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A B S T R A C T

The U.S. Geological Survey Land Change Monitoring, Assessment and Projection (USGS LCMAP) initiative is
working toward a comprehensive capability to characterize land cover and land cover change using dense
Landsat time series data. A suite of products including annual land cover maps and annual land cover change
maps will be produced using the Landsat 4-8 data record. LCMAP products will initially be created for the
conterminous United States (CONUS) and then extended to include Alaska and Hawaii. A critical component of
LCMAP is the collection of reference data using the TimeSync tool, a web-based interface for manually inter-
preting and recording land cover from Landsat data supplemented with fine resolution imagery and other an-
cillary data. These reference data will be used for area estimation and validation of the LCMAP annual land cover
products. Nearly 12,000 LCMAP reference sample pixels have been interpreted and a simple random subsample
of these pixels has been interpreted independently by a second analyst (hereafter referred to as “duplicate
interpretations”). The annual land cover reference class labels for the 1984–2016 monitoring period obtained
from these duplicate interpretations are used to address the following questions: 1) How consistent are the
reference class labels among interpreters overall and per class? 2) Does consistency vary by geographic region?
3) Does consistency vary as interpreters gain experience over time? 4) Does interpreter consistency change with
improving availability and quality of imagery from 1984 to 2016? Overall agreement between interpreters was
88%. Class-specific agreement ranged from 46% for Disturbed to 94% for Water, with more prevalent classes
(Tree Cover, Grass/Shrub and Cropland) generally having greater agreement than rare classes (Developed,
Barren and Wetland). Agreement between interpreters remained approximately the same over the 12-month
period during which these interpretations were completed. Increasing availability of Landsat and Google Earth
fine resolution data over the 1984 to 2016 monitoring period coincided with increased interpreter consistency
for the post-2000 data record. The reference data interpretation and quality assurance protocols implemented for
LCMAP demonstrate the technical and practical feasibility of using the Landsat archive and intensive human
interpretation to produce national, annual reference land cover data over a 30-year period. Protocols to estimate
and enhance interpreter consistency are critical elements to document and ensure the quality of these reference
data.

1. Introduction

Understanding land cover and land cover change is central to
managing the Earth's natural capital such as soils, forests, water

resources, biodiversity and climate (Foley et al., 2005). Global and
large-area land cover and land change maps have important and even
foundational uses in a variety of research, management and policy
applications. Land cover and land change data are crucial inputs for
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climate models (Prestele et al., 2017), forest management and research
(Hansen et al., 2013) and the study of biodiversity and habitat loss
(Hoekstra et al., 2004). The expanding scope and importance of land
cover and land change science drive a need for more accurate land
cover and land change data to support these uses (Turner 2nd et al.,
2007).

In response to those needs the U.S. Geological Survey (USGS) Land
Change Monitoring, Assessment and Projection (LCMAP) initiative will
provide a suite of annual map products including land cover and land
cover change maps, as well as newly developed change products aimed
at predicting a range of land surface disturbances. Initial output will
cover the conterminous United States (CONUS) and eventually include
Hawaii and Alaska. These outputs are produced from dense time series
Landsat data using the USGS Analysis Ready Data (ARD). The USGS
ARD are “geo-registered, top of atmosphere and atmospherically cor-
rected products defined in a common equal area projection, accom-
panied by spatially explicit quality assessment information, and ap-
propriate metadata” (Dwyer et al., 2018).

Assessing the accuracy of land cover and land change maps is
widely recognized as an integral part of land cover and land change
studies (Olofsson et al., 2014). The overall accuracy and the thematic,
spatial and temporal variations in accuracy of land cover data can have
a major impact on the products, predictions and conclusions made
using that data (Foody, 2015; Olofsson et al., 2013). Nevertheless, the
time and resources required to collect reference data for a large-area
probability sample present a major challenge, often leading to limited
and inadequate validation efforts (Foody, 2010). The resources re-
quired to collect reference data via field visits for a large, probability
sample from an area the size of CONUS would be prohibitive. In ad-
dition, many land cover and land change products, including those
being created by the LCMAP initiative, require historical reference data
often covering some or all of the Landsat data record through time.
Adequate historical field data with the required consistency are not
available to provide the reference data required for large-area maps
such as those produced by LCMAP. Consequently, it has become
common practice to collect reference data using remotely sensed data
(Olofsson et al., 2014). By using data of higher quality (e.g., finer re-
solution) and/or by using more accurate classification methods (e.g.,
expert interpretation), it is assumed possible to obtain data of higher
quality than the map data (Olofsson et al., 2014).

Most large-area map accuracy assessments employ multiple inter-
preters to obtain the reference class labels (e.g., Scepan et al., 1999; Zhu
et al., 2000; Powell et al., 2004; Clark et al., 2012; Wickham et al.,
2017). Human interpreters do not always arrive at the same reference
classification even when given the same sources of information for
determining the reference label, and if interpreters disagree, the pos-
sibility of error in the reference classification exists. As stated by
Congalton (1991), “It is obvious that in order to adequately assess the
accuracy of the remotely sensed classification, accurate ground, or re-
ference data must be collected.” The longstanding recognition of the
importance of accurate reference data was further highlighted by
Foody's (2010, 2013) quantification of the impact of reference data
error on accuracy and area estimates. Foody (2013) provided an ex-
ample for a binary classification in which reference classification error
resulted in an overestimate of class abundance (area) by nearly a factor
of six even though the accuracy of the reference data was over 90%.
Whereas Foody (2013) focused on the impact of reference data error,
McRoberts et al. (2018) quantified the impact of variability in the re-
ference class labels on the standard error of area estimates and found
that failing to account for interpreter variability could produce under-
estimates of the standard error by a factor of 2.3.

Good practice guidelines for accuracy assessment (Olofsson et al.,
2014) recommend assessing the uncertainty of reference data. To esti-
mate the variability of the LCMAP reference land cover data and also to
ensure that the reference data are of high quality, an approach for
quality assurance and quality control (QA/QC) was developed and

implemented based on obtaining duplicate interpretations from in-
dependent analysts for a subset of the full reference sample. Pairwise
comparison of these duplicate interpretations provided the basis for
estimating agreement among interpreters and for calibration of inter-
preters through individual and group feedback. We use the duplicate
reference annual land cover interpretations for 1984 through 2016
obtained from the sample data to evaluate the following questions. 1)
What is the agreement among interpreters overall and by land cover
class? 2) Does interpreter agreement differ across four large geographic
regions? 3) Does agreement change over the time period during which
the interpretations were obtained (i.e., does agreement change as in-
terpreters gain experience)? 4) Does agreement vary as the quality and
density of Landsat and fine resolution imagery have improved over the
time period monitored, 1984–2016?

In this article, we estimate agreement among multiple interpreters
for a large-area (national) land cover monitoring program spanning a
long time series (over 30 years). The assessment of interpreter con-
sistency in the LCMAP response design protocol is embedded within an
ongoing land cover monitoring activity and consequently the results of
this assessment estimate interpreter agreement in a realistic operational
setting. Another novel aspect of the LCMAP response design protocol is
that a portion of the data collected to estimate agreement and provide
information for interpreter feedback is obtained from a probability
subsample of the full sample. This aspect of the protocol provides a
rigorous basis for estimating interpreter agreement within a design-
based inference framework.

2. Use of interpreters in land-cover studies

The response design protocols for reference class labeling in large-
area map accuracy assessments vary widely in terms of how interpreters
are used. In some applications a single interpreter is employed
(Bicheron et al., 2008; Hermosilla et al., 2015, 2018; Sexton et al.,
2013) and hence no information is available regarding interpreter
variability. More commonly, multiple interpreters are required because
of the large sample size of reference classifications. For example, Feng
et al. (2016) used 12 analysts to interpret nearly 28,000 sample points
to obtain reference data for three epochs of global forest cover change.
Typically interpreters undergo common training to establish a baseline
of consistency. For example, the interpreters may initially collectively
work on a common set of pixels and discuss these cases to establish
consistency (Wickham et al., 2017; Tsendbazar et al., 2018) before
proceeding to work independently to obtain the interpretations for the
reference sample. Further, over the life of the project interpreter con-
sistency may be enhanced by group review of selected cases, often fo-
cusing on challenging examples, in an ongoing process of interpreter
training and calibration (e.g., Sleeter et al., 2013, Sec. 2.5).

Operationally, if multiple interpreters examine the same sample
pixels it will be necessary to resolve disagreements to produce the final
reference class labels used in the assessment. For example, the mode
reference class may be used (McRoberts et al., 2018), interpreters may
be reconvened to decide by consensus a final label (Powell et al., 2004;
Zhu et al., 2000), or an expert interpreter may be called upon to provide
the final label (Clark et al., 2012). In one of the first large-area accuracy
assessments conducted (Scepan et al., 1999), three experts in-
dependently interpreted each sample pixel. For the map label to be
considered correct, two of the three interpreters had to have assigned a
reference label that matched the map label; otherwise, the pixel was
deemed incorrectly labeled. However, in these cases for which the map
label was incorrect, if the interpreters disagreed on their reference la-
bels the pixel was removed from the assessment (this occurred for ap-
proximately 50% of the pixels labeled as incorrect). Scepan et al. (1999)
did not report a quantitative evaluation of agreement among the mul-
tiple interpreters. The National Land Cover Database (NLCD) of the
United States provides additional examples of large-area map accuracy
assessments in which multiple interpreters were used (Wickham et al.,
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2013, 2017). Although the NLCD response design protocol included
provisions for interpreter training and in-progress interpreter feedback
to enhance consistency, the NLCD did not carry out a study to quanti-
tatively evaluate interpreter agreement. Gong et al. (2013) employed
four interpreters in a first round and three interpreters in a second
round of reference data collection for over 36,000 sample units, but no
information regarding interpreter consistency was reported.

For some applications in which multiple interpreters were used, the
percentage of cases for which interpreters disagreed has been reported.
For example, Clark et al. (2012) reported 10% disagreement between
duplicate interpretations and Zhu et al. (2000) reported 30% dis-
agreement between duplicates. However, it is very rare that a quanti-
tative analysis of interpreter consistency is reported. Powell et al.
(2004) is a notable exception as they examined agreement among five
interpreters providing reference labels for a sample of 790,
30m×30m pixels selected from an area covering approximately
54,000 km2 in Rondônia, Brazil. The legend consisted of five classes at a
single point in time, with average agreement between pairs of inter-
preters reported as 86% overall, 49% for second-growth forest, 81% for
pasture, and 92% for primary forest, and no report for Urban/bare soil
and Water (Powell et al., 2004, Table 3). Mann and Rothley (2006)
employed three interpreters working with a five-class legend and an
area covering 2.7 km×4.4 km to examine how estimates of accuracy
varied over the different interpreters. However, they did not report
agreement among the three interpreters.

Although issues associated with multiple interpreters and their
consistency have been present throughout the history of land cover
monitoring, few studies have estimated agreement among interpreters.
In those cases where agreement has been estimated, the area mapped
has been relatively small and the reference data represent only a single
date. In our study, we estimate pairwise interpreter agreement for a
probability subsample of nearly 3000 pixels representative of CONUS
and a time series of over 30 years. Our results documenting interpreter
consistency therefore inform the ongoing development of methods for
collecting reference data for large-area, land cover monitoring efforts
targeting a long time series of annual observations.

3. Methods

3.1. Overview of LCMAP

A condensed overview of the LCMAP initiative is provided to set the
context for the reference data protocol (i.e., response design) that is the
focus of this article. LCMAP annual land cover data are being produced
using the Continuous Change Detection and Classification (CCDC) al-
gorithm developed by Zhu and Woodcock (2014). The land cover le-
gend includes the classes Developed, Cropland, Tree Cover, Grass/
Shrub, Wetland, Water, Snow/Ice, Disturbed and Barren. Annual maps
of land cover and land cover change spanning 1985–2017 will be
produced for CONUS and four large reporting regions created by ag-
gregating Omernik ecoregions (Fig. 1) (Omernik and Griffith, 2014).
Parallel to the LCMAP mapping effort, reference data are being col-
lected for a simple random sample of pixels from CONUS. The reference
data will be used to estimate accuracy of the LCMAP products and to
produce estimates of land cover composition and change. The reference
interpretations are obtained independently of the map classification.

The reference sample consists of single, Landsat-resolution grid-
pixels (30m×30m). The sample frame was defined by the full CONUS
extent of the National Land Cover Database, which shares the same grid
system as LCMAP (Homer et al., 2012). Simple random sampling was
used to select the initial sample of 25,000 pixels because it is easy to
implement, simple to analyze and amenable to future augmentation to
increase the sample size from targeted classes or regions within CONUS.
A primary motivation for implementing simple random sampling was
that reference data collection needed to begin long before the LCMAP
products would be available. Although stratified sampling is often

justified to increase the sample size from rare classes (Olofsson et al.,
2014), it was not a viable option given the unavailability of maps to
construct the strata. The LCMAP sampling strategy includes provision
to augment the initial simple random sample to targeted geographic
areas or rare classes once the LCMAP products are available to construct
strata (Overton and Stehman, 1996). Sample pixels are processed (in-
terpreted) in a random order, so the 11,900 sample pixels analyzed here
constitute a simple random sample from CONUS.

3.2. TimeSync reference data collection

The TimeSync tool (Cohen et al., 2010) provides efficient inter-
preter access to Landsat data. TimeSync accommodates the specific map
projection parameters that had been adopted by the LCMAP initiative
and was customized to collect a broad range of attributes that could be
translated to the LCMAP land cover classes. A system of data collection
and data quality assurance was developed through a collaboration be-
tween USGS and the U.S. Forest Service (USFS) Landscape Change
Monitoring System (LCMS) initiative. The class definitions and rules for
collection of the full set of attributes are defined in the Joint Response
Design (JRD) (see Supplementary materials).

The Landsat input data are obtained from the Google Earth Engine
collection of Landsat 5, 7 and 8 and converted to image files. Data are
reprojected to the LCMAP grid system in Albers Equal Area Conic,
World Geodetic System 1984 (WGS84). TimeSync uses two basic forms
of Landsat display: 1) annual image chips and 2) pixel values graphed
through time. Image chips consist of 255×255-pixel single-date
Landsat subsets from 1984 to 2016 growing season images, which are
displayed in sequence (Fig. 2). Analysts can access all usable images for
each year allowing them to replace images impacted by clouds, cloud
shadow or other data quality issues. Image chips can be displayed in
three band combinations.

TimeSync also graphs the spectral values of all cloud free Landsat
observations for each sample pixel (Fig. 3). Interpreters can select from
Landsat bands and several indices for this “trajectory” display. The
display can be toggled to show the values for only the display image
date or the values for all Landsat observations in the data collection not
identified as cloud or cloud shadow by the Fmask algorithm (from
CFmask acquired with pre-Collection 1 data and the Landsat QA band
for more recently acquired Collection 1 data) (Zhu and Woodcock,
2012).

3.3. Interpretation protocol

Collection of this reference dataset is a collaboration between the
LCMS project of the USFS and the LCMAP initiative of the USGS. To
accommodate the different data needs of the two projects, a unique
implementation of TimeSync was developed to collect attributes ser-
ving the needs of both projects. Because of this the resulting dataset
includes more attributes than either individual project requires. These
attributes are combined in different ways by the USGS and USFS to
produce the output reference data needed by the respective LCMAP and
LCMS projects. The interpretation protocols followed to collect these
attributes are defined in the JRD produced by USGS and USFS per-
sonnel.

3.3.1. Subsampling of pixels and assignment for duplicated interpretations
The subsample of pixels selected for duplicated interpretations

provided data used to estimate interpreter consistency and for ongoing
interpreter training and calibration. Pixels were processed in sets ran-
ging from 600 to 1400 pixels, with Set 1 being the first 600 pixels in the
randomized sample list of all 25,000 sample pixels and subsequent sets
created by continuing sequentially through that randomized list
(Table 1). Thus, the sets reflect the temporal order in which the pixels
were interpreted. Twelve sets represent the 11,900 pixels that had been
interpreted at the time of this writing. For Sets 1–12, a minimum of
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10% of the reference sample pixels were selected for duplicate inter-
pretation via simple random sampling. Only these randomly selected
duplicated pixels were used to estimate interpreter agreement, thus
ensuring that these estimates were produced from a probability sample.
Other pixels selected for a second interpretation were purposively
chosen based on QA/QC goals such as targeting geographic regions or
classes that were more difficult to interpret consistently. For some sets,
fewer purposively selected duplicate interpretations were needed to
address the targeted QA/QC concerns, and so in those sets the sample
size for the simple random subset was increased. Duplicated sample
pixels (random and purposive) that had interpreter disagreement were
used to identify issues with specific classes and interpreters, to flag
pixels for review and editing, and to provide feedback to interpreters.

The team of interpreters varied in size from 5 to 11 over the course
of the study. Interpreter experience ranged from multiple years of
working with thematic land cover to mostly classroom experience
working with forestry mapping (Table S1). Each interpreter was ran-
domly assigned 100–200 pixels per set with approximately 3 weeks
allocated to complete interpretations as the interpreter's schedule al-
lowed (based on an expected 20 h per week per interpreter). Every pixel
was randomly assigned to an interpreter for the initial interpretation,
with approximately 60% of the pixels also assigned to another in-
dependent, randomly assigned interpreter to conduct a duplicate in-
terpretation for QA/QC (Table 1).

3.3.2. Visual interpretation and classification
Interpreters were provided with training regarding workflows, re-

sponse design, class definitions, image interpretation and use of ancil-
lary data. Detailed guidelines and class definitions were available for
reference in the JRD. Feedback and ongoing training were also pro-
vided to interpreters via e-mail and group teleconferences throughout
the collection process. Interpreter questions about any aspect of the
process, including individual sample pixels, were answered by the QA/
QC review team and shared with all interpreters at the end of each set.

Landsat spectral data displayed in TimeSync were the primary in-
formation used for interpretations. Interpreters were also expected to
consult the fine resolution aerial imagery in Google Earth for each pixel.
These data were often supplemented with older aerial imagery avail-
able through EarthExplorer (USGS, 2018) from the USGS National
Aerial Photography Program (NAPP) and the National High-Altitude
Photography (NHAP) program. Data such as Monitoring Trends in Burn
Severity (MTBS) fire polygons (MTBS, 2018) and National Wetland
Inventory polygons (USFWS, 2018) were available as well. Interpreters
were to use these data to support interpretation of Landsat and fine
resolution imagery, but the greatest weight of evidence was to be given
to the Landsat data.

Interpreters recorded attributes in three general categories: 1) land
use, 2) land cover, and 3) land change process (Fig. 4). Land use and
land cover attributes were recorded by the interpreters at vertices (see
red circles Fig. 3). For each change in cover, a new vertex is needed.

Fig. 1. LCMAP reporting regions from aggregated Omernik ecoregions.

Fig. 2. Five years of Landsat image chips from the TimeSync 1984–2016 time series sequence for sample pixel 11,039, showing a forest harvest over the sample pixel
outline (white squares).
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The attribute at each vertex should describe the use and cover for the
year it is recorded and for the years going back in time to the last year
before the next vertex. If there is more than one cover or use between
these vertices, then another vertex needs to be added to record that
different attribute. These attributes are converted into annual labels by
extrapolating the recorded values at each vertex back until another
labeled vertex is reached. Primary and secondary land use and land
cover labels were assigned based on the proportional composition of the
single 30m×30m sample pixel as interpreted from the fine resolution
imagery. Additional characteristics such as wetland status and the
presence of mining or specific types of agriculture were recorded for
some classes by marking checkboxes.

Change processes (Fig. 4) are recorded in TimeSync as ‘segments’
extending between the vertex representing the year before the change
can be seen in the data, forward in time to the last vertex representing a
year where change from the prior year is evident. Segments range in
length from the entire time series to a single year. Change processes
impacting any portion of the pixel were recorded. The full set of labels
assigned for land use, land cover and change process categories was not
designed to produce data that would be used directly as three discrete
legends of land characteristics. The cover, use and change character-
istics were defined in such a way as to provide the necessary informa-
tion to enable a crosswalk to the classes of the LCMAP or LCMS legends.
This was done with a scripted set of rules for the LCMAP data used in
this analysis.

3.4. Quality assurance and quality control

The QA/QC process was designed to meet three objectives: 1) esti-
mate consistency of the reference data among interpreters and over the
time span of data collection; 2) use agreement diagnostics and inter-
pretation reviews as a basis for ongoing feedback and calibration of
interpreters; and 3) identify errors or inconsistencies in interpretations
and correct problems for the final version of these data. Most of the QA/
QC process relied on comparing interpretations at sample pixels that
had been independently interpreted by random pairs of analysts. All
pixels that were assigned for a second interpretation were compared for
agreement based on the LCMAP crosswalked land cover classes (Section

3.3.2). Upon completion of each set, a contingency table was created
showing overall and per-class agreement between the duplicate inter-
pretations. A second type of contingency table was constructed for each
individual interpreter comparing their interpretations to the corre-
sponding duplicate interpretations (Table 2). For QA/QC purposes
these interpreter-specific evaluations included both randomly and
purposively selected duplicate pixels. However, when estimating in-
terpreter agreement, only those pixels selected for the probability
subsample were used.

These individual and overall tables were provided to interpreters at
the completion of each set to inform them of which classes they were
frequently interpreting differently from the group. When individual
interpreters showed repeated disagreement in a category of comparison
this was considered an indication that their interpretations were de-
viating from the group and potentially inconsistent with the JRD. For
example, interpreter 137 (Table 2) has labeled well less than half as
many observations as Wetland compared to the mix of other inter-
preters who have interpreted the same duplicate pixels (98 versus 269).
This was considered a strong indication that this interpreter was de-
viating from the JRD for the Wetland class. Interpreters were notified of
specific interpretation mistakes discovered during the review process
and provided with the QA/QC reviewer's recommended edits. In addi-
tion, the QA/QC team used the overall confusion matrix assembled
from all duplicate interpretations to identify examples where additional
general interpretation guidance was needed for the group as a whole.
Teleconferences were held periodically to provide guidance regarding
common interpretation issues, to supply further training and to allow
for interpreter discussion and knowledge sharing.

4. Results

4.1. Interpreter agreement

A subsample of 2952 out of the 11,900 sample pixels completed to
date was randomly selected for duplicate interpretation by a second
interpreter. This randomly selected subset was the basis for estimating
consistency among all interpretations in the full dataset. Agreement was
assessed using data that had been crosswalked to the LCMAP land cover

Fig. 3. TimeSync trajectory display gives interpreters a summary view of values for all cloud free Landsat observations. Land use and land cover class labels are
recorded at vertices and extrapolated backward to the next vertex. “Segments” between vertices record change processes related to disturbance such as Fire and
Harvest (forest), and non-disturbance processes such as Stable and Growth/Recovery.

Table 1
Allocation of sample size and duplicate interpretations per set (sets represent time order of interpretations).

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12 Total

Number of sample pixels 600 600 800 1400 1400 1100 1000 900 1000 1200 1000 900 11,900
Random duplicated interpretations 209 220 400 140 313 270 233 197 233 307 233 197 2952
Purposive duplicated interpretations 191 179 0 660 487 430 367 303 367 493 367 303 4147
Total interpretations 1000 999 1200 2200 2200 1800 1600 1400 1600 2000 1600 1400 18,999

B.W. Pengra, et al. Remote Sensing of Environment xxx (xxxx) xxxx

5



classes. At each sample pixel, class labels for each year (1984–2016)
were compared (Table 3). Because the rows and columns of Table 3
represent random pairs of interpreters, per-class agreement (Table 4) is
computed as the average of the row and column agreement.

Overall agreement estimated from the randomly selected subsample
of pixels was 88% (Table 3). The four most prevalent classes (Water,
Tree Cover, Grass/Shrub and Cropland) had CONUS-level agreement
ranging from 89% to 94% (Table 4). The Disturbed (46%), Barren
(56%) and Wetland (74%) classes had less agreement, which was ex-
pected because these classes have historically been challenging to

interpret accurately and consistently. Overall agreement was similar
across regions varying from 86% to 89%, but class-specific agreement
was much more variable by region. Grass/Shrub was especially variable
ranging from 63% in the East Central to 91% in the West Central and
the West (Tables 4, S2a–S2d). Tree Cover agreement was 80% in the
West Central where tree cover is rarer and often fragmented compared
to 92% in the East where tree cover more frequently occurs in large
homogeneous patches. The Disturbed class agreement also varied
widely with 35% agreement in the West Central compared to 55%
agreement in the West (Table 4).

Fig. 4. Land use and land cover attribute labels (left) and change attribute labels (right) available to interpreters in TimeSync.

Table 2
Contingency table comparing individual Interpreter 137 to all other interpreters (random and purposively selected pixels from Set 10) for purposes of interpreter
evaluation and feedback.

Other Interpreters - Set 10

Water Developed Disturbed Barren Tree cover Grass/shrub Cropland Wetland Total Agreement %

In
te

rp
re

te
r 1

37
 -

Se
t 1

0

Water 151 1 13 165 92

Developed 262 5 267 98

Disturbed 11 14 12 3 2 1 43 33

Barren 1 1 0

Tree cover 28 1706 8 97 1839 93

Grass/shrub 68 17 65 156 2204 96 94 2700 82

Cropland 2 32 328 362 91

Wetland 1 33 64 98 65

Total 151 341 68 65 1907 2248 426 269 5475

4729 Agree 

Agreement % 100 77 21 0 89 98 77 24 86.4 Overall 
agreement %
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Interpreter confusion most often occurred between classes that are
known to frequently be difficult to distinguish or ambiguous (Table 5).
For example, 79% of the disagreement involving Cropland was with
Grass/Shrub, and 32% of the disagreement involving Grass/Shrub was
with Cropland (Table 5). For Wetland, the most common disagreement
was with Tree Cover (56%), and for Developed the two most common
classes of disagreement were Grass/Shrub (36%) and Tree Cover (34%).
Barren class disagreement was almost exclusively with Grass/Shrub and
found in the arid and semi-arid areas of the West reporting region.

4.2. Agreement over temporal sets of interpretation

The QA/QC process provided feedback to interpreters with the in-
tention of improving interpretation agreement over time. As described
in Section 3.3.1, the randomized list of sample pixels was divided into
sets of pixels for interpretation, so Set 1 through Set 12 represent the
ordering in time that interpretations were completed. Overall agree-
ment between interpreters varied from 86% (Set 1) to 91% (Set 8) but
did not show a strong trend over time based on the 12 sets completed
(Table 6). Per-class agreement was also generally consistent as most
classes showed minimal or no trend in agreement over the 12 sets
(Table 6). Some of the observed fluctuation in agreement is attributable
to small sample size per set, particularly for the rare classes. Much of
the feedback provided to interpreters focused on consistent recording of
the change processes that crosswalk to the LCMAP Disturbed class. The
positive trend in agreement for Disturbed (Table 6) indicates this
feedback was beneficial. For the correlations (r) reported in Table 6, the
p-values for testing if the correlation is 0 versus an alternative hy-
pothesis that the correlation is not equal to 0 are greater than 0.15 for
all classes except Disturbed (p=0.07) and Barren (p=0.04).

4.3. Temporal variation in agreement through the data time series

To evaluate whether generally increasing availability of data
(Landsat, Google Earth imagery and ancillary data) through the

Table 3
Overall and per-class agreement between interpreters for the random subsample of pixels (CONUS summary).

    Duplicate interpreta�ons   

     Water Developed Disturbed Barren Tree cover Grass/shrub Cropland Wetland Total Agreement % 

snoitaterp retni laitinI
 

Water 4917 58 39 3 33 68 68 5186 95 

Developed 76 4105 60 6 299 225 64 18 4853 85 

Disturbed 6 65 422 1 193 101 38 72 898 47 

Barren 3 1 13 608 29 419 1 1074 57 

Tree cover 303 179 24335 1693 79 587 27176 90 

Grass/shrub 66 420 105 461 1444 31156 1381 106 35139 89 

Cropland 175 58 13 115 1152 17120 62 18695 92 

Wetland 165 54 632 337 71 3152 4411 71 

  Total 5233 5127 930 1092 27080 35151 18754 4065 97432 

 85815 Agree   

Agreement % 94 80 45 56 90 89 91 78 88.1% 
Overall 
agreement 

Table 4
Interpreter agreement (%) by LCMAP class and region (Fig. 1) estimated from
the randomly selected subsample. Values shown are the average of the row and
column agreement for data organized as in Table 3.

Agreement (%)

East East Central West Central West CONUS

Water 98 95 87 91 94
Developed 83 87 75 82 82
Disturbed 49 38 35 55 46
Barren 96 0 56 56
Tree cover 92 89 80 90 90
Grass/shrub 68 63 91 91 89
Cropland 83 93 93 91 91
Wetland 77 76 65 72 74
Overall 86 87 89 89 88

Table 5
Disagreement (%) distribution by class expressed as the percent of cases of disagreement in which one interpreter assigned the column-heading class and the other
interpreter assigned the row-heading class (randomly selected duplicate pixels).

Class Water Developed Disturbed Barren Tree cover Grass/shrub Cropland Wetland

Water * 8 5 1 1 2 0 11
Developed 23 * 13 1 11 8 7 1
Disturbed 8 7 * 1 7 3 3 6
Barren 1 0 1 * 1 11 0 0
Tree cover 6 34 38 3 * 39 6 56
Grass/shrub 23 36 21 93 56 * 79 20
Cropland 0 14 10 1 3 32 * 6
Wetland 40 1 13 0 22 6 4 *
Total 100 100 100 100 100 100 100 100
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33 years of the time series would increase interpreter agreement we
graphed overall interpreter agreement per data acquisition year with
Landsat and Google Earth data density. Fine resolution image avail-
ability was determined for each year of the time series at 200 randomly
selected pixels in Google Earth and used as an estimate of fine resolu-
tion image coverage. The relative density of all available Landsat scenes
per year for CONUS was computed as the number of scenes represented
in the ARD data divided by 200 (for scale). Although an increase in
overall agreement was detectable from 2001 to 2006, coinciding with
increased availability of Landsat data and an increase in aerial photo
coverage in Google Earth for the same period (Fig. 5), the improvement
was only about 1%. Interpreter agreement for Barren, Water, Developed
and Wetland classes was essentially flat. Increasing agreement was seen
in Cropland, Grass/Shrub, Tree Cover and Disturbed classes (Table S3).

5. Discussion

The response design protocol developed for the LCMAP and LCMS
projects has been demonstrated to be a viable operational methodology
for obtaining reference data for a national, long-term land cover mon-
itoring program. The information obtained from the probability sub-
sample of duplicate interpretations provides quantitative estimates of
agreement as well as critical information to further train interpreters to
enhance consistency and accuracy of the reference class labels. While

variability in reference class labeling has long been recognized, our
study quantifies the level of consistency achievable by well-trained
interpreters provided with the same resources of imagery and class
definitions. Overall agreement between pairs of analysts interpreting
randomly selected pixels was 88%. Interpreter agreement varied by
class (46% to 94%), with lower agreement observed for Disturbed
(46%), Barren (56%) and Wetland (74%) as these rarer classes are very
challenging to identify consistently. However, the LCMAP QA/QC
process includes review by senior interpreters and correction of obvious
interpretation and data entry errors. Therefore, the final reviewed and
edited reference data are expected to be more consistent than the initial
baseline level of agreement estimated from the independent pairs of
interpreters. Nevertheless, agreement results obtained in our study
highlight the critical importance of training interpreters and im-
plementing quality control procedures to monitor interpreters and
provide feedback to improve consistency.

When multiple interpreters are used but the reference class labels
disagree, a decision must be made on how the reference classification
will be recorded. A common strategy is to review all cases in which
interpretations disagree and provide a single ‘final’ interpretation that
resolves the disagreement (e.g., by consensus). For a large dataset such
as that of LCMAP, comprehensive expert or consensus review of all
interpretations would be impractical and compete for resources that are
needed to interpret a larger reference sample. In addition, because the

Table 6
Agreement (%) between interpreters for each LCMAP class per processing set for the subsample of randomly selected pixels (Set 1 and Set 12 are the first and last sets
of pixels processed). The correlation (r) between agreement and set number is also provided.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12 r

Water 97 88 94 95 97 89 94 97 90 96 95 99 0.27
Developed 89 83 85 77 88 82 76 80 74 83 85 78 −0.41
Disturbed 34 43 35 49 50 41 57 57 51 49 44 51 0.55
Barren 66 75 43 66 56 55 0 0 0 0 75 0 −0.60
Tree cover 87 92 89 90 88 91 91 91 89 90 90 87 −0.05
Grass/shrub 85 89 89 86 90 87 90 94 88 90 86 86 0.14
Cropland 93 86 93 90 89 93 92 91 93 93 91 92 0.37
Wetland 62 85 77 76 53 73 80 79 80 64 74 85 0.27
Overall 85 88 88 87 88 88 89 91 88 89 88 87 0.34

Fig. 5. Overall interpreter agreement (%) and Landsat and Google Earth fine resolution imagery availability 1985–2016.
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reference labels represent a long time series, any effort to resolve dis-
agreements must be done in a manner that does not create illogical
sequences of land change in the data. Currently LCMAP uses the in-
formation from the duplicated interpretations to prioritize pixels for
detailed review by three senior interpreters. Duplicated interpretations
that fail any of several tests of agreement are reviewed by senior in-
terpreters and the senior interpreter chooses the better of the duplicated
interpretations or makes other edits to determine the final interpreta-
tion. All sample pixels undergo evaluation to identify obvious inter-
pretation and data entry errors (e.g., illogical sequences of land cover)
and such errors are corrected within TimeSync.

The consistency of agreement across the 12 sets of interpretations
completed to date (Section 4.2 and Table 6) is an encouraging testa-
ment to the success of interpreter training and monitoring. However,
there are cautionary lessons to be learned as well. The complexity of
creating and executing an interpretation protocol in TimeSync to ac-
commodate multiple applications such as LCMAP and LCMS, com-
pounded by the difficulty of training and maintaining consistency
across a changing cast of interpreters was very challenging. The ne-
cessity of meeting the data requirements for two different projects with
different class definitions and different priorities has very likely had at
least some negative impact on data quality. Based on our experience
with this work, the tradeoffs between the potential efficiency of jointly
collecting reference data for multiple applications versus the much
simpler interpretation protocol possible where data are collected for a
single set of class definitions and data requirements need to be carefully
considered.

6. Conclusions

A lack of consistent, high-quality reference data is a challenge faced
by many land resource scientists and managers when seeking to eval-
uate land cover and map products. While interpreter agreement has
long been recognized as a potential issue, most studies of agreement
have been limited to relatively small spatial and temporal extents.
Typically, the response designs for land cover monitoring studies cov-
ering large spatial extents (e.g., national or continental) over a long
time series (e.g., 30 years) have not included a rigorous probability
sampling protocol for quantifying interpreter agreement and using this
agreement information in ongoing training of interpreters to enhance
the quality of the reference data. The response design developed for
LCMAP includes these features and has been successfully implemented
in an operational, national land cover monitoring framework.

The primary conclusions based on the results from obtaining du-
plicate interpretations of nearly 3000 randomly selected reference
sample pixels are the following: 1) a well-trained and calibrated team of
interpreters can achieve overall agreement among pairs of interpreters
of 88% with more prevalent classes such as Tree Cover, Grass/Shrub,
Water and Cropland having greater agreement (89% to 94%) than rare
classes such as Disturbed, Barren and Wetland (46% to 74%); 2) overall
and per-class interpreter agreement varied regionally; 3) the interpreter
training and QA/QC protocols maintained consistent agreement over
the time period that pixels for the 12 sets were interpreted with some
improvement in consistency of the problematic Disturbed class; and 4)
overall interpreter agreement increased, albeit by only slightly more
than 1%, for years after 2000, when more and better quality imagery
became available. Because most large-area reference datasets are ob-
tained by teams of interpreters, the results of this study provide con-
clusive evidence for including protocols in the response design to esti-
mate and monitor interpreter consistency, and that providing feedback
to interpreters can improve accuracy and consistency of the reference
data. Efforts to improve and estimate reference data quality will con-
tinue to be an ongoing initiative in LCMAP.
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