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Abstract
A central challenge in global change research is the projection of the future behavior of a 
system based upon past observations. Tree-ring data have been used increasingly over 
the last decade to project tree growth and forest ecosystem vulnerability under future 
climate conditions. But how can the response of tree growth to past climate variation 
predict the future, when the future does not look like the past? Space-for-time substi-
tution (SFTS) is one way to overcome the problem of extrapolation: the response at a 
given location in a warmer future is assumed to follow the response at a warmer location 
today. Here we evaluated an SFTS approach to projecting future growth of Douglas-fir 
(Pseudotsuga menziesii), a species that occupies an exceptionally large environmental 
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1  | INTRODUC TION

A central challenge in global change research is projecting organism or 
ecosystem responses to future conditions—for example, warmer tem-
peratures and increased evaporative water demand. Forests cover 
about 30% of the Earth's land surface and sequester vast amounts of 
carbon from the atmosphere, part of which is fixed in woody biomass 
for decades to centuries (Pan et  al., 2011). For this reason, the im-
pact of changing climate on forest ecosystems is expected to directly 
and/or indirectly feedback on the climate (Bonan, 2008). In the fifth 
realization of the Coupled Model Intercomparison Project (CMIP5), 
significant uncertainty is associated with the future behavior of the 
terrestrial carbon sink (Friedlingstein et al., 2014). While model en-
sembles generally project the terrestrial carbon sink to increase, the 
spread among individual models is remarkable (Schurgers, Ahlström, 
Arneth, Pugh, & Smith, 2018). Reducing uncertainties regarding for-
est ecosystem behavior under future temperature and precipitation 
regimes requires observations with a large spatiotemporal scope. 
However, current large-scale observation networks lack temporal 
resolution (national forest inventories), have limited temporal depth 
(eddy-covariance flux towers), or yield only indirect measures of tree 
growth (remotely sensed metrics of greenness). Tree rings comple-
ment these other data streams by offering annually resolved data 
of radial tree growth on much longer time scales (Babst et al., 2018; 
Klesse, Babst, et al., 2018). Indeed, tree-ring records have historically 
been used to put current climate conditions and trajectories in the 
context of climate variability over centuries to millennia (e.g., Cook 
et al., 2015; Wilson et al., 2016). These climate reconstructions rely 
upon the principle of uniformitarianism, that is, that the growth 

response to a limiting factor was the same in the recent past (instru-
mental period) as in the deep past (pre-instrumental period; Fritts, 
1976). That is, the statistical relationship between ring-width varia-
tion and the target climate variable is assumed to be stable over time. 
In the Anthropocene, an era of unprecedentedly rapid change of the 
Earth's climate system, this assumption is increasingly violated (Babst 
et al., 2019; Gustafson, 2013; Wilmking et al., 2020), and is even more 
likely to be violated in the future as the nonlinear increase in atmo-
spheric evaporative demand with rising temperatures aggravates 
drought stress on trees. The extrapolation of past climate–growth re-
lationships into conditions outside the domain of calibration may yield 
erroneous projections (Fritts, 1976). Indeed, Charney et  al.  (2016) 
found that a shift from positive to negative temperature sensitivity of 
boreal forests during the 21st century is expected to offset projected 
growth increase under the assumption of uniformitarianism. More re-
cently, Babst et al. (2019) found global evidence of just such a shift, 
from temperature-limited forest growth toward increased limitation 
by atmospheric water demand, during the late 20th century.

One potential solution to the problem of extrapolation is the use 
of space-for-time substitution (SFTS; Pickett,  1989). Under SFTS, 
it is presumed that the growth of trees at relatively warmer sites 
today can tell us how trees at relatively cooler sites may grow in 
a warmer future. Indeed, ecological niche theory suggests that or-
ganismal performance (e.g., growth) should vary in a predictable 
fashion, decreasing continuously from the niche optimum to its 
edge (Hutchinson, 1978; Maguire, 1973). In a now classic figure in 
dendrochronology, Fritts, Smith, Cardis, and Budelsky (1965, their 
figure 2) went one step further in describing predictable variation 
in tree-ring widths: average ring width and ring-width sensitivity 

space in North America. We fit a hierarchical mixed-effects model to capture ring-width 
variability in response to spatial and temporal variation in climate. We found opposing 
gradients for productivity and climate sensitivity with highest growth rates and weakest 
response to interannual climate variation in the mesic coastal part of Douglas-fir's range; 
narrower rings and stronger climate sensitivity occurred across the semi-arid interior. 
Ring-width response to spatial versus temporal temperature variation was opposite in 
sign, suggesting that spatial variation in productivity, caused by local adaptation and 
other slow processes, cannot be used to anticipate changes in productivity caused by 
rapid climate change. We thus substituted only climate sensitivities when projecting fu-
ture tree growth. Growth declines were projected across much of Douglas-fir's distribu-
tion, with largest relative decreases in the semiarid U.S. Interior West and smallest in the 
mesic Pacific Northwest. We further highlight the strengths of mixed-effects modeling 
for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth 
model, and the great potential to use tree-ring networks and results as a calibration 
target for next-generation vegetation models.
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to interannual climate variation trend in opposite directions across 
the environmental gradient from the forest interior to the forest 
edge (see also Anderegg & HilleRisLambers, 2019; Knapp, Ciais, & 
Smith, 2017), a prediction that we illustrate in Figure 1. An import-
ant caveat, however, is that SFTS relies on the assumption that the 
process(es) giving rise to spatial variation are the same as those giv-
ing rise to temporal variation. Furthermore, for spatial variation in 
an ecological variable to accurately predict the response to tempo-
ral environmental change, the time scale of a given environmental 
change versus that of the driving ecological process must be com-
parable (Damgaard, 2019). A vast spatial network of time-series data 
makes it possible to evaluate these assumptions underlying SFTS.

To capture spatial and temporal variation in tree growth, we ad-
vocate for the return to one of the conceptual cornerstones of den-
drochronology: the aggregate tree growth model (Cook,  1987), in 
which absolute ring widths are predicted as a function of four simul-
taneous influences: tree size, climate, “endogenous disturbances” 
(i.e., competitive pressure from neighbors), and exogenous distur-
bances (e.g., insect outbreaks). Here, we apply the aggregate growth 
model within a generalized mixed-effects framework to quantify ab-
solute growth in bole diameter (a metric related to carbon sequestra-
tion) as a function of simultaneous variation in climate and tree size. 
Mixed-effects models are commonly used in (dendro-) ecology, but 

their application to variation in absolute ring-width time series, that 
is, without prior “detrending,” is less common (but see e.g., Canham, 
Murphy, Riemann, McCullough, & Burrill, 2018; González de Andrés 
et  al.,  2017; Martin-Benito, Kint, del Río, Muys, & Cañellas,  2011; 
Martínez-Vilalta, López, Loepfe, & Lloret,  2012; Morrongiello & 
Thresher, 2015; Redmond, Kelsey, Urza, & Barger, 2017). We con-
structed a model that explicitly quantifies ring-width variation in re-
sponse to spatial versus temporal climate variation by specifying two 
kinds of climate influences on tree growth: (a) climate normals that 
vary across space, which influence overall productivity (the average 
ring width at a given site) and (b) climate that varies over time at a 
given location, which drives interannual ring-width variability.

We used Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) as a 
particularly compelling species for developing a mixed-effects mod-
eling framework to quantify spatial and temporal variation in growth 
and project future tree growth. It is the most abundant and econom-
ically important tree species in North America, with a distribution 
ranging from 17°N to 55°N. Corresponding to its vast geographic 
range, Douglas-fir grows under climate conditions with mean annual 
temperatures (MATs) between −0.5 and 19.5°C and cumulative an-
nual precipitation from 300 to 4,800 mm. Furthermore, it is widely 
planted outside of its native range (Isaac-Renton, Roberts, Hamann, 
& Spiecker, 2014). We use the mixed-effects model to address two 
research questions across its native range: First, do productivity and 
climate sensitivities vary across environmental gradients in a pre-
dictable pattern, as described by Fritts et al. (1965) and delineated in 
Figure 1? Second, are spatial and temporal variability in ring widths 
substitutable so that spatial variability may be used to anticipate the 
response of Douglas-fir to climate change of the near future?

We used modeled climate sensitivities and the output of 16 
general circulation models to project growth changes for the 2011–
2040 period under contrasting assumptions: (a) climate sensitivity 
at a given location does not change over time with changing climate 
normals (uniformitarianism) versus (b) climate sensitivity at a given 
location is modified by changing climate normals, that is, relying on 
SFTS of climate sensitivities.

2  | MATERIAL S AND METHODS

2.1 | Study area and tree-ring data

Douglas-fir comprises two varieties: the coastal variety ssp. menziesii, 
which occurs from California to British Columbia along the Pacific coast 
and coastal mountain ranges east to the crest of the Sierra Nevada and 
Cascade ranges; and the interior variety ssp. glauca, which is found 
throughout the intermountain west and North American cordillera 
from British Columbia and Alberta to southern Mexico (Figure 2).

We compiled a tree-ring data network consisting of 30,388 tree-
ring time series from 2,699 sites, totaling 2,706,098 growth rings 
over the 1902–2016 period of analysis. The data at 319 of these sites 
were downloaded from the International Tree Ring Data Bank (ITRDB; 
https://www.ncdc.noaa.gov/paleo-searc​h/?dataT​ypeId​=18, January 2017),  

F I G U R E  1   Predicted variation in average ring width (i.e., 
productivity, solid lines) and climate sensitivity (dashed lines) 
across a gradient of mean annual temperature (MAT) for two 
levels of precipitation (line colors). Across space, average ring 
width is expected to increase with increasing MAT, with higher 
productivity under wet conditions (blue) compared to dry (red) 
conditions. Under cold conditions (low MAT), interannual variation 
in temperature (dashed lines) may have a positive effect on growth 
versus a negative effect in the rest of the distribution. The impact 
of interannual climate variation (the slope of dashed lines) is 
predicted to be weaker under mesic conditions than dry conditions

https://www.ncdc.noaa.gov/paleo-search/?dataTypeId=18
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whereas the data of an additional 630 sites were directly contrib-
uted by the tree-ring community and co-authors. Similar to the 
ITRDB, the sampling schemes underlying this second collection 
ranged from elevation gradient (Anderegg & HilleRisLambers, 2019; 
Case & Peterson,  2005; Guiterman,  2016; Littell, Peterson, & 
Tjoelker, 2008; Restaino, Peterson, & Littell, 2016) and gridded de-
signs (O'Connor, Falk, Lynch, & Swetnam, 2014) to targeted sampling 
for dendroclimatological or -entomological reconstructions (e.g., 
Allen et al., 2013; Martin et al., 2019; Razavi, Elshorbagy, Wheater, 
& Sauchyn,  2015; Ryerson, Swetnam, & Lynch,  2003; Swetnam & 
Lynch,  1989). We also included 2,617 tree-ring time series from 
1,750 permanent forest inventory plots of the U.S. Forest Service 
Interior West-Forest Inventory and Analysis (FIA) program, which 
is presently the most extensive systematically sampled tree-ring 
collection in the region (DeRose, Shaw, & Long, 2017). The FIA plot 
network was designed to representatively sample all forested lands 
of the U.S. with one plot per 2,428 ha (Bechtold & Patterson, 2005); 
hence, tree-ring sampling in this plot network results in a dataset, 
that is, to a large degree, spatially and ecologically unbiased. The 
number of increment cores per site (sample replication) ranged from 
1 to 225 time series across this network, with an average of 1.5 

samples at FIA sites versus 29 at non-FIA sites. Thus, the majority 
of sampling locations came from the FIA collection (65%), whereas 
the majority of the tree-ring time series came from the ITRDB or 
contributed collections (91%).

2.2 | Climate data

Climate data were extracted for each of the 2,699 sites using 
ClimateNA v5.50 (Wang, Hamann, Spittlehouse, & Carroll,  2016; 
http://tinyu​rl.com/Clima​teNA), which is based on the CRU TS3.24 
gridded historical monthly data product spanning the years 1901–
2016. ClimateNA downscales and interpolates the CRU data to ad-
just the mean and variance of climate time series to elevation- and 
location-specific values (Wang et al., 2016).

Future climate projections were taken from 16 Atmosphere-
Ocean General Circulation Models (AOGCMs) of the CMIP5 multi-
model dataset, that is, the IPCC Assessment Report 5 (2013), also 
extracted from ClimateNA for each site. We focused on climate 
normal projections for the 2011–2040 period under the business-as-
usual emission scenario RCP8.5, which projects the consequences 

F I G U R E  2   Distribution of Douglas-fir 
tree-ring sampling sites across western 
North America. Colors represent the 
15 climatic-geographic regions defined 
via supervised self-organized mapping 
described in Section 2

http://tinyurl.com/ClimateNA
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of an extra 8.5 W/m2 of energy retained by the atmosphere in 2100 
compared to the pre-industrial baseline. The projected increase in 
winter temperature ranges from around +1°C in Mexico and the U.S. 
Southwest to +2.5–3°C in the Pacific Northwest and Canada com-
pared to the 1910–2010 long-term average.

2.3 | Generalized linear mixed-effects model

Because growth rings within a time series and time series within a 
sampling location are not independent, we modeled tree-ring-width 
variation using a generalized mixed-effects model. This framework 
allowed us to simultaneously estimate the (fixed) effects of tree size, 
climate normals, and time-varying climate on the width of annual 
growth rings, as well as account for unexplained variation between 
samples and locations (via random intercept and random slope 
terms). We first describe a baseline model, followed by a series of 
model variants. The baseline model has the form:

where ring width RW of sample s in year t is nested in plot p. RWp,s,t is 
influenced by tree size TSp,s of the preceding year t − 1, climate normals 
CNC i,p (climate normals that are constant and hence do not include 
the time index t) and CNW t,i,p (30-year moving window climate nor-
mals), annually varying seasonal climate variables CA j,k,p,t (specific to 
each year t), and random effects γ0, γ1, and γ2 specific to each sample s 
nested within each sampling location p. TS is the age-specific cumula-
tive radius of each sample 

summing from the first radial increment, assuming that the first mea-
sured growth ring originates at the pith (TSa=0 = 0). This fixed effect 
(TS) serves the same purpose as the dendrochronological practice of 
detrending—that is, it accounts for the decline in absolute ring width 
associated with increasing tree bole diameter. The index i varies from 
one to two, specifying MAT and mean annual precipitation (MAP). The 
index j specifies two climate variables—mean maximum temperature 
and cumulative precipitation—and the index k specifies eight 2-month 
seasons, beginning with the previous year's June and July, August and 
September, October and November, …, through the current year's 
September and October (noting that the winter period previous 
December to current year February is 3-month season). The scalars β0, 
β1, β6, and β8 and the vectors β2–5,7, along with the random effects γ0, γ1, 
and γ2 are regression parameters estimated by the model.

The influence of tree size TS and constant climate normals CNCi 
on RW were fit using natural cubic splines with a B-spline basis and 

3 df, with knots placed at the 33rd and 67th quantiles of each vari-
able (Boor, 1978). We included only linear terms for the time-vary-
ing seasonal climate variables CAj,k to limit model complexity; these 
terms (β3) capture the plastic response of tree growth to local inter-
annual climate variation. To capture variability across environmental 
gradients in size-related trends of radial increments, we specified 
interactions between TS and each of the two CNCi variables (β4 and 
β8). Expecting climate sensitivity to vary across populations growing 
under different climatic conditions (Fritts et  al.,  1965), we also in-
cluded (two- and three-way) interactions between CNWi and CAj,k 
variables (β5 and β7). These interaction terms (particularly between 
CNWi and CAj,k) are critical to the space-for-time approach in that 
they capture spatial variation in climate sensitivities driven by varia-
tion in MAT and MAP. Note the time index t included on the climate 
normals in the interaction term (β5i,j,kCNW i,p,t * CA j,k,p,t). These cli-
mate normals were calculated along a moving 30-year average to 
better capture the influence of decade-scale climate variability on 
interannual variability in growth increments. Hence, we modeled 
overall productivity as a function of a constant 110-year climate nor-
mal (β2iCNC i,p and β6 CNC1,p * CNC2,p), whereas we modeled spatial 
variability in climate sensitivities as a function of time-varying 30-
year climate normals (CNWi). Because of missing climate data before 
1902, growth rings associated with the first 30 years have the same 
climate normal. After 1932, the climate normal was calculated over 
the 1903–1932 period, and so on. Last, we also included an interac-
tion between the two climate normals (CNCi). Four fixed effects in 
the model, the β2, β4, β6 and β8 terms, reflect only spatial variation in 
the width of growth rings.

Three kinds of random effects, γ0p,s, γ1p,sTSp,s,t−1, and γ2p,sPAp,s,t, 
were included for each sample nested within a sampling location. 
The first is an intercept modification, γ0p,s, capturing variation in the 
average ring width among sites and samples within sites, caused by 
unquantified factors such as stand density, soil, or micro-site con-
ditions. The second term, γ1p,sTSp,s,t−1, is a random modification of 
the effect of tree size, capturing the degree to which the shape of 
the size-related trend in absolute ring widths is influenced by (un-
quantified) tree- and site-specific factors, adding further flexibility 
to this detrending analogue. These two terms, the random intercept 
modification and random modification of the influence of tree size, 
have the added benefit that they adjust for error associated with 
the assumption that the first ring of each time series starts at pith. 
The third random effect, γ2p,sPAp,s,t, was motivated by previous work 
demonstrating that the ITRDB versus FIA collections differ system-
atically in climate sensitivities (Klesse, DeRose, et al., 2018). This 
term captures variation in the sensitivity to cumulative precipitation 
anomalies across the water year (previous year June to current year 
October) among sites and samples within sites that are attributable 
to micro-site conditions such as slope, aspect, and soil quality.

We chose a Gamma error distribution because ring-width vari-
ability is proportional to the mean ring width, giving rise to hetero-
scedasticity in the data. A gamma response requires a log-link, thus 
all ring-width values were transposed by +0.01 mm to accommodate 
non-positive (zero) values—that is, missing rings. We weighted each 

(1)

RWp,s,t∼�0 + �1TSp,s,t−1 + �2iCNCi,p + �3j,kCAj,k,p,t

+ �4iCNCi,p ∗TSp,s,t−1 + �5i,j,kCNWi,p,t ∗CAj,k,p,t

+ �6CNC1,p ∗CNC2,p + �7j,kCNW1,p,t ∗CNW2,p,t ∗CAj,k,p,t

+ �8CNC1,p ∗CNC2,p ∗TSp,s,t−1 +γ0p,s +γ1p,sTSp,s,t−1 +γ2p,sPAp,s,t

+ εp,s,t,

(2)Projection uncertainty =

√

FEU
2
+ SDP

2
.
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plot in proportion to its median distance to all other sites to account 
for over- (under-) representation of heavily (sparsely) sampled re-
gions of Douglas-fir's geographic distribution. This baseline model 
was implemented using the lme4 package (Bates, Mächler, Bolker, & 
Walker, 2015) in R version 3.5.1 (R Core Team, 2018) in the XSEDE 
and CyVerse environment (Merchant et  al.,  2016; Stewart et al., 
2015; Towns et  al.,  2014). An R script implementing the model is 
provided in the Supplementary Material.

Different parts of the dataset were collected for different pur-
poses. Whereas the FIA dataset was designed to be spatially and 
ecologically unbiased, most of the ITRDB data in the Western US 
were collected to maximize climate signal (for reconstructing cli-
mate), by sampling trees growing under marginal conditions where 
the sensitivity of tree growth to climate variation is strongest 
(Klesse, DeRose, et al., 2018). To investigate the effect of using these 
different datasets as well as address contrasting patterns of sample 
replication per site (i.e., at FIA versus other sites), we applied the 
baseline model described above in three ways:

1.	 Using only tree-ring time series from the FIA network, hereafter 
referred to as the “FIA model”;

2.	 Using all data (“ALL model”);
3.	 Using all data, but weighting sites inversely proportional to their 

sample replication by dividing the distance weight by the number 
of samples per site and year. This has the effect of downweighting 
heavily replicated sites and years so that each site ultimately has 
equal weight (“ALL-W model”).

Early tests indicated better model performance (calibration-ver-
ification statistics) when the two varieties of Douglas-fir were 
modeled separately. Therefore, we present only results based on 
separate models for the coastal versus interior varieties.

2.4 | Model calibration and verification

We evaluated model performance (fit to data) in terms of two im-
portant components of tree growth—productivity and climate sen-
sitivity. With respect to productivity, we compared model-predicted 
average ring width against independently collected productivity 
estimates derived from the U.S. Forest Service FIA Program: site 
index at base age 50, that is, the average height of dominant and 
codominant trees in a fully stocked, even-aged stand (Bechtold & 
Patterson, 2005). That is, we evaluated the ability of models to re-
produce spatial variation in productivity across the U.S. portion of 
Douglas-fir's geographic distribution.

The ability of models to reproduce temporal (interannual) vari-
ability was assessed by calculating Pearson correlation coefficients 
between observed versus predicted ring-width time series at three 
scales: the sample, site, and region. At the scale of a sample (incre-
ment core), we detrended both the observed ring-width time series 
and the ring-width time series predicted by the above statistical mod-
els, including all fixed and random effects, using a cubic smoothing 

spline with a 50% frequency cutoff at 30 years. By detrending both 
observed and predicted time series, we focused on the ability of mod-
els to predict high-frequency, climate-driven variation in ring widths.

The comparison of observed versus predicted site chronologies 
was restricted to sites with 10 or more samples, which unfortunately 
discards all but two FIA sites. Focusing on the ability of each model 
variant to predict high-frequency, climate-driven variation in ring 
width, we divided each observed raw ring-width time series by the 
growth curve predicted by the baseline model (including all fixed and 
random effects), holding all time-varying climate variables (CAs) con-
stant at their site-specific median. This is analogous to the standard 
dendrochronological practice of detrending. Predicted ring-width 
time series were generated with the same model, with a constant 
stem radius of 17 cm (the median cumulative radius in our dataset) 
and including interannual climate variability (CAs). Before averaging 
these observed and predicted time series with Tukey's bi-weight ro-
bust mean to form separate site-level chronologies, each was divided 
by its mean to prevent low-frequency distortions in the site-level 
chronology due to potential changes in sample replication over time.

The first step in regional-scale model-observation comparison was 
the delineation of climatically meaningful and geographically coherent 
regions. Tree-ring time series were clustered into 15 regions using a 
supervised self-organizing map algorithm (Wehrens & Buydens, 2007), 
where the inputs were the spline-detrended ring-width time series 
between 1931 and 1985 (22,000 of 30,388 samples), geographic co-
ordinates (latitude, longitude, and elevation), and climate normals of 
four variables selected after performing a principal component analysis 
(PCA) of climate variability across Douglas-fir's entire geographic dis-
tribution. The PCA used the 19 Worldclim bioclimatic variables (world​
clim.org, Fick & Hijmans,  2017), calculated from climate means ex-
tracted for each of the 2,699 sites from ClimateNA over the period 
1902–2010 (using the R package dismo; Hijmans, Phillips, Leathwick, & 
Elith, 2017) and normalized prior to the PCA. PCA was implemented 
using the R package ade4 (Dray & Dufour,  2007), with distance 
weights proportional to the mean distance of a plot to all other plots 
so that locations that are more distant from others received greater 
weight in the analysis. The first three principal components (PC) ex-
plained 83% of climate variation across the 2,699 sites. PC1 (41%) was 
strongly correlated with mean minimum temperature of the coldest 
month (r = .95). PC2 (30%) was explained by both mean precipitation 
of the driest quarter and mean diurnal temperature range (r = .92). PC3 
(12%) was correlated with variation in mean precipitation of the warm-
est quarter and mean maximum temperature of the warmest month 
(r = .89). Out of this PCA, temperature of the coldest month (as a sub-
stitute for PC1), PC2, PC3, as well as MAP were selected to represent 
spatial climatic variation across Douglas-fir's range and entered into 
the SOM analysis. Strong weighting was necessary to form geograph-
ically coherent regions (shown in Figure 2): 40% ring width, and 60% 
geographic and climate information.

Pearson's correlation coefficients between (regional-scale aggre-
gated) observed versus predicted ring-width time series were then 
calculated for each region, following the same procedure described 
above for the site-level analysis. In the ALL-W model variant, time 

http://worldclim.org
http://worldclim.org
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series were first averaged to form a site-scale chronology and then 
averaged into a regional-scale chronology, giving greater weight to 
FIA samples in influencing the regional-scale pattern of radial tree 
growth.

Finally, we complemented Pearson correlations with calibration- 
verification trials using a split-period approach for model evalua-
tion. For this, we divided the dataset into two equal halves spanning 
1902–1958 and 1959–2016 and parameterized all three model vari-
ants over these periods. Reduction of error (RE) and coefficient of ef-
ficiency (CE) statistics were used to evaluate prediction (Cook, Briffa, 
& Jones, 1994), where values <0 indicate limited predictive skill and 
hence low confidence in model predictions. Model validation at the 
site and region scales was restricted to periods with sample replica-
tion of at least 10 samples per site and 200 samples per region (or 10 
sites per region in the ALL-W model variants), respectively.

To visualize the climate sensitivities estimated by the model, we 
calculated the relative sensitivity of radial growth increments to a 
change in each variable CAj (cumulative precipitation or mean max-
imum temperature) for each 2- (or 3-) month season k by increasing 
the focal CAj,k by one locally defined standard deviation over the 
1902–2010 period, holding all other CAj,k values as well as tree size 
(TS) constant at their median. Thus, we examine the climate sensi-
tivity of Douglas-fir growth in terms of responses to realistically oc-
curring climatic variation at each sampling location in each season.

2.5 | Projection of future growth

We projected future growth of an average-sized tree based upon 
the fixed effects portion of the generalized mixed-effects models 
described above. Because we found that average ring width (i.e., 
productivity) increased with increasing MAT, whereas ring widths 
declined in response to warmer-than-average years across the ma-
jority of Douglas-fir's distribution in most seasons (see Section 3), we 
considered spatial and temporal variation in climate sensitivity, but 
not productivity, to be substitutable. In so doing, we presume that 
climate sensitivities in a warmer future are approximated by climate 
sensitivities at warmer locations today, whereas productivity is as-
sumed to be no greater (or lesser) than it is today (see Section 4). 
Operationally, this was achieved by including projected future val-
ues of CAj,k in the model and only including projected future values 
of CNWi in the interaction terms (β5i,j,k and β7j,k) that capture how the 
species-wide sensitivity to each CAj,k (β3j,k) is modified by location 
in climate space (CNWi). Model projections used near-term (2011–
2040) future values of CNWi and CAj,k variables. Projected changes 
in growth were calculated as a percent change compared to 20th 
century mean growth rate at each sampling location, hence we re-
port relative growth change. To compare stable (i.e., uniformitarian) 
and changing climate sensitivities, we compared projected future 
tree growth using future data for CNWi versus the 20th century cli-
mate normals in CNWi.

For each model variant, projection uncertainty was calculated as 
the square root of the sum of two subcomponents of uncertainty: 

(a) the squared 95% prediction interval of the fixed effects part of 
the model, the fixed effects uncertainty (FEU), as calculated by the 
R package merTools (Knowles & Frederick, 2019) and (b) the squared 
standard deviation of projections based on the 16 AOGCM runs 
(SDP).

While this does not represent a full accounting of projection un-
certainty (sensu Dietze, 2017), it quantifies two important sources 
of uncertainty regarding changes in growth of Douglas-fir: parame-
ter uncertainty and driver uncertainty.

3  | RESULTS

3.1 | Predicted mean ring widths and growth 
variability

All models performed well at capturing gradients of productivity 
across the geographic distribution of Douglas-fir. Model-predicted 
mean ring widths compare well with site index at U.S. Forest Service 
FIA plots across the U.S. portion of Douglas-fir's distribution 
(Figure 3b). Highest mean growth rates were predicted at warm and 
wet sites along the coast from California to Oregon (Figure 3a). With 
decreasing MAT and MAP, the models predicted smaller growth 
rings—the smallest in the cold, high-elevation, and dry northern 
Rocky Mountains in Montana.

The models also revealed geographic variation in interannual 
growth variability. Regional-scale growth variability, that is, the 
coefficient of variation (CV) of both observed and predicted re-
gional chronologies, was highest in the southwestern U.S. and de-
clined with increasing MAP, hence lowest in the Olympic Peninsula 
(Figure 3c). All model variants had high predictive skill at replicating 
this observed regional-scale trend in CV, with explained variances 
between 0.76 and 0.89 (Figure  3d). Models predicted noticeably 
lower growth variability when each sampling location was given 
equal weight (ALL-W model) compared to predicted growth vari-
ability when each time series was given equal weight (ALL model; 
Figure 3d, p < .01, paired t test), and even lower variability when only 
FIA data were used. These differences were especially noticeable 
in the geographic regions with the highest observed CV, that is, the 
semiarid southwestern U.S.

3.2 | Calibration and verification

Correlations between observed and modeled ring-width time se-
ries increased systematically from the tree to site to region scale, 
without a clear “best” model among the three model variants. At 
the tree scale, the average correlation between predicted and ob-
served ring-width time series ranged from 0.40 to 0.41 (SD: 0.18–
0.21) across all three model variants. At the scale of a sampling 

(2)Projection uncertainty =

√

FEU
2
+ SDP

2
.
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site, the average correlation between predicted and observed 
time series was 0.45 (±0.20) for the ALL and ALL-W models. 
Correlations between observed and predicted ring widths were 
much higher after aggregation to a regional scale. Based only on 
the FIA data, these correlations ranged from r = .51–.88, with cor-
relations r > .70 in 8 out of 10 regions in the U.S. (regions contain-
ing FIA data). Only the two Pacific Northwest regions (Cascades 
and Olympic Peninsula) had correlations r < .70. When model pa-
rameterization relied on all data, the median of the correlations 
between observed and predicted regional-scale ring-width chro-
nologies was 0.76 in the ALL-W model, and 0.79 in the ALL model 
(range: r = .47–.86; Figure 4).

In 12 out of 15 regions, both split-period calibration-verification 
trials passed (i.e., RE and CE  > 0) in both models that relied upon 
the full dataset for parametrization (Table  S1). Verification statis-
tics failed (CE  <  0) in the Olympic Peninsula (Interior B.C.; north-
ern mid-elevation Rockies) in four (three; two) trials, respectively 
(Table S1). All eight regions that had sufficient site replication in the 
FIA model passed the calibration-verification tests (Table S2).

3.3 | Predicted sensitivity of growth to 
climate variation

Across all model variants, warmer-than-average temperatures tend 
to negatively impact Douglas-fir ring width (Figure 5), whereas the 
effect of increased precipitation is positive (Figure  6). There are, 
however, notable seasonal and geographic variations on this theme. 
Previous summer and fall temperatures (June–September) showed 
the strongest negative impacts in the northern interior region, weak-
ening southward (Figure  5a,b). Warmer-than-average cool-season 
temperatures (October–February) showed the most pronounced 
negative impacts in the southern extent of Douglas-fir's distribution 
(Arizona, New Mexico, and Mexico), whereas they positively im-
pacted tree growth in the coastal region and higher-elevation parts 
of the Rocky Mountains (Figure 5c,d). The sensitivity of Douglas-fir 
growth to spring temperatures (March and April) showed a strong 
gradient from positive in the northern interior and high-elevation 
locations and in California to negative in the U.S. Southwest and 
Washington state (Figure 5e). Warmer-than-average early summer 

F I G U R E  3   Predicted mean radial growth rates from the ALL-W model (a) and site index at base age 50 as estimated in the U.S. FIA 
program (b). Colors and point sizes range from low (red, small) to high (blue, large) site index or growth rates. (c) Observed (filled points) and 
modeled (open points, ALL-W) coefficient of variation (CV) of regional-scale chronologies against mean annual precipitation sums. (d) Effect 
of downweighting highly replicated sites on CV with squares (circles) showing values based on the ALL (ALL-W) model. Colors in (c) and  
(d) represent the same 15 different regions as color coded in Figure 9
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temperatures (May and June) negatively influenced growth through-
out Douglas-fir's range, with the weakest effects in high-elevation 
parts of the Rocky Mountains (Figure  5f). Mid-summer tempera-
tures (July and August) showed a gradient from negative effects in 
the northern interior region to positive effects in the domain of the 
North American Monsoon (Figure 5g).

The impact of previous summer and fall precipitation on Douglas-
fir growth was mostly positive (Figure 6a–c). Sensitivity to winter pre-
cipitation (December–February) was most positive in Arizona, whereas 
it was slightly negative west of the Cascades and at high-elevation 
sites in the northern Rockies (Figure 6d). Spring precipitation (March 
and April) was most influential in the U.S. Southwest (Figure 6e). Early 
summer precipitation (May and June) had the strongest positive ef-
fects on ring-width increment overall (considering Douglas-fir's range 
in total; Figure 5f). Mid-summer precipitation exerted the strongest 
positive influence in the domain of the North American Monsoon, 
that is, northwestern Mexico and southern Arizona and New Mexico. 
The more intense colors of Figure 6 compared to Figure 5 highlight 
also that Douglas-fir radial growth is more sensitive to interannual 
variability in precipitation than to temperature. Notably, climate sen-
sitivities were weakest in magnitude when only the forest invento-
ry-derived time series were analyzed (FIA model; Figures S1 and S2), 
and strongest when all data were analyzed weighting each time series 
equally (ALL model; Figures S3 and S4).

We found a cluster of unusually positive random effects (>0.21; 
the top 97.5th percentile) for annual precipitation anomalies (site-
to-site variation in precipitation sensitivity unexplained by variation 
in mean climate) across the eastern half of the Colorado Plateau in 
southern Colorado and northern New Mexico (Figure 7). Considering 
the interquartile range (IQR) of these random effects (−0.040 to 
0.039), these sites were clearly outliers with respect to expected 
precipitation sensitivity (>1.5 times the IQR).

3.4 | Growth projection

All model variants projected a decline in growth at the majority 
of sites, compared to the 1902–2010 mean. The smallest relative 
growth decreases were projected for the Pacific Northwest, and 
the largest across the dry interior parts of Douglas-fir's distribu-
tion, from northwestern Mexico to Alberta, with notable variation 
on this geographic pattern depending on the model variant. Based 
on the ALL-W model (Figures 8a and 9), regional median growth was 
projected to decline in the period 2011–2040 (median: −13%; IQR: 
−9 to −21), ranging from −5% (IQR: ±0% to −10%) across coastal 
and northern B.C. to −30% in northwestern Mexico (IQR: −27% to 
−34%). Using all the data and weighting each time series equally (ALL 
model, Figure S5a), regional median projected growth changes were 

F I G U R E  4   Observed (black) and modeled (red) chronologies of the 15 climatic-geographic regions, based on the ALL-W model. Red 
shading around modeled chronologies shows the 95% prediction interval arising from uncertainties in the fixed effects. Chronologies were 
cut off when site replication dropped below 10
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F I G U R E  5   Sensitivity of Douglas-fir growth to seasonal maximum temperatures (ALL-W model). Increased growth in response to an 
increase in temperature of one standard deviation that is locally defined is shown in green; negative changes are violet. Panels (a) to (h) show 
responses for the eight different seasons of model variable CA1k

F I G U R E  6   Sensitivity of Douglas-fir growth to cumulative precipitation (ALL-W model). Increased growth in response to a locally defined, 
one standard deviation increase in seasonal cumulative precipitation is shown in green; negative changes are violet. Panels (a) to (h) show 
responses for the eight different seasons of model variable CA2k
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overall slightly stronger (median: −15%; IQR: −8 to −21) and ranged 
from −5% (IQR: −2% to −9%) in coastal and northern B.C. to −23% 
(IQR: −16% to −30%) in California and the low-elevation southwest-
ern U.S. Using only the FIA data, the model projected very similar 
growth decreases (median: −15%; IQR: −10% to −19%; Figure S6a).

We found notable differences in future growth when comparing 
projection that assumed changing climate sensitivities (the default 
parameterization) against projection that assumed no change in cli-
mate sensitivity (Figure 9). Not accounting for changing climate sen-
sitivities underestimated growth reduction at the warmest and driest 

F I G U R E  7   Random effects (slope 
modifications) capturing variation among 
sites in the effect of annual cumulative 
precipitation as predicted by the ALL-W 
model. Blue (red) colors indicate positive 
(negative) effects, meaning sites are 
more (less) sensitive to total water-year 
precipitation than the fixed effects model 
structure predicts from climate normals. 
White colors denote values within the 
interquartile range of the random effects. 
The pale-colored groups show the 2.5th 
to 25th (red) and 75th to 97.5th percentile 
(blue). The two intense-colored groups 
denote the most extreme values of the 
random effects

F I G U R E  8   (a) Relative growth changes 
in the ALL-W model for the 2011–2040 
period compared to 1902–2010 mean 
growth rates. Red (green) colors indicate 
negative (positive) growth changes. Panel 
(b) shows the full model uncertainties 
from low (white) to high (blue)
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sites in the southwestern U.S. and Mexico. At the same time, the ap-
proach of assuming constant climate sensitivities (uniformitarianism) 
did not project positive growth changes in the coolest and wettest 
regions, such as the Olympic Peninsula and the northern Rockies.

3.5 | Model uncertainties

Across all model variants, model uncertainties were largest in the 
mesic, coastal portion of Douglas-fir's range. This was especially true 
when only the FIA data were analyzed. Full projection uncertainties, 
including both fixed effects uncertainty and uncertainty that arose 
from variation among the climate projections, varied from ±6% in 
the central Rockies to ±40% on the Olympic Peninsula (Figure S6b) 
for the FIA model. Most of the uncertainty arose from the fixed ef-
fects uncertainties, which, at ±30%–39% in the Pacific Northwest, 
was considerably larger than fixed effects uncertainties when all data 
were analyzed.

Including all data in the analysis and weighting sites equally (ALL-W 
model) led to lower overall model uncertainty compared to weight-
ing each time series equally (ALL model). Based upon the ALL-W 
model, regional median fixed effects uncertainties averaged ±2% and 
ranged from ±1% in Colorado to ±8% in California. Uncertainties that 
stemmed from differences in AOGCMs ranged between ±3% and 
±13%. This led to overall uncertainties in projected growth changes 
between ±4% in the low-elevation northern Rockies to ±12% in 
northwestern Mexico and the southwestern U.S. (Figure 8b).

Uncertainties based on the ALL model were notably higher 
compared to the ALL-W model with roughly twice as high fixed 
effects uncertainty. This is most evident in the coastal portion 
of Douglas-fir's distribution, that is, comparing Figure  8b with 
Figure S5b.

4  | DISCUSSION

Tree rings are a powerful tool to investigate past climate. Projection 
of future tree growth is an obvious extension of the same logic, with 

one problem: the future will not look like the past. Specifically, the 
climate sensitivity of tree growth at any one location under future 
(warmer) conditions is expected to increasingly differ from the cli-
mate sensitivity of tree growth at that location in the past. Here, 
we evaluate the expectation (from Fritts et al., 1965) that average 
ring width and climate sensitivities are variable across environmental 
space in a predictable fashion. We then address the appropriateness 
of using SFTS to anticipate the response of tree growth to future 
climate conditions.

4.1 | Climate sensitivity and productivity are 
predictable

The model infers widespread positive sensitivity to precipitation 
(Figure  6), corroborating numerous regional studies in the U.S. 
Southwest (Adams & Kolb,  2005; Fritts et  al.,  1965), the Pacific 
Northwest (Beedlow, Lee, Tingey, Waschmann, & Burdick, 2013; 
Case & Peterson, 2005; Littell et al., 2008; Lo et al., 2010; Zhang 
& Hebda,  2004), and the northern limit of the species' distribu-
tion in B.C. and Alberta (Griesbauer & Green,  2010a, 2010b; Lo 
et al., 2010; Razavi et al., 2015; Watson & Luckman, 2002). Water-
limited growth is further evidenced by negative effects of warmer-
than-average temperatures (Figure  5), presumably because 
increased evapotranspiration exacerbates drought stress (Bréda, 
Huc, Granier, & Dreyer, 2006; Vicente-Serrano, Beguería, & López-
Moreno,  2010; Williams et  al.,  2013). There were two times and 
places where warmer temperatures benefited tree growth. First, 
the positive sensitivity to March and April temperatures found 
from the central Rockies to northern B.C. (Figure  5e) suggests 
beneficial effects of earlier snow melt and a longer growing sea-
son (Case & Peterson,  2005; Pederson et  al.,  2011; Peterson, 
Peterson, & Ettl,  2002). Second, we found positive sensitiv-
ity to July–August temperatures in western Mexico and the Sky 
Islands. During these months, heat stimulates evaporative mois-
ture supply to the North American Monsoon and thus increase 
precipitation from convective thunderstorms so that instead of 
intensifying drought stress, warmer temperatures may increase 

F I G U R E  9   Kernel density distributions 
of regional projected relative growth 
changes in the ALL-W model assuming 
temporally stationary climate sensitivity 
(left) as opposed to the model with 
changing climate sensitivities (via space-
for-time substitution; right) for the 
2011–2040 period compared to 1902–
2010 mean growth rates. Asterisks denote 
significant differences in growth changes 
between the models, where *p < .05, and 
***p < .001 using the two-tailed Wilcoxon 
rank test. Horizontal black lines represent 
the median of the distributions
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stomatal conductance, and stimulate enzymatic activity and cell 
production (Belmecheri, Wright, Szejner, Morino, & Monson, 2018; 
Parent, Turc, Gibon, Stitt, & Tardieu,  2010; Urban, Košvancová, 
Marek, & Lichtenthaler, 2007).

With respect to productivity, the model infers radial growth  
increments are greatest in the coastal, warm-mesic portion of Douglas-
fir's distribution where climate sensitivities are weakest. Moving away 
from this “niche optimum,” there are two dimensions in which climate 
becomes limiting to Douglas-fir growth: temperature and precipitation. 
The smallest ring widths are found where these two limiting factors 
combine, for example, high-elevation (cold), continental (dry) sites in 
the northern Rocky Mountains of Montana. Our estimates of average 
growth rates mirror the spatial pattern of growth potential indicated 
by a forest inventory site index (Figure 3a,b, Weiskittel, Crookston, & 
Radtke, 2011). From Fritts et al. (1965), we expected to find these op-
posing patterns of productivity and climate sensitivity (see Figure 1) 
and it is encouraging that they indeed turned out to be predictable 
across environmental and geographic space.

4.2 | Partial space-for-time substitution, an (im)
perfect solution

Given that productivity and climate sensitivity are predictable, can 
SFTS be used to anticipate how a tree at a cooler location today will 
grow in a warmer future? Inferred effects of spatial versus tempo-
ral variation in temperature had opposite signs (see also Canham 
et  al.,  2018). Trees at warmer locations have larger growth incre-
ments, even though the sensitivity to interannual variation in temper-
ature is almost universally negative. Applying SFTS to Douglas-fir's 
productivity and climate sensitivity would lead to the prediction that 
trees responding negatively to warmer-than-average temperatures 
will grow more in a warmer future, eliciting a closer examination of 
the assumptions underlying SFTS. Two important assumptions of 
SFTS are that (a) the processes responsible for spatial and temporal 
variation are the same and hence (b) there is no mismatch in time 
scale between these drivers. Observed spatial variation in Douglas-
fir productivity and climate sensitivity are partly the product of evo-
lutionary adaptation (i.e., have a genetic basis), whereas the change 
in growth we wish to predict—future growth compared to historical 
growth—is driven by rapid anthropogenic climate change. Evolution 
is a slow process in long-lived organisms such as trees, compared 
to the pace of anthropogenic climate change (Gugger, Sugita, & 
Cavender-Bares,  2010). Filling in the unknown behavior of future 
trees by presuming they will behave exactly as trees of different, 
locally adapted genotypes at another location today clearly violates 
the assumptions underlying SFTS.

While we argue against using spatial variation in both productiv-
ity and climate sensitivity to anticipate future tree growth, substitu-
tion of climate sensitivities alone may yield a first-pass approximation 
of the response to future climate. The process of local adaptation 
produces not only different growth rates achieved by different 
genotypes across spatial environmental gradients but also adaptive 

plasticity in response to strictly temporal environmental variation. 
The latter is visualized in terms of a reaction norm (Schlichting, 1986; 
Via & Lande,  1985). Here we have estimated reaction norms as a 
simple linear response, captured by the species-wide sensitivity to 
each CAj,k (β3j,k) and how it is modified by location in climate space 
(CNWi) through the interaction terms (β5i,j,kCNW i,p,t  *  CA j,k,p,t and 
β7i,j,k CNW1,p,t * CNW2,p,t * CA j,k,p,t). But instead of a linear response, 
reaction norms should be curved such that climate sensitivity in-
creases as climate deviates from its historical mean and variance 
and becomes increasingly limiting to tree growth. Indeed, spatial 
variation in climate sensitivities inferred by the model shows that 
with warmer temperatures (MAT), the sensitivity of ring widths to 
temperature becomes increasingly negative (Figure 5). The use of to-
day's warmer-location climate sensitivities to stand in for future cli-
mate sensitivities is thus a conservative estimate of how tree growth 
may decline with warming temperatures—it assumes that the in situ 
genotype responds exactly as another genotype elsewhere would 
respond. While a 1:1 substitution of climate sensitivities might not 
be perfect, it is certainly better than assuming that trees will respond 
to future climate in the same way that they have responded to past 
climate—that is, the assumption of uniformitarianism.

Ultimately, to better anticipate the future growth of trees, it 
will be necessary to parse the effects of genotype, environment, 
and their interaction on growth (Marchal et al., 2019). We are un-
able to disentangle how much of the spatial variation observed here  
(in productivity and climate sensitivities) is caused by genetic versus 
environmental differences because the data do not have a reciprocal 
common garden design. In particular, it is possible that geographic 
variation in productivity has a greater basis in heritable variation 
(rather than plasticity), whereas geographic variation in climate sen-
sitivities has a greater basis in plasticity (rather than heritability), 
which would further justify the substitutability of climate sensitivities 
(and not productivity). Many common garden studies of trees show 
that different provenances react very similarly to interannual climate 
variability when growing at the same site but grow at very different 
rates (e.g., Isaac-Renton et al., 2018; Leland et al., 2016; Montwé, 
Isaac-Renton, Hamann, & Spiecker,  2016; Montwé, Spiecker, & 
Hamann, 2015; Taeger, Zang, Liesebach, Schneck, & Menzel, 2013), 
but to our knowledge, the genetic versus plastic basis of productivity 
compared to climate sensitivity has not been quantified. A further 
challenge is that non-climatic environmental drivers of spatial varia-
tion in growth (soil type, land-use legacies, stand age and structure, 
etc.) cannot be distinguished from climatic drivers without additional 
covariate information. It is even possible that some of these non- 
climatic drivers might be collinear with climate (e.g., soil organic mat-
ter content may covary with mean annual temperature or precipita-
tion). In other words, the climate sensitivities (regression coefficients 
β2, β4, β6, and β8) estimated by our model would falsely conflate cli-
mate with other non-climatic factors that cannot change as rapidly 
as climate. Finally, to the degree that growth differences have a plas-
tic basis, adjustments in tree height, leaf area index, and even forest 
stand-level characteristics may mitigate climate-driven declines in 
performance (growth).
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4.3 | Growth projection

Implementing partial SFTS, growth declines are projected across 
nearly the entire distribution of Douglas-fir (Figure 8a), as a conse-
quence of widespread negative temperature sensitivity and associ-
ated water limitation on growth (Restaino et al., 2016). This result 
is consistent with previous projections (Charney et al., 2016; Chen, 
Welsh, & Hamann,  2010). The strongest projected growth reduc-
tions across all model variants were in the dry and warm parts of the 
Interior West and the weakest reductions in the Pacific Northwest. 
We found the potential for growth increases in the near future in the 
wettest and coldest regions (Olympic Peninsula, Cascades, north-
ern & coastal B.C., and high-elevation northern Rockies; Figure 9). 
In those regions, the growth projection suggested the benefits of 
warmer conditions combined with a longer growing season may 
outweigh the negative effects of increased drought stress; it is dif-
ficult to predict how long this positive effect may last, that is, how 
soon a positive response may change to a negative response, moving 
from the left to the right in Figure 1. Concurrently, heat and drought 
stress-related growth decreases are projected at the warm-dry 
edge of Douglas-fir's distribution, that is, the semiarid southwestern 
U.S., possibly further accelerating associated tree mortality (Adams 
et al., 2017). Not accounting for changing climate sensitivities, we 
would underestimate the negative impacts at Douglas-fir's warm-
dry edge and simultaneously miss possible beneficial effects of cli-
mate change in its climate optimum (Figure 9).

The regional pattern of growth decline was largely consistent 
across the three model variants. It is important to note that all pro-
jections of future growth are expressed as a percentage of historical 
ring widths so that small relative growth changes projected in the 
mesic, coastal portion of Douglas-fir's distribution may actually have 
a larger impact on absolute biomass accumulation (i.e., carbon se-
questration) compared to the larger relative decline in Douglas-fir 
stands in the U.S. Southwest, where productivity is much lower.

At the same time, model fits were poorest and projection uncer-
tainties highest in the coastal mesic region, including lower correla-
tions between observed and model-predicted ring-width, and lower 
RE and CE statistics, especially at locations close to the coast. There 
were two reasons for these poor model fits: weak climate sensitivity 
in this most productive part of the species' distribution, combined 
with sparse data. Notably, we were able to gather only 4,367 tree-
ring time series for the coastal variety of Douglas-fir, compared to 
26,021 time series for the interior variety. These two factors to-
gether, perniciously, create a low signal-to-noise ratio. Fixed effects 
uncertainties were high in the productive coastal areas and might 
not represent climate sensitivities sufficiently well to reliably project 
future tree growth (Figure 8; Figures S5 and S6). In contrast, fixed 
effects parameter uncertainty and projection uncertainty were 
comparatively low across the Interior West. In Arizona, for exam-
ple, there were only 119 samples from 94 FIA sites, but projection 
uncertainties were almost as low as when all data were used (com-
pare Figure  S6 with Figure  8 and Figure  S5). Interestingly, uncer-
tainties along the coast were much lower when sampling sites were 

given equal weight (ALL-W model; Figure 8) compared to weighting 
all time series equally (ALL model; Figure S5), suggesting that in a 
relatively data-sparse and heterogeneous region such as California, 
model uncertainty is more driven by spatial coverage than by sample 
replication per site.

4.4 | Advantages of mixed-effects modeling

A range-wide, tree-level mixed-effects modeling approach has 
several advantages over traditional site-by-site analyses. First, this 
makes it possible to use data that would never meet standard den-
drochronological criteria for chronology building (i.e., low replication 
per site in the FIA dataset). Second, the model captures how tree 
size and climate influence ring-width variation while accounting for 
additional relevant but unquantified factors. For example, the model 
did not explicitly include any stand-related information (e.g., stand 
density) or site-level differences influencing soil moisture or nutri-
ents. With tree random effects nested within site random effects, 
a mixed-effects (or “hierarchical”) model is robust against these 
additional influences. Two examples illustrate this: First, in Interior 
B.C. (Figure 4), where observed ring widths were very small in the 
2000s, model-predicted ring widths did not track these observed 
declines. Many of the chronologies from this area were collected 
in stands affected by western spruce budworm defoliation (Alfaro, 
Berg, & Axelson,  2014; Axelson, Smith, Daniels, & Alfaro,  2015; 
Harvey, Axelson, & Smith, 2018). In a site-by-site (or even region-by-
region) analysis, those years of reduced growth would have exerted 
a greater influence on estimates of climate sensitivities compared to 
an analysis that considers climate variability across the distribution 
of Douglas-fir.

A second example is a noticeable cluster in southern Colorado 
and northern New Mexico of strongly positive random effects 
modifying the predicted sensitivity to MAP (Figure 7). These sam-
pling locations are unusually sensitive to variation in annual pre-
cipitation, relative to what the model predicts based on the fixed 
effects information from the larger data network. Most of these 
time series were ITRDB locations used for reconstructing hydro-
climate, suggesting that dendrohydrologists were indeed success-
ful in choosing sites and trees that were extremely sensitive to 
precipitation variability.

An additional advantage is that our model represents a continu-
ous implementation of SFTS compared to the discrete grouping ap-
proach used by Charney et al. (2016), in which climate sensitivities 
changed only after entering another bioclimatic zone. As a conse-
quence, our model depicts small-scale variation in climate responses 
due to rain shadow effects and variation in elevation. This leads to 
a more heterogeneous picture of possible growth changes for the 
2011–2040 period across the entire range of Douglas-fir (Figures 8 
and 9). For example, across the arid U.S. Southwest, a small fraction 
of sites had modeled growth decreases of only 12%–18% (90–100th 
percentile), whereas at the least favorable locations, growth is ex-
pected to decrease by 35%–47% (0–10th percentile).
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4.5 | Back to the future

Simultaneously modeling size- or age-growth and climate–growth 
relationships across space within a flexible analytical framework 
(mixed-effects models) is a recent development in dendroecology 
(e.g., Canham et  al.,  2018; Martin-Benito et  al.,  2011; Martínez-
Vilalta et al., 2012; Redmond et al., 2017). Yet, it represents a return 
to a fundamental, but underappreciated cornerstone of dendrochro-
nology—Cook's (1987) aggregate growth model. We can continue 
to improve the projection of future tree growth by further fleshing 
out Cook's aggregate model, moving some of the tree- and site-level 
influences that were treated as random effects here into the list of 
fixed effects: tree genotype, biophysical site characteristics, forest 
stand conditions, and the influences of disturbances like fire and in-
sects. Such multiple regression modeling will require more and bet-
ter covariate data, which are routinely collected in forest inventories 
or permanent sample plots.

Yet, increment core collection in forest inventory programs has 
thus far been mostly ad hoc. While the FIA annual program was de-
signed to be geographically and temporally representative of for-
ested conditions across the U.S., the sampling of increment cores is 
not yet well enough replicated in the climate optimum of Douglas-fir 
(the coastal, warm-mesic domain), and lacks representation during 
the last ~20 years in the U.S. Southwest, when warming and drought 
have been most pronounced. Continued collection of increment 
cores on forest inventory plots is therefore a high priority, both to 
fill existing data gaps and to enhance our understanding of climate 
sensitivities as trees continue to experience changing conditions. 
With continuous input of tree-ring data, and further development 
of mixed-effects modeling of absolute ring-width variation, it will 
be possible to iteratively glimpse the future of forest ecosystem 
functioning, better anticipate forest ecosystem behavior and man-
age accordingly, in a coupled process of scientific advancement and 
adaptive management that has been termed “iterative near-term 
ecological forecasting” (Dietze et al., 2018).

One of the great challenges of global change research is to de-
velop models that successfully simulate ecosystem behavior across 
scales (Levy et al., 2014). It has been shown that the state-of- 
the-art, big-leaf photosynthesis-driven DGVMs commonly used 
in large-scale climate projections (e.g., the TRENDY suite, Sitch 
et al., 2015) overestimate interannual climate sensitivity, especially 
(but not only) at the cold and warm edge of the temperate zone 
(Babst et al., 2013; Klesse, Babst, et al., 2018; Rollinson et al., 2017). 
This misrepresentation of climate sensitivity and the inability to ac-
curately model carbon allocation to the stem may be indicative of 
the fact that DGVMs have been historically developed based upon 
parameterization of leaf-scale processes. The current dataset cov-
ering the entire distribution of Douglas-fir (but also tree-ring width 
records in general) is well-suited to serve as a calibration target or 
assimilation dataset for improvement in stem growth predictions of 
next-generation (mechanistic) models of varying complexity (Mina, 
Martin-Benito, Bugmann, & Cailleret,  2016; Zuidema, Poulter, & 
Frank, 2018).
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