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Abstract
High-elevation five-needle pine trees are a group of Pinus species in the subgenus Strobus that occur at the edges of plant growth
near the alpine tree line. These species are ecologically very important and are also threatened by climate-driven insect outbreaks
and an exotic pathogen. Volatile organic compounds (VOCs) play central roles in the environmental adaptation of plants and in
their defense against insects and pathogens. For example, the VOCs emitted by some high-elevation five-needle pine species
attract female, tree-killing mountain pine beetles (MPB,Dendroctonus ponderosae) in the pioneering phase whereas VOCs from
other species strongly repel this foremost herbivore, but the mechanism is unknown. We collected and compared headspace
VOCs from foliage of eight species of high-elevation five-needle pines in Europe and North America. Overall, VOCs differed
quantitatively among species with few qualitative differences. Despite species emitting essentially the same compounds, Random
Forest analysis correctly classified 117 of the 126 trees sampled by using VOCs and identified the most important compounds for
species classification and for separating species resistant from those susceptible to MPB or white pine blister rust (Cronartium
ribicola). These VOC ‘fingerprints’ resulted largely from species emitting distinctive ratios of compounds, rather than through
presence of species-specific compounds. Importantly, these Pinus species vary greatly in resistance to the main herbivore (MPB)
and pathogen (white pine blister rust) causing tree mortality. Thus, these findings provide insights and should guide research into
understanding resistance and in developing tools to manage these important trees. For instance, studies into the functions of five-
needle pine VOCs in defense against abiotic or biotic stressors should focus on blend ratios rather than on individual compounds.
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Introduction

High-elevation five-needle pines (High Five pines) are a
group of about a dozen related species that occur at or near
the alpine treeline and are distributed patchily across the mid-
dle latitudes of the Northern Hemisphere (Tomback et al.
2011). These species belong to the Pinus subgenus Strobus,
a lineage in which most species have adapted to stressful en-
vironments of poor soils and extreme temperatures (Eckert

and Hall 2006; Keeley 2012). Examples of High Five pines
include Great Basin bristlecone pine (P. longaeva Bailey) of
western North America, the oldest living tree species on Earth
(Schulman 1958; Rocky Mountain Tree-Ring Research
2019), and Swiss stone pine (P. cembra L.), the predominate
timberline tree of the Alps (Ali et al. 2005). High Five pines
are keystone species that shape the communities in which they
occur by stabilizing slopes, as nurse plants for other plant
species, and as habitat and food for animals (Baumeister and
Callaway 2006; Körner 2012; Tomback and Achuff 2010;
Vogan and Schoettle 2015; Tomback et al. 2016). High Five
pines also serve as important indicators of past and present
climate change (e.g., Carrer et al. 2007; Kipfmueller and
Salzer 2010; Millar et al. 2015; Panayotov et al. 2010;
Rochefort et al. 1994; Salzer et al. 2009).

High Five pines have received increased attention in recent
years because of large increases in mortality (Cleaver et al.
2015; Hansen et al. 2016; Tomback et al. 2011). The health of
High Five pine species in western North America is being
severely affected by several threats, most notably native
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mountain pine beetles (MPB; Dendroctonus ponderosae
Hopkins) which are undergoing climate-driven range expan-
sion, exotic white pine blister rust (WPBR; caused by
Cronartium ribicola J.C. Fisch), and changes to fire regimes
(Bentz et al. 2010; Gray and Jenkins 2017; Logan et al. 2003,
2010; Tomback et al. 2011). For example, a recent survey
found that half of limber pines (P. flexilis James) in the central
and southern Rocky Mountains were dead or declining due to
MPB outbreaks and WPBR (Cleaver et al. 2015). Similarly,
widespead MPB- and WPBR-attributed declines have oc-
curred in whitebark pine (P. albicaulis Engelm.), which war-
ranted its listing in 2011 as a candidate species under the U.S.
Endangered Species Act (Goeking and Izlar 2018; Keane et al.
2012). Comparable declines in whitebark pine have occurred
in the Canadian Rocky Mountains (Smith et al. 2013).
Considerable variability exists among High Five pine species
in their susceptibility to MPB andWPBR. For example, of the
six High Five pine species in western North America, only
P. longaeva is resistant to WPBR whereas all European High
Five species are highly resistant to WPBR (Geils et al. 2010;
Tomback and Achuff 2010). Moreover, while MPB infests
and kills most Pinus species within its range (Wood 1982),
recent work found that mortality due to MPB is low in foxtail
pine (P. balfourianaGrev. and Balf.) and absent in P. longaeva
(Bentz et al. 2017; Eidson et al. 2017, 2018). This resistance to
MPB in P. longaeva has been proposed to be due to relatively
high levels of constitutive defensive chemistry (Bentz et al.
2017). Other factors that can affect resistance in High Five
pine species to MBP include the number of resin ducts
(Ferrenberg et al. 2014) and inducibilty of phloem terpenes
and phenolics (Raffa et al. 2017). Genetics, within-needle ter-
pene content, and fungal endophytes are known to influence
susceptibility to WPBR in High Five pines (Bullington et al.
2018; Liu et al. 2019).

A hallmark of pine species is the characteristic and strong
fragrance emanating from their foliage. While aesthetically
pleasing to humans, these volatile organic compounds
(VOCs) have numerous ecological functions that allow plants
to interact with and adapt to their environment. For example,
VOCs can communicate plant identity and location to enemies
like insect herbivores (Bruce and Pickett 2011) and to benefi-
cial organisms like pollinators (Burkle and Runyon 2016;
Raguso 2008). Plant VOCs also play key roles in defense by
attracting natural enemies of herbivores (Kessler and Baldwin
2001; Mäntylä et al. 2017; Turlings and Erb 2018) and by
directly killing pathogenic bacteria and fungi (Farré-
Armengol et al. 2016; Himejima et al. 1992; Huang et al.
2012; Vainio-Kaila et al. 2017). VOCs can also function as
airborne signals within and between plants, alerting distant
branches and neighboring plants of imminent attack (Karban
et al. 2014). A fundamental role for plant VOCs is protection
against abiotic stress (Holopainen and Gershenzon 2010). For
example, volatile terpenoids can protect plants from damage

caused by high temperatures (Behnke et al. 2007; Copolovici
et al. 2005), high light and oxidative damage (Loreto and
Velikova 2001; Vickers et al. 2009) and cold stress (Cofer
et al. 2018). Moreover, plant VOCs, especially terpenoids,
are thought to influence the flammability of foliage and be-
havior of wildfires (Jenkins et al. 2014; Page et al. 2012). The
VOCs of High Five pine species are poorly studied, but are
known to play important roles in their fitness. For example,
the VOCs emitted by susceptible P. flexilis strongly attract
host-searching female MPB in the pioneering stage, whereas
those emitted by resistant P. longaeva repel pioneering female
MPB (Gray et al. 2015).

Given these important roles, VOCs should be sensitive to
selection imposed by environmental factors like abiotic stress
and herbivore interactions (Dicke and Baldwin 2010; Loreto
et al. 2014). Hence, comparison of the qualitative and quanti-
tative differences in VOCs among closely related taxa that
vary in their resistance to herbivores and pathogens could
provide insights into mechanisms underlying resistance. We
hypothesized that there would be distinct differences in the
presence/absence of compounds in VOC blends among
High Five pine species, as has been found in previous studies
comparing foliar VOCs across other Pinus species (e.g.,
Celiński et al. 2015; Dormont et al. 1998; Ioannou et al.
2014; Mitić et al. 2017; Roussis et al. 1995; Tsitsimpikou
et al. 2001). In this study, we used multivariate analysis
(Random Forest and non-metric multidimensional scaling)
to compare the VOCs emitted by eight species of High Five
pines (six in North America and two in Europe) and identify
the compounds most important for discrimination among
species.

Methods and Materials

Species and Site Selection All six species of high-elevation
five-needle white pines occurring in North America
(P. albicaulis, P. aristata Engelm., P. balfouriana, P. flexilis,
P. longaeva and P. strobiformis Engelm.) and two species
occurring in Europe (P. cembra and P. peuce Griseb.) were
sampled in this study (Fig. 1 and Table 1). We define High
Five pines as Pinus species in the subgenus Strobus that grow
at or near alpine tree line (Tomback et al. 2011). High Five
pines are probably not a monophyletic group but share a sim-
ilar ecology and threats (Eckert and Hall 2006; Keeley 2012).
At each site, we randomly selected average, but similarly-
sized mature trees that showed no external signs of stress
(e.g., herbivory or pathogen infection). Size was measured
as height and mean diameter at breast height (assessed at
1.37 m; DBH) (Table 1).

Collection and Analysis of VOCs VOCs were collected in situ
from the lower branches (≤ 3 m above ground) of trees
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following established headspace sampling methods (e.g.,
Burkle and Runyon 2017; Page et al. 2012; Tholl et al.
2006). The apical approximately 50 cm of a branch on each
tree was enclosed in a clear Teflon bag (50 cm wide × 75 cm
deep; American Durafilm Co., Holliston, MA, USA) and air
was pulled for 30 min at 0.5 L/min through a volatile trap
containing 30 mg of the absorbent HayeSep-Q (Restek,
Bellefonte, PA, USA) by using a portable volatile collection
system (Volatile Assay Systems, Rensselaer, NY, USA) or an
AirLite air sampling pump (SKC Inc., Eighty Four, PA, USA).
Volatile traps were kept cool (< 22 °C, stored in a cooler and/
or shipped on ice) and were processed within two weeks of
sampling. VOCs were collected during the growing season
(between 16 June–20 August) between 1000 and 1500 h in
good weather (15–25 °C; sunny tomostly sunny). VOCs were
collected from empty bags to identify and exclude potential
background and/or contaminant odors. After VOC collection,
needles of enclosed branches of each tree were weighed and
volatile emissions were standardized on a per weight basis (ng
per hour per gram FW).

VOCs were eluted from traps by using 200 μl of dichloro-
methane (remainder of solvent pushed out into GC vial with a
gentle stream of ultra-high-purity nitrogen gas) and 1 μg of n-
nonyl-acetate was added as the internal standard. Samples were
analyzed by using an Agilent 7890A gas chromatograph (GC)
coupled with a 5975Cmass spectrometer (MS) and separated on
aHP-1ms (30m× 0.25mm i.d, 0.25μm film thickness) column
with helium as the carrier gas. The GC oven was maintained at
35 °C for 3 min and then increased by 5 °C per min to 125 °C,

then 25 °C per min to 250 °C. Quantifications were made rela-
tive to the internal standard by using ChemStation software
(Agilent Technologies, Wilmington, DE, USA). Volatile com-
pounds were identified by comparison of chromatographic re-
tention times andmass spectra with those of commercially avail-
able standards. All standards were purchased from Sigma-
Aldrich (St. Louis, MO, USA) except for (E)-β-farnesene which
was obtained from Bedoukian Research, Inc. (Danbury, CT,
USA). NIST 08 Mass Spectral Search Program (National
Institute of Standards and Technology, Gaithersburg, MD,
USA) was used to classify the remaining unidentified com-
pounds as unidentified monoterpenoids (MT1, MT2, etc.) or
sesquiterpenoids (ST1, ST2, etc.). Additional information on
these unidentified compounds is given in Table S2
(Online Resources 1). Although we were not able to identify
these unknown compounds, we verified their occurrence across
species by comparing retention times, mass spectra, and by using
the NIST 08 Mass Spectral Search Program.

Statistical Analysis A one-way Welch’s ANOVA was used to
test for a species effect on total VOCs emitted, followed by a
Tukey’s honest significant difference (HSD) post-hoc test to
identify pairwise differences for each species; amounts were
square-root transformed for ANOVA and HSD analysis. We
used the Random Forest classification algorithm (Breiman
2001) to compare and contrast VOCs of High Five pine species
and to identify the compounds most important for discriminating
species. We also used Random Forest to identify the compounds
most important for discriminating Pinus species reported to be

Fig. 1 Locations where VOCs of high-elevation five-needle pine species were sampled in (a) western North America and (b) Europe
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resistant or susceptible to MPB or WPBR. Species included in
the analysis as susceptible toMPBwere P, albicaulis, P. aristata,
P. flexilis, and P. strobiformis; species included as resistant to
MPB were P. balfouriana and P. longaeva (Bentz et al. 2017;
Eidson et al. 2017, 2018; Wood 1982). Susceptibility of
European pine species (P. cembra, P. peuce) toMPB is unknown
and were excluded from this analysis. In a separate analysis, we
included species that are susceptible to WPBR as P. albicaulis,
P. aristata, P. balfouriana, P. flexilis, and P. strobiformis; species
included that are reported resistant to WPBR were P. cembra,
P. longaeva, and P. peuce (Geils et al. 2010; Tomback and
Achuff 2010). Random Forest is a machine-learning algorithm
that has proven useful in analyzing large VOC data sets (Jaeger
et al. 2016; Ranganathan and Borges 2010). Our analysis used
RANDOMFOREST package v.4.6–14 (Liaw andWiener 2002)
under R v.3.3.3 (R Development Core Team 2016) applying the
measure of importance option of predictor variables, the proxim-
ity option, a measure of the internal structure of the data used to
detect outliers, the number of trees set at 100, a maximum of 5
variables tried at each split, and all other parameters set to the
defaults. Random Forest returns a confusion matrix that summa-
rizes the accuracy of the classification as well as the variable
importance. The importance of each VOC for classification

was ranked by usingmean decrease inGini impurity indexwhich
is based on overfitted models (Breiman 2001). To characterize
VOC dissimilarity among our Pinus species, a non-metric mul-
tidimensional scaling (NMDS) ordination based on a matrix of
Euclidean dissimilarities (Kenkel and Orlóci 1986; Dixon 2003)
was calculated on the rank order proportion of VOCs from each
tree. The package VEGAN v 2.5–1 was used to employ the
monoMDS function via metaMDS, which increases the likeli-
hood of achieving a global optimum, using a maximum number
of iterations of 1000. This function implements Kruskal’s (1964)
non-metric multidimensional scaling (NMDS) by using mono-
tone regression andweak treatment of ties, where equal observed
dissimilarities are allowed to have different fitted values.

Results

VOCs emitted by High Five pine species We sampled eight
species of High Five pines (Table 1) and a total of 35 volatile
compounds were identified using GC-MS analysis from the
headspace of these species (Table S1 in Online Resource 1).
VOCs emitted were composed entirely of terpenes:
monoterpenoids made up the vast majority of the composition

Table 1 High-elevation five-needle pine species, sample sizes, locations, dates, and tree sizes used in a comparative study of foliage volatiles

Pinus species Common name Site Trees
sampled

Latitude Longitude Elevation
(m)

Sample
Date

DBHa

(cm)
Height
(m)

P. albicaulis Whitebark pine Tobacco Root Mtns,
Montana, USA

6 45.51 −111.99 2667 3.viii.2012 37 ± 4 8 ± 2

P. aristata Rocky Mountain
bristlecone pine

Mt. Evans, Colorado, USA 12 39.64 −105.59 3505 20.vii.2014 29 ± 2 9 ± 1

P. balfouriana Foxtail pine Horseshoe Meadow,
California, USA

12 36.45 −118.16 3018 16.viii.2014 56 ± 6 16 ± 1

P. cembra Swiss stone pine Davos 1, Switzerland
Davos 2, Switzerland

4
4

46.76
46.80

9.89
9.90

2050
2000

18.vii.2014
19.vii.2014

n.d.
n.d.

n.d.
n.d.

P. flexilis Limber pine Cave Mtn, Nevada, USA 15 39.16 −114.61 3230 20.viii.2013 102 ± 12 12 ± 1

P. longaeva Great Basin bristlecone
pine

Cave Mtn, Nevada, USA 15 39.16 −114.61 3230 20.viii.2013 85 ± 8 13 ± 1

Beehive Peak, Utah, USA 6 38.96 −112.09 2682 16.vi.2014 n.d. n.d.

Notch Peak, Utah, USA 4 39.14 −113.40 2804 2.viii.2014 31 ± 8 4 ± 1

Wheeler Peak, Nevada,
USA

4 39.00 −114.30 3261 2.viii.2014 76 ± 14 6 ± 1

Mt. Moriah, Nevada, USA 4 39.28 −114.19 3420 3.viii.2014 74 ± 14 5 ± 0.4

Mt. Washington, Nevada,
USA

4 38.89 −114.33 2743 3.viii.2014 17 ± 4 6 ± 2

Currant Mtn, Nevada, USA 4 38.93 −115.41 2819 15.viii.2014 53 ± 8 8 ± 0.4

Patriarch Grove, California,
USA

12 37.38 −118.18 3083 16.viii.2014 90 ± 8 13 ± 1

P. peuce Macedonian pine Pirin Mtns, Bulgaria 4 41.76 23.41 2160 12.vii.2014 n.d. n.d.

Pelister, Macedonia 4 41.03 21.23 1470 14.vii.2014 n.d. n.d.

P. strobiformis Southwestern white pine Gila National Forest,
Arizona, USA

12 33.91 −109.41 2812 19.vii.2014 28 ± 2 13 ± 1

aDiameter of tree stem (bole) at breast height (1.37 m) ± standard error

n.d., not determined
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of VOCs (27 compounds; 77%) followed by sesquiterpenoids
(eight compounds; 23%) (Table 2). The total amount of VOCs
released per gram of foliage differed among species (Welch’s
ANOVA, F = 56.05, P < 0.0001) (Fig. S1 in Online Resource
1). The blend of VOCs emitted by High Five pine species was
qualitatively very similar with 32 of the 35 VOCs emitted by
all eight Pinus species (Table S1 in Online Resource 1). The
only compounds not emitted by all species were unidentified

monoterpenoid 5 (MT 5), unidentified sesquiterpene 2 (ST 2),
and α-terpinene. All of these were relatively minor com-
pounds in the VOC blend that were emitted in small amounts
(Table S1 in Online Resource 1). MT 5 was emitted only by
P. albicaulis and P. strobiformis; ST2 was emitted by all spe-
cies except P. albicaulis; and α-terpinene was absent only
from the VOC blend of P. peuce. Although the compounds
emitted were qualitatively similar, there were clear quantita-
tive differences in VOCs among species. The mean amounts
of many compounds varied across the species, sometimes
greatly so. This resulted in large differences in ratios of
VOCs in emitted blends of these Pinus species (Fig. 2).

Random Forest and Ordination Random Forest classification
correctly differentiated between all Pinus species using VOCs
with an out-of-bag accuracy of 92.9%, with most species hav-
ing only one tree misclassified (Table 3). The Random Forest
out-of-bag accuracy for distinguishing resistant and suscepti-
ble Pinus species using VOCs was 98.2% for MPB and 96%
for WBPR (Table 4). We used NMDS ordination to visualize
species differences based on VOC composition (Fig. 3).
NMDS ordination of the VOC data had a high linear fit
(R2 = 0.98) and a low stress value (0.09), with two convergent
solutions found after 566 tries. A stress of ca. 0.05 provides an
excellent representation in reduced dimensions, whereas a
stress of ca. 0.1 provides a good representation (Clarke
1993). The NMDS plot, in which each symbol is a tree and
distances between symbols are proportional to the dissimilar-
ity in VOCs, showed strong clustering that tended to reflect
species (Fig. 3).

Discussion

The VOCs of High Five pines were similar in that all eight
species examined released the same 32 compounds (of 35
total). Such qualitative similarity in VOCs was unexpected
because High Five pine species have long and disparate his-
tories. The Pinus subgenus Strobus, within which the High
five pine species are scattered, is an ancient lineage that di-
verged around 85 Ma (Eckert and Hall 2006; Willyard et al.
2006) and High Five species have distinct biogeographic and
evolutionary histories (Keeley 2012; Tomback et al. 2011).
The compounds comprising VOC blends generally vary
across plant species, and even closely related taxa often emit
qualitatively different mixes of odors (e.g., Courtois et al.
2016; Jürgens et al. 2006; Levin et al. 2003; Luani et al.
2019). For example, the VOCs of species and subspecies of
sagebrushes (Artemisia, subgenus Tridentatae), evolutionarily
a relatively young group (<5 Ma), display dramatic diver-
gence in the number and identity of compounds emitted
(Jaeger et al. 2016). Moreover, the VOCs of species within
the genus Pinus have been shown to vary qualitatively across

Table 2 Importance ranking (Mean Decrease in Accuracy, MDA) and
Mean Decrease of the Gini Index of volatile organic compounds (VOCs)
in classifying eight species of high-elevation five-needle pines by using
Random Forest. MT, unidentified monoterpenoid; ST, unidentified
sesquiterpenoid

Volatile
compound

Mean decrease accuracy Mean decrease Gini index

o-cymene 25.62 7.82

camphor 24.99 6.54

MT 5 22.64 6.40

3-carene 21.44 5.70

limonene 20.54 3.91

β-cubebene 20.35 4.40

β-phellandrene 19.98 4.76

α-terpinene 19.96 4.30

α-phellandrene 18.06 3.41

tricyclene 17.82 3.90

bornyl acetate 17.13 3.54

(E)-β-farnesene 14.64 3.05

MT 1 14.47 2.51

camphene 14.09 2.32

α-pinene 13.97 2.66

β-myrcene 13.07 1.90

p-cymene 12.90 2.22

β-pinene 12.87 1.76

MT 9 12.16 2.00

MT 2 11.84 1.57

γ-terpinene 11.80 1.87

α-farnesene 11.60 1.78

(E)-β-ocimene 11.55 1.98

α-terpineol acetate 11.25 1.86

ST 2 11.25 1.49

MT 10 10.87 1.92

ST 1 10.52 1.68

ST 5 10.38 1.50

sabinene 10.29 1.60

terpinolene 9.37 1.26

MT 8 8.43 1.07

ST 4 6.95 0.80

ST 3 6.42 1.01

α-humulene 6.00 0.92

MT 7 5.96 0.81
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species (Celiński et al. 2015; Dormont et al. 1998; Ioannou
et al. 2014; Mitić et al. 2017; Roussis et al. 1995; Tsitsimpikou
et al. 2001) and can take on qualitatively very different forms,
for example some species emit VOCs dominated by short,
straight-chain hydrocarbons (Savage et al. 1996; Adams and
Wright 2012) unlike the terpene-based odors of the High Five
pines.

This qualitative similarity of High Five pine VOCs, despite
such old divergence times and disparate histories, suggests
that these compounds could play important roles in the envi-
ronmental adaptation of these trees. These High Five pine
species grow at or near alpine treelines, at the limits of plant
growth, and must deal with harsh environments. The mix of
volatile compounds might be conserved in these species as
adaptions against the abiotic challenges that accompany
growth at high elevations, such as extreme UV exposure or
cold temperatures. Volatile terpenoids emitted by plants can
protect against such abiotic threats including high light, UV,
oxidative damage, and cold stress (Cofer et al. 2018; Loreto
and Velikova 2001; Loreto and Schnitzler 2010; Vickers et al.
2009). Moreover, many monoterpenes are antimicrobial
(Gershenzon and Dudareva 2007; Himejima et al. 1992;
Marei et al. 2012; Vainio-Kaila et al. 2017) and VOCs could

defend against snow molds, caused by deep snow cover,
which can be an important mortality factor for High Five pines
(Barbeito et al. 2013). Alternatively, the mix of VOCs emitted
by High Five pines could be constrained by genetics or phys-
iology, but this seems less likely since closely related Pinus
species can vary dramatically in the makeup of VOCs (Adams
and Wright 2012; Celiński et al. 2015). Total amounts of
VOCs released differed for some species (Fig. S1 in
Online Resource 1), but total emission rate is known to be
positively correlated with air temperature (Jamieson et al.
2017; Niinemets et al. 2004). We suspect that total VOC dif-
ferences of species in this study were influenced by air tem-
perature at time of sampling, which wewere unable to control.
More research is needed, ideally using common gardens, to
understand how genetics and environment affect VOCs and
ascertain what functions these volatile compounds perform for
High Five pines.

Despite large qualitative similarity, the VOCs of High Five
pines can be used to reliably distinguish species. The Random
Forest algorithm correctly identified 117 of the 126 trees sam-
pled by using VOCs. Interestingly, this was achieved not
through the presence of species-specific compounds in VOC
blends, but rather largely via differences in the relative amounts

Table 3 Confusion matrix of Random Forest classification showing
observed and predicted Pinus species and error rate when using VOCs
for classification. Bold numbers indicate the number of individual trees

classified correctly for each species; unbolded numbers were incorrectly
classified using VOCs

Observed class Predicted class

P. albicaulis P. aristata P. balfouriana P. cembra P. flexilis P. longaeva P. peuce P. strobiformis Class error

P. albicaulis 6 0 0 0 0 0 0 0 0.00

P. aristata 0 11 0 0 0 0 0 1 0.08

P. balfouriana 0 0 10 0 0 2 0 0 0.17

P. cembra 0 0 0 7 0 0 1 0 0.13

P. flexilis 0 0 0 0 13 2 0 0 0.13

P. longaeva 0 0 0 0 1 52 0 0 0.02

P. peuce 0 0 0 1 0 0 7 0 0.13

P. strobiformis 0 1 0 0 0 0 0 11 0.08

Fig. 2 Mean amounts (ng per
hour per gram) of the 10 most
important VOCs for classifying
high-elevation five-needle pine
species by using Random Forest
(Table 2). Note the differences in
ratios among the species
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of compounds emitted. For instance, the three compounds
whose presence/absence varied among species ranked number
three, five, and fifteen in the list of compound importance for
classifying species (Table 2). Thus, it is the relative amounts and
ratios of compounds that varied consistently across species and
permitted accurate taxonomic classification. Recent research
found similar quantitative differences in VOCs within Great

Basin bristlecone pine (P. longaeva) in which proportions
of compounds emitted changed consistently with elevation
(Gray et al. 2019). This shows that environment can have
consistent and predictive influence onVOCs ofHigh Five pines;
however, this relatively small within-species environmental
effect was overcome by larger intrinsic differences among
species. For example, we sampled P. longaeva of a variety of

P. albicaulis
P. aristata
P. balfouriana
P. cembra
P. flexilis
P. longaeva
P. peuce
P. strobiformis

Fig. 3 Non-linear
Multidimensional Scaling
(NMDS) ordination plot of the
first and second dimensions for
35 VOCs emitted (ng per hour per
gram) from eight species of high-
elevation five-needle pines.
Ellipses represent the standard
deviation of the centroid for each
species group

Table 4 Importance ranking
(Mean Decrease in Accuracy,
MDA) of top ten volatile organic
compounds (VOCs) in classifying
species of high-elevation five-
needle pines resistant versus sus-
ceptible to mountain pine beetle
(Dendroctonus ponderosae) or
white pine blister rust
(Cronartium ribicola) by using
Random Forest. MT, unidentified
monoterpenoid; ST, unidentified
sesquiterpenoid

Susceptibility to mountain pine beetlea Susceptibility to white pine blister rustb

Volatile compound Mean decrease accuracy Volatile compound Mean decrease accuracy

β-phellandrene 19.72 3-carene 22.58

o-cymene 19.28 o-cymene 21.81

3-carene 17.57 camphor 16.95

camphor 14.47 bornyl acetate 16.37

MT 5 14.40 α-pinene 15.46

α-pinene 13.76 β-phellandrene 15.25

tricyclene 12.51 MT 5 13.78

bornyl acetate 11.78 tricyclene 13.62

p-cymene 10.95 α-terpinene 12.88

ST 2 10.87 p-cymene 12.59

a Random Forest out-of-bag accuracy 98.2%. Species included that are susceptible to mountain pine beetle
(MPB): Pinus albicaulis, P. aristata, P. flexilis, P. strobiformis; species included that are resistant to MPB:
P. balfouriana, P. longaeva. Susceptibility of European pine species (P. cembra, P. peuce) to MPB is unknown
and were excluded from this analysis
b Random Forest out-of-bag accuracy 96%. Species included that are susceptible to white pine blister rust
(WPBR): P. albicaulis, P. aristata, P. balfouriana, P. flexilis, P. strobiformis; species included that are reported
resistant to WPBR: P. cembra, P. longaeva, P. peuce
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sizes at eight sites spanning its geographic range and Random
Forest still correctly identified 51 of 52 P. longaeva trees
and ordination showed strong clustering of this species, and of
High Five species in general (Fig. 3). VOCs could also be used
by Random Forest to consistently distinguish species resistant
from those susceptible to MPB or WPBR (Table 4).
Examination of High Five VOCs by using a GC column with
a chiral stationary phase might reveal further consistent
differences in proportions since several Pinus monoterpenes
can occur as stereoisomers (e.g., α-pinene, camphene,
limonene; Seybold et al. 2006).

Because VOCs play critical roles in the interactions of
plants with their environment, understanding differences in
VOCs in closely-related plant species could help deduce
VOC function. This could have particular importance for the
North American High Five pine species which are threatened
by outbreaks of MPB and WPBR (Tomback et al. 2011). For
example, susceptibility to MPB attack varies greatly across
North America High Five species with P. longaeva and
P. balfouriana being almost completely resistant and
P. albicaulis and P. flexilis being highly susceptible
(Bentz et al. 2017). Comparison of VOCs emitted by these
species might provide insights into how some species
avoid being killed by MPB. Indeed, a recent study found
that pioneering female MPBs were strongly attracted by
VOCs from P. flexilis but repelled by VOCs from
P. longaeva (Gray et al. 2015). That study did not identify
the bioactive compounds, but did find evidence that MPB
responses were mediated by ratios of multiple compounds
(Gray et al. 2015). Specific differences in amounts of VOCs
could also affect attraction of MPBs in the mass attack phase,
since some host VOCs can act as strong synergists of MPB
pheromones (Borden et al. 2008). The findings of Gray et al.
(2015), together with the results presented here, suggest that
if host-seeking herbivorous insects are to distinguish High
Five pine species by using olfaction, as most insect herbivores
do (Bruce and Pickett 2011), then they likely rely on species-
specific differences in the ratios of compounds in odor blends
and not on dominant compounds that are present or absent in
the specific volatile blends. Thus, understanding how
P. longaeva repels MPB—knowledge that could be
utilized to protect the other High Five species—will likely
require investigation of multiple compounds, focusing first
on the compounds whose quantities distinguish susceptible
and resistant pine species (Table 4). Similarly, given the
antimicrobial nature of many VOCs emitted by High Five
pines (e.g., monoterpenes; Gershenzon and Dudareva 2007;
Marei et al. 2012; Vainio-Kaila et al. 2017), comparisons of
VOCs of species susceptible (most North American species)
to WPBR with those resistant to infection (European species)
(Table 4), focusing on ratios rather than single compounds,
could offer insight into mechanisms underlying resistance to
this debilitating pathogen.
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