order to evaluate our stem mortality

predictions. Incident energy will be affected by whether spread
is backing, heading or flanking and by interactions between
flames and tree stems (Gutsell and Johnson 1996). More
physically realistic methods should also be explored to infer

heat deposition from remotely sensed fire characteristics (Butler
and Dickinson 2010). Remotely sensed flame spread, consump-
tion and fireline intensity (e.g. Johnston et al. 2017) could serve

as a basis for physical models of energy deposition (e.g. Bova
and Dickinson 2008).

Conflicts of interest

The authors declare that they have no conflicts of interest.

Declaration of funding

The data used in this paper are from the RxCADRE 2012
campaign made possible by a grant from the Joint Fire Science
Program (Project no. 11–2-1–11).

Acknowledgements

We thank the Eglin AFB fire management staff, particularly Kevin Hiers,

BrettWilliams and the fire crews for their high-quality work on logistics and

operations. We also thank the many people whose work and collaboration

made the RxCADRE project and these measurements possible, including

Roger Ottmar, Dan Jimenez, Bob Kremens, Casey Teske, Paul Sopko,Mark

Vosburgh and Cyle Wold, as well as the many other scientists who partic-

ipated in the study. Thanks to Nick Skowronski and anonymous reviewers

for feedback on earlier drafts.

References

Anderson HE (1969) Heat transfer and fire spread. USDA Forest Service,

Intermountain Forest and Range Experiment Station, Research Paper

INT-69. (Ogden, UT, USA)

Anderson WR, Catchpole EA, Butler BW (2010) Convective heat transfer

in fire spread through fine fuel beds. International Journal of Wildland

Fire 19, 284–298. doi:10.1071/WF09021

Boulet P, Parent G, Collin A, Acem Z, Porterie B, Clerc JP, Consalvi JL,

Kaiss A (2009) Spectral emission of flames from laboratory-scale

vegetation fires. International Journal of Wildland Fire 18, 875–884.

doi:10.1071/WF08053

Bova AS, Dickinson MB (2005) Linking surface-fire behavior, stem

heating, and tissue necrosis. Canadian Journal of Forest Research 35,

814–822. doi:10.1139/X05-004

Bova AS, Dickinson MB (2008) Beyond ‘fire temperatures’: calibrating

thermocouple probes and modeling their response to surface fires in

hardwood fuels. Canadian Journal of Forest Research 38, 1008–1020.

doi:10.1139/X07-204

Butler BW, Dickinson MB (2010) Tree injury and mortality in fires:

developing process-based models. Fire Ecology 6, 55–79. doi:10.

4996/FIREECOLOGY.0601055

Butler BW, Jimenez D (2009) In situ measurements of fire behavior. In ‘4th

International fire ecology & management congress: fire as a global

process, Savannah, GA’, 30 November–4 December 2009, Savannah,

GA, USA. (Ed. S Rideout-Hanzak) (The Association for Fire Ecology)

Butler B, Jimenez D, Forthofer J, Shannon K, Sopoko P (2010) A portable

system for characterizing wildland fire behavior. In ‘Proceedings of the

6th international conference on forest fire research’, 15–18 November

0
0.5 1.5 2.5 3.5 4.5 5.5

Radiometer/forested
WASP/forested

Radiometer/non-forested
WASP/non-forested

10

20

30

40

50

60

70
80

Threshold diameter (cm, range midpoint)

F
re

qu
en

cy
 (

%
)

Fig. 2. Frequency distributions of threshold tree diameters in RxCADRE 2012 fires that would be vulnerable to

injury during fires. Incident energy is inferred for nadir radiometer and Wildfire Airborne Sensor Program (WASP)

fire radiated energy density (FRED) measurements by the relationships in Fig. 1. In turn, incident energy and

modelled results from Chatziefstratiou et al. (2013) are used to predict necrosis depth. Finally, the diameter of the

largest stem whose vascular cambium would be injured at a given incident energy (the threshold diameter) is

determined from bark thickness under the assumption that injury results when necrosis depth is greater than or equal

to bark thickness (i.e. cambium depth).Median threshold diameters inferred from nadir radiometer FRED are 2.6 and

1.2 cm, and from WASP FRED are 2.8 and 0.7 cm for forested and non-forested burn blocks respectively.

234 Int. J. Wildland Fire M. B. Dickinson et al.

http://dx.doi.org/10.1071/WF09021
http://dx.doi.org/10.1071/WF08053
http://dx.doi.org/10.1139/X05-004
http://dx.doi.org/10.1139/X07-204
http://dx.doi.org/10.4996/FIREECOLOGY.0601055
http://dx.doi.org/10.4996/FIREECOLOGY.0601055


2010, Coimbra, Portugal. (Ed. DX Viegas) [CD-ROM] (University of

Coimbra: Coimbra, Portugal)

Butler BW, Teske C, JimenezD, O’Brien JJ, Sopko P, WoldC, VosburghM,

HornsbyB, Loudermilk EL (2016)Observations of energy transport and

rate of spreads from low-intensity fires in longleaf pine habitat –

RxCADRE 2012. International Journal of Wildland Fire 25, 76–89.

doi:10.1071/WF14154

Cannon JB, O’Brien JJ, Loudermilk EL, Dickinson MB, Peterson CJ

(2014) The influence of experimental wind disturbance on forest fuels

and fire characteristics. Forest Ecology and Management 330, 294–303.

doi:10.1016/J.FORECO.2014.07.021

Chatziefstratiou EK, Bohrer G, Bova AS, Subramanian R, Frasson RPM,

Scherzer A, Butler BW, Dickinson MB (2013) FireStem2D – A two-

dimensional heat transfer model for simulating tree stem injury in fires.

PLoS One 8(7), e70110. doi:10.1371/JOURNAL.PONE.0070110

Dickinson MB, Kremens R (2015) RxCADRE 2008, 2011, and 2012:

radiometer data. USFS Forest Service Research Data Archive. (Fort

Collins, CO, USA)

DickinsonMB, Ryan KC (2010) Introduction: strengthening the foundation

of wildland fire effects prediction for research and management. Fire

Ecology 6, 1–12. doi:10.4996/FIREECOLOGY.0601001

Dickinson MB, Hudak AT, Zajkowski T, Loudermilk EL, Schroeder W,

Ellison L, Kremens RL, Holley W, Martinez O, Paxton A (2016)

Measuring radiant emissions from entire prescribed fires with ground,

airborne and satellite sensors - RxCADRE 2012. International Journal

of Wildland Fire 25, 48–61. doi:10.1071/WF15090
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