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Abstract

Context Species habitat suitability models rarely

incorporate multiple spatial scales or functional

shapes of a species’ response to covariates. Optimiz-

ing models for these factors may produce more robust,

reliable, and informative habitat suitability models,

which can be beneficial for the conservation of rare

and endangered species, such as tigers (Panthera

tigris).

Objectives We provide the first formal assessment of

the relative impacts of scale-optimization and shape-

optimization on model performance and habitat suit-

ability predictions. We explored how optimization

influences conclusions regarding habitat selection and

mapped probability of occurrence.

Methods We collated environmental variables

expected to affect tiger occurrence, calculating focal

statistics and landscape metrics at spatial scales

ranging from 250 m to 16 km. We then constructed

a set of presence–absence generalized linear models

including: (1) single-scale optimized models (SSO);

(2) a multi-scale optimized model (MSO); (3) single-

scale shape-optimized models (SSSO) and (4) a multi-

scale- and shape-optimized model (MSSO). We

compared performance and resulting prediction maps

for top performing models.

Results The SSO (16 km), SSSO (16 km), MSO,

and MSSO models performed equally well (AUC[
0.9). However, these differed substantially in predic-

tion and mapped habitat suitability, leading to differ-

ent ecological understanding and potentially divergent

conservation recommendations. Habitat selection was

highly scale-dependent and the strongest relationships

with environmental variables were at the broadest

scales analysed. Modelling approach had a substantial

influence in variable importance among top models.

Conclusions Our results suggest that optimization of

the scale of resource selection is crucial in modelling

tiger habitat selection. However, in this analysis,
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shape-optimization did not improve model

performance.

Keywords Functional form � Habitat selection �
Panthera tigris � Scale-optimization � Shape-

optimization � Dong Phayayen–Khao Yai Forest

Complex

Introduction

Much of modern ecological analysis is underpinned by

ecological niche theory (Hutchinson 1957). At the

center of ecological inquiries is the organism, with its

distribution, abundance, and survival dictated by its

niche, defined as a function of limited resources within

an n-dimensional hypervolume of continuous space

(Hegel et al. 2010; Blonder 2018). The proliferation of

modern analytical tools (Elith et al. 2006; Blonder

2018) and increased computational power to quantify

these fundamental and realized niches has advanced

the field of landscape ecology and enabled more

powerful habitat selection modelling (Hegel et al.

2010). However, such assessments, even for well-

studied species, are rarely straightforward (Mayor

et al. 2009).

Gradients of factors along niche hypervolume axes

can exhibit complex patterns across a continuum of

spatial scales (Cushman 2007; Hegel et al. 2010), with

organism responses to its environment is simultane-

ously influenced by both fine- and broad-scale envi-

ronmental attributes (Wiens 1976; Johnson et al. 1992;

Levin 1992). No single spatial scale is typically

sufficient to elucidate organism-habitat relationships.

Thus, investigations into habitat selection should be

conducted at multiple, ecologically-relevant spatial

scales (Wiens 1989; Goodwin and Fahrig 1998;

McGarigal et al. 2016). In addition, organism

responses to environmental and other factors, may

not necessarily be linear. Austin et al. (1990) provide

evidence of complex, non-linear organism responses

in habitat studies, a result reflected in a number of

other studies on species-habitat relationships (Wasser-

man et al. 2012; Hebblewhite et al. 2014; Timm et al.

2016; Bosco et al. 2019; Macdonald et al. 2019).

However, related assumptions pertaining to these

relationships have largely been untested.

The importance of incorporating spatial scale into

modelling of species–habitat relationships is well-

established (McGarigal and Cushman 2002; McGari-

gal et al. 2016). Failing to do so can undermine the

performance of habitat selection models and their

interpretation (e.g., Wasserman et al. 2012; Mateo-

Sanchez et al. 2014; Shirk et al. 2014), potentially

leading to errors of inference and application

(McGarigal and Cushman 2002). Optimized multi-

ple-scale approaches (see definitions by McGarigal

et al. (2016)] have been used to model habitat

selection, limiting factors, and threats for a number

of species (e.g. Thompson and McGarigal 2002;

Toews 2011; Gonthier et al. 2014; Wan et al. 2017),

and typically out-perform single-scale models in

predictive or explanatory power (Kanagaraj et al.

2011; Wasserman et al. 2012; Mateo-Sanchez et al.

2014; Timm et al. 2016; McGarigal et al. 2016). It is

notable, that despite the increased consideration of

scale in habitat suitability studies since the publication

of the influential McGarigal et al. (2016) review paper,

few studies have formally applied scale-optimization

to evaluate the effects of landscape components on

species habitat suitability at multiple scales.

Conversely, the extent to which the functional

shape of a species’ response to covariates (i.e.

functional form) affects model performance has

largely been overlooked. Assuming a single response

type for data being modelled may fail to account for

different forms of relationship, an assumption that

may not be appropriate even for modelling simple

ecological associations (Oksanen and Minchin 2002).

Indeed, the functional form of species–habitat rela-

tionships can vary across habitat characteristics (Red-

fern et al. 2006) and scales (Wan et al. 2017). Inclusion

of variable-specific, non-linear functional relation-

ships may strengthen the relationship between depen-

dent and independent variables, improving

representation of covariates in top models that may

otherwise be obscured and, potentially, improving

explanatory power (Carle 2006).

Generalized linear models (GLMs) have been the

most widely-used approach in habitat modelling

studies, given their intuitiveness and flexibility

(McGarigal et al. 2016). GLMs assume a linear

relationship between link function-transformed pre-

dictor variables and explanatory variables (Nelder and

Wedderburn 1972). However, variables may have

unique, non-linear response shapes. The vast majority
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of habitat relationships studies have assumed linear

relationships. In the relatively few cases in which

different functional forms have been explicitly inves-

tigated, they have typically been restricted to quadratic

relationships (Mateo-Sanchez et al. 2014; Mashinto-

nio et al. 2014; Dzialak et al. 2015; Bosco et al. 2019;

Macdonald et al. 2019). A few studies have examined

other, more complex relationships (Bar-Massada et al.

2011; Fisher et al. 2011; Mateo-Sánchez et al. 2015;

DeVoe et al. 2015; Shirk et al. 2018), although this

appears not to have widespread application. Impor-

tantly, no published study, to our knowledge, has

formally compared the performance and interpretation

of models with and without functional shape-

optimization.

The effect of scale- and shape-optimization in

quantifying species niches and, by extension, species-

habitat relationships merits investigation. Our goal in

this paper is to explicitly evaluate the effects of scale-

and shape-optimization on modelling habitat selec-

tion, using a globally important and understudied tiger

population in Thailand as a case study. Tigers are an

ideal species in which to investigate this, given large

home ranges (Smith 1993; Sunquist 2010), potential

influence of broad-scale environmental variation (Kr-

ishnamurthy et al. 2016; Reddy et al. 2017), and high

conservation priority (Lynam and Nowell 2011;

Goodrich et al. 2015). Using long-term camera-trap

studies, we evaluate how shape- and scale-optimiza-

tion affect predictive power and interpretation of

models in comparison with non-optimized models. In

doing so, we also evaluate how covariates influence

habitat selection of tigers and the degree of scale- and

shape-dependency.

We test four central hypotheses. First, we expect

that habitat selection is highly scale-dependent, with

clear patterns of relationship between the scale of

analysis and strength of relationship between occur-

rence and environmental variables. Second, we expect

that, for most variables, the relationship with tiger

occurrence will be strongest at broad spatial scales,

reflecting large home range sizes and high sensitivity

to human influences. Third, we expect the multi scale-

optimized model to outperform any of the single-scale

optimized models, given evidence from previous

studies. Lastly, we expect that shape-optimized mod-

els will outperform non-optimized models, given each

variable is included with its independent shape of

functional relationship with species occurrence.

Methods

Study site

The Dong Phayayen–Khao Yai Forest Complex

(DPKY) covers 6155 km2 in eastern Thailand

(Fig. 1). It consists of five protected areas—Khao

Yai National Park (KYNP), Thap Lan National Park

(TLNP), Pang Sida National Park (PSNP), Ta Phraya

National Park (TPNP), and Dong Yai Wildlife Sanc-

tuary (DYWS). The complex is relatively mountain-

ous with elevations ranging from 100 m to 1351 m

a.s.l. It contains a number of forest types, but primarily

consists of mixed evergreen (77%) and mixed dipte-

rocarp/deciduous primary and secondary forest (6%).

The complex is biologically diverse, supporting 112

mammalian species, 392 birds, 200 reptiles/amphib-

ians, and 2500 plant species (DNP 2004), and is on the

UNESCO World Heritage List in recognition of its

outstanding natural and conservation value (UNESCO

2017). Currently, DPKY is almost completely sur-

rounded by villages and human infrastructure.

Camera-trap surveys and data processing

From 2008 to 2017, we conducted camera-trap

surveys throughout DPKY to investigate tiger pres-

ence in each of its five protected areas (Ash et al.

2020). Survey coverage and intensity increased during

this period as funding, camera-traps, and related

resources increased, covering diverse habitats across

DPKY. Within these areas, cameras were placed to

maximize detection of tigers by prioritizing camera

placement in areas with previous tiger or prey records

and identifying topographic (e.g. ridges, river valleys)

or other features (e.g. roads, trails) likely used by

tigers (Karanth and Chundawat 2002; Sunarto et al.

2012; Barber-Meyer et al. 2013). To reduce spatial

autocorrelation, if more than one camera was present

within a 300 m radius, we selected the camera with the

highest number of tiger detections or, if no tigers were

detected, by greatest survey effort (camera-trap nights

[CTN]). A more detailed description of surveys is

provided in Ash et al. (2020) and supplementary

online materials (Online Resource 1).
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Predictor variables

We compiled a set of nine environmental predictor

variables based on previous studies of tigers through-

out their range (Wibisono et al. 2011; Sunarto et al.

2012; Ngoprasert et al. 2012; Kafley et al. 2016; Thapa

and Kelly 2017). These primary variables were further

transformed into more biologically informative pre-

dictor variables (Table 1) using class and landscape

level spatial statistics (McGarigal et al. 2012). Vari-

ables were prepared in 30 m resolution to ensure

representation of fine-scale variations in the

environment.

We used SRTM 1 (Shuttle Radar Topography

Mission) arc-second global elevation data (Jarvis et al.

2008), which we further transformed into several

variables measuring topographic heterogeneity using

the Geomorphometry & Gradient Metrics Toolbox

(Evans et al. 2014) in ArcGIS 10.3.1 (Environmental

Systems Research Incorporated, ESRI, Redlands, CA,

USA, 2011).These included terrain roughness index

(degree of elevation difference between adjacent

cells), slope position (surface to area ratio) and

compound topographic index (CTI). CTI is a measure

of flow accumulation (Beven and Kirkby 1979), with

low CTI values associated with ridges and

mountaintops and high values associated with large,

low-lying drainage areas.

Percent forest cover (Hansen et al. 2013) was

reclassified into three classes, non-forest (0–20%),

open forest (20–40%) and closed forest ([ 40%).

Furthermore, the global land cover map (European

Space Agency 2015) was classified into eight study-

relevant area classes. Since some forest types (Royal

Forestry Department 2000) were similar or under-

represented in our study area, we reclassified eight

forest types from an original 12 classes. Streams and

rivers were included, but were reclassified to only

include perennial rivers/streams (Royal Forestry

Department 2000).

To test associations at different spatial scales, we

transformed variables into seven multi-scale predictor

variables (250 m, 500 m, 1 km, 2 km, 4 km, 8 km,

and 16 km). For continuous variables, we generated

focal statistics (focal mean and standard deviation) in

ArcGIS using a moving circular window with radius

equal to each scale. For categorical variables, we

calculated landscape metrics in FRAGSTATS

(McGarigal et al. 2012) using moving windows for

each spatial scale. For class-level statistics, we calcu-

lated area-weighted mean radius of gyration (GYR,

also known as correlation length), which is a measure

Fig. 1 Map of the Dong Phayayen–Khao Yai forest complex

(DPKY) and its five protected areas (* 14� 000 to 14� 330 N and

* 101� 050 to 103� 140 E)—Dong Yai Wildlife Sanctuary

(DYWS), Khao Yai National Park (KYNP), Pang Sida National

Park (PSNP), Thap Lan National Park (TLNP), and Ta Phraya

National Park (TPNP). Map generated with ArcGIS 10.3.1

(Environmental Systems Research Incorporated, ESRI, Red-

lands, CA, USA, 2011) with forest cover derived from Hansen

et al. (2013)
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of mean potential travel distance within a habitat

patch, or habitat extent, and percentage of habitat

within the focal landscape (PLAND). At the land-

scape-level we calculated contrast-weighted edge

density (CWED), which quantifies the influence of

habitat edges via the degree of contrast between

adjacent patches. We also calculated patch density

(PD), a measure of the subdivision of habitat within

the landscape (i.e. number of patches divided by area).

Lastly, we calculated aggregation index (AI), which

quantifies the degree of dispersion of habitat patches

within the landscape. In total, we prepared 47

variables to investigate how spatial composition and

configuration of the landscape at various scales

influences tiger detections (Table 1).

Data analysis

To assess the influence of scale- and shape-optimiza-

tion on model performance, we compared four

approaches: (1) Single-scale optimized models

(SSO); (2) A multi-scale optimized model (MSO);

(3) Single-scale shape-optimized models (SSSO); and

(4) A multi-scale-and shape-optimized model

(MSSO).

Model 1: Single-scale optimized model approach

To provide a baseline for assessing the effects of

optimization on model performance, we developed a

suite of seven independent models, one for each scale

(250 m to 16 km), in which no optimization steps

were applied (single-scale optimized [SSO]). This

corresponds to what McGarigal et al. (2016) termed

pseudo-optimized single-scale (ms4). For these mod-

els, the number of variables was reduced through a

series of filtering steps. (1) Using the glmer function in

the lme4 package in R (Bates et al. 2014; R Devel-

opment Core Team 2017), we produced a univariate

generalized linear model (GLM) with a logit link

function for each variable at each scale. (2) We

required that p\ 0.05 for each variable. (3) For all

Table 1 Variables included in univariate model selection, metrics, and data sources

Variable ID Metric Data Source

Elevation DEM Focal mean &

SD

Jarvis et al. (2008; http://srtm.csi.cgiar.

org)

Protected area boundary BOUND Focal mean Royal Forestry Department (2000)

Forest class: 1-Non-forest (0–20%); 2-Open canopy

(20–40%); 3-Closed canopy ([ 40%)

TC PLAND &

GYR

Reclassified from Hansen et al. (2013)

Forest type: 1-Evergreen; 2-Mixed Deciduous; 3-Dry

Dipterocarp; 4-Reforested Areas; 5-Bamboo Forest;

6-Secondary Forest/Old Clearing; 7-Grassland/Scrubland

FT PLAND &

GYR

Reclassified from Royal Forestry

Department (2000)

Terrain Roughness Index (TRI) TRI Focal mean &

SD

Derived from Jarvis et al. (2008; http://

srtm.csi.cgiar.org) and Evans et al.

(2014)

Slope position SLOPE Focal mean &

SD

Derived from Jarvis et al. (2008; http://

srtm.csi.cgiar.org) and Evans et al.

(2014)

Streams/Rivers STRC1 Focal mean Reclassified from Royal Forestry

Department (2000)

Compound topographic index (i.e., flow accumulation) CTI Focal mean &

SD

Derived from Jarvis et al. (2008; http://

srtm.csi.cgiar.org) and Evans et al.

(2014)

Land cover classes: 1-Cropland; 2-Mosaic cropland;

3-Forest/Natural vegetation; 4-Shrubland/grassland;

5-Sparse vegetation & bare areas; 6-Urban Areas; 7-Water

LC PLAND,

GYR,

CWED, PD,

AI

Reclassified from European Space

Agency (2015; www.esa-landcover-cci.

org/?q=node/175)

Landscape statistics include focal mean and standard deviation (SD). Landscape metrics include percentage of landscape (PLAND),

area weighted mean of radius of gyration/correlation length (GYR), contrast-weighted edge density (CWED), patch density (PD), and

aggregation index (AI)
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variables with a Pearson’s correlation coefficient |r|[
0.6, we selected the variable with the lowest AICc

value in each univariate GLM (Burnham and Ander-

son 2002).

These filtering steps resulted in the inclusion of 11

to 19 variables, including survey effort (CTN), among

each of the seven scales (Online Resource 2, Table 2).

To find the most parsimonious model for each spatial

scale we used the ‘biostats’ package in R (McGarigal

2018), a set of functions which (1) produced models

for all combinations of the standardized predictor

variables, subsetting the best performing models

ranked by DAICc (defined in our models as DAICc\
2); (2) averaged a final set of models and calculated

goodness-of-fit statistics, including proportion

deviance explained for each candidate model; and

(3) ranked variable importance in the final model with

averaged coefficients based on Akaike’s model weight

(wi).

Model 2: Multi-scale optimized model approach

For the multi-scale optimized (MSO) model, we

selected the scale of best fit for each variable prior to

the filtering steps and inclusion in the final model. For

each variable, we developed a univariate GLM for

each scale and selected the best performing (i.e. most

optimal) scale by lowest AICc value. As in other

models, we required p\ 0.05 for each variable and

selected among correlated variables (Pearson’s coef-

ficient |r|[0.6) by lowest AICc value. Scale-specific

variables were then included in a multivariate GLM

using the ‘biostats’ set of functions (McGarigal 2018)

to subset best performing models, calculate goodness-

of-fit statistics, and rank variable importance in the

final model. This approach is what McGarigal et al.

(2016) termed (pseudo-)optimized multiple scales

(ms5), as we optimized our model based on a range

of scales determined a priori rather than selecting

among an unconstrained range of continuous scales.

Model 3: Single-scale and shape-optimized model

approach

To investigate the effects of shape-optimization on

model performance, we developed seven independent

single-scale shape-optimized (SSSO) models, one for

each scale (250 m to 16 km), in which variables were

included at an optimal functional form. To determine

candidate functional forms to investigate, we plotted

nonlinear splines using plsmo in the R package Hmisc

(Harrell 2018) between variables and binomial tiger

detections. Among resulting plots, we identified four

potential functional forms (quadratic, logarithmic,

exponential, and negative exponential). These func-

tions were used to transform variables at their optimal

scales in univariate GLMs, as described above.

Unmodified linear forms were also included, resulting

Table 2 Summary of

model performance

statistics for single-scale

optimized (SSO) models,

single-scale shape-

optimized (SSSO) models,

the multi-scale optimized

(MSO) model, and the

multi-scale and shape-

optimized (MSSO) model

Model Threshold PCC Sensitivity Specificity Kappa AUC

SSO—250 m 0.37 0.8700 0.5965 0.9462 0.5873 0.85

SSSO—250 m 0.46 0.8719 0.5175 0.9707 0.5651 0.86

SSO—500 m 0.41 0.8719 0.6140 0.9438 0.5975 0.87

SSSO—500 m 0.41 0.8681 0.5877 0.9462 0.5798 0.88

SSO—1 km 0.39 0.8413 0.5526 0.9218 0.5047 0.86

SSSO—1 km 0.35 0.8375 0.6579 0.8875 0.5336 0.87

SSO—2 km 0.27 0.8145 0.8246 0.8117 0.5391 0.88

SSSO—2 km 0.27 0.8222 0.7632 0.8386 0.5357 0.88

SSO—4 km 0.32 0.8509 0.7456 0.8802 0.5886 0.90

SSSO—4 km 0.33 0.8547 0.7807 0.8753 0.6062 0.90

SSO—8 km 0.40 0.8700 0.6667 0.9267 0.6087 0.91

SSSO— 8 km 0.45 0.8795 0.7018 0.9291 0.6410 0.91

SSO—16 km 0.54 0.8929 0.6491 0.9609 0.6601 0.93

SSSO—16 km 0.54 0.8891 0.6667 0.9511 0.6551 0.93

MSO 0.37 0.8891 0.7456 0.9291 0.6747 0.92

MSSO 0.43 0.8815 0.7018 0.9315 0.6455 0.93
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in five functional forms tested in this model approach.

The best performing shape for each variable was

determined by lowest AICc value before conducting,

as previously described, filtering based on p-values

and collinearity. In the final multivariate GLM for

each scale, for quadratic variables, we included both

linear and quadratic terms as separate explanatory

variables. We were able to include these quadratic

terms using ‘biostats’ (McGarigal 2018), while run-

ning all combinations of models, providing an advan-

tage over other similar approaches, such as dredge

(Bartoń 2018).

Model 4: Multi-scale- and shape-optimized model

approach

In the multi-scale and shape-optimized (MSSO)

model, we include both scale- and shape-optimization.

As in MSO and SSSO models, we determined the best

performing shape and scale for each variable by lowest

AICc value before conducting filtering based on p-

values and collinearity. In effect, variables were

included in a final multivariate GLM at their optimal

scale and functional form. As in the SSSO approach,

for quadratic variables, we included both linear and

quadratic terms as separate explanatory variables

using ‘biostats’ (McGarigal 2018).

Evaluating model performance and variable

importance

We evaluated model performance in three ways. First,

we calculated sensitivity (correctly predicted pres-

ence/total points present), specificity (correctly pre-

dicted absence/total points absent), percent correctly

classified (PCC; summary of correctly predicted

points at a defined threshold), Kappa (proportion

correctly predicted points accounting for probability

of chance), and area under the ROC curve (AUC). We

measured variable importance via AICc variable

importance from the model averaging table and mag-

nitude of the standardized coefficients (Wasserman

et al. 2012). We also tested the influence of each

variable importance from the model averaging

table and magnitude of the standardized coefficients

(Wasserman et al. 2012). We also tested the influence

of each variable on model performance by calculating

the difference in probability of tiger detections when

the variable increases from the 10th to 100th

percentile, using standardized values and holding all

other variables constant at their medians. Variables

were back-transformed to original values and plotted

to evaluate changes in probability of tiger presence

relative to changes in each variable. Lastly, we

generated prediction maps to investigate differences

in predictions for each modelling approach. These

maps depict spatial variation in predicted tiger pres-

ence, with each cell containing a predicted presence

value ranging from 0 (absent) to 1 (present). To

compare predictive maps between the four top models,

we used three approaches. First, we calculated the

correlation between the pixel values in each of the four

maps. Second, we calculated the average absolute

difference between the pixel values in the four maps.

Third, we classified the four maps into high quality

(greater than probability of 0.7) and mid-high quality

habitat (greater than probability of 0.5). We then used

FRAGSTATS (McGarigal et al. 2012) to calculate

percentage of landscape (PLAND), patch density

(PD), correlation length (GYR) and largest patch

index (LPI) for each of the maps.

Results

Model performance

All models demonstrated high predictive perfor-

mance, with AUC ranging from a low of 0.85 (for

the 250 m single-scale optimized [SSO] model) to

0.93 for the multi-scale and shape-optimized (MSSO)

model and the top single scale-optimized 16 km

models (SSO and SSSO); Table 2). Similarly, the

Kappa statistic, percent observations correctly classi-

fied, model sensitivity, and specificity were high for all

models, with the 16 km SSO, 16 km SSSO, MSO,

MSSO models generally out-performing smaller-scale

SSO models. There was slight disagreement among

these measures in terms of which of these models had

the highest performance. The 16 km SSO, 16 km

SSSO, and MSSO models had the highest performance

based on AUC (0.93), MSO had the highest perfor-

mance based on Kappa, and the 16 km SSO showing

the highest performance based on PCC. All four of

these models had very high performance, with AUC

over 0.90, PCC greater than 0.88, and Kappa greater

than 0.64, which demonstrates exceptionally high
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ability to correctly discriminate between detection and

non-detection points.

Model interpretation

Although the top models (16 km SSO, 16 km SSSO,

MSO, and MSSO) each had very high and very similar

predictive performance, they differed substantially in

model interpretation. We base model interpretation on

several characteristics: (1) variables included in the

model, (2) scale at which each variable is included, (3)

sign of the variables included, (4) variable importance,

(5) the shape of variables included in SSSO and MSSO

models, and (6) differences in prediction maps.

Variables included

Camera effort (Cam_eff) was included in all four of

the top models (SSO, MSO, SSSO, and MSSO),

showing the universally high importance of sampling

effort to model prediction. Other than camera effort,

only percentage of bamboo forest (FT5_PLAND) was

included in all four top models (with a positive

coefficient), indicating that the extent of bamboo

forest surrounding a sampling location is a ubiqui-

tously important predictor of tiger occurrence in the

study area. No other variable was included in all four

of the top models, although secondary growth forest

(FT_6) was included in all four top models based on

slightly different FRAGSTATS metrics, which mea-

sure extensiveness of the cover type. Specifically,

correlation length of secondary growth forest

(FT6_GYR) was included in MSO, the 16 km SSSO,

and MSSO, while percentage of secondary growth

forest (FT6_PLAND) was included in the 16 km SSO.

This suggests that the extensiveness of secondary

growth forest is also an important predictor of tiger

occurrence in the study area (with a negative coeffi-

cient). Similarly, the standard deviation of compound

topographic index (CTI_SD), a measure of topograph-

ical complexity, was included in MSSO and the 16 km

SSO. Focal mean of topographical roughness index

(TRI_FM) and standard deviation of elevation

(DEM_SD), which measure similar attributes of

topographical complexity, were also included in

MSSO while standard deviation of elevation was also

included in the 16 km SSSO. This suggests that

topographical heterogeneity is a consistently impor-

tant predictor of tiger occurrence in the study area.

Several variables were included in two of the four top

models, with focal extensiveness of open forest

(20–40% forest cover; TC2_PLAND), included in

both MSO and MSSO, but not in the top SSO and

SSSO models. Similarly, focal extensiveness of

shrubland/grassland (LC4_PLAND), was included in

the MSO and 16 k m SSO/SSSO. Four variables were

included in only one of the four top models, with

percentage evergreen forest (FT1_PLAND) and per-

centage mosaic cropland (LC2_PLAND) included

only in the 16 km SSSO, correlation length of

reforested areas (FT4_GYR) included only in MSSO,

and correlation length of urban areas (LC6_GYR)

included only in the 16 km SSO. Three variables were

shared between the 16 km SSO and SSSO models

while four variables were shared between both shape-

optimized models (SSSO and MSSO).

Variable scales

Variables were generally represented at broad spatial

scales. Almost all variables in the MSSO (six out of

seven; Table 3) and MSO (five out of seven; Online

Resource 2, Table 4) were selected at the broadest

spatial scales (8 and 16 km). In MSO, the smallest

scale represented was 1 km, while the smallest scale

represented in the MSSO was 4 km. This representa-

tion of broad scales is also evident in the similarly

strong predictive performance of both single-scale

optimized (i.e. SSO and SSSO) 16 km models com-

pared with multi-scale optimized models. It is

notable that the worst performing model was the

SSO developed at the finest spatial scale (250 m).

Variable sign

The signs of shared variables remained consistent

across our four top models. Variables with a positive

relationship with tiger occurrence included camera

effort (Cam_eff) and percentage of bamboo forest

(FT5_PLAND) in all models, standard deviation of

compound topographic index (CTI_SD) in the 16 km

SSO and MSO models, standard deviation of terrain

roughness index (TRI_SD) in the MSSO model, and

percentage of evergreen forest (FT1_PLAND) in the

16 km SSSO. Variables with a negative relationship

included correlation length of secondary forest

(FT6_GYR) in the 16 km SSSO, MSO, and MSSO,

percentage of open forest (TC2_PLAND) in both
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Table 3 Generalized linear model results for the multi-scale

and shape-optimized (MSSO) model, predicting tiger presence

based on 1166 detections of tiger in DPKY (2008–2017),

including standardized regression coefficients (b), adjusted

standard error, z-score (z), and significance (p)

Variable ID b SE (Adj) z p

(Intercept) – - 1.367 0.314 4.352 \ 0.001

% Secondary Forest (16 km)LOG FT6_PLAND_16000_LOG - 0.777 0.210 3.702 \ 0.001

Correlation length Secondary Forest (4 km)L FT6_GYR_4000L - 0.701 0.235 2.978 0.003

Camera effort (# trap nights) Cam_eff 1.460 0.309 4.718 \ 0.001

% Bamboo (16 km)L FT5_PLAND_16000 1.028 0.525 1.960 0.050

DEM Standard Deviation (16 km)L DEM_SD_16000 0.995 0.308 3.226 0.001

% Bamboo (16 km)Q FT5_PLAND_16000Q - 0.072 0.232 0.309 0.757

DEM Standard Deviation (16 km)Q DEM_SD_16000Q - 0.866 0.336 2.575 0.010

Focal mean of terrain roughness index (16 km)L TRI_FM_16000L 1.165 0.502 2.317 0.020

Focal mean of terrain roughness index (16 km)Q TRI_FM_16000Q - 1.671 0.579 2.887 0.004

% Open forest (16 km)L TC2_PLAND_16000_L - 2.353 0.457 5.149 \ 0.001

Correlation length of reforested areas (8 km)L FT4_GYR_8000_L 0.968 0.321 3.011 0.003

Correlation length of reforested areas (8 km)Q FT4_GYR_8000_Q - 0.555 0.195 2.844 0.004

Shape (i.e. functional form) of each variable is indicated by: Llinear, QQuadratic, LOGLogarithmic

Table 4 Summary of variable importance among top models,

the single-scale optimized (SSO) 16 km model, the single-

scale shape-optimized (SSSO) 16 km model, the multi-scale

optimized (MSO) model and the multi-scale and shape-

optimized (MSSO) model. Specific metrics include AICc

variable importance, standardized coefficients, and change in

probability of tiger presence with change in variable value

from 10th to 100th percentiles. The SSSO and MSSO models

included both linear (L) and quadratic (Q) terms for five

variables

AICc variable importance Standardized coefficients D Probability of tiger presence

SSO SSSO MSO MSSO SSO SSSO MSO MSSO SSO SSSO MSO MSSO

Cam_eff 2 5 6 3 1.355 1.487 1.415 1.460 0.97 0.94 0.96 0.92

CTI_SD 1 – 3 – 0.720 – 0.616 – 0.22 – 0.44 –

DEM_SD – 4 – 1 – 0.333L–

0.868Q
– 0.995L–

0.866Q
– 0.07 – 0.13

FT1_PLAND – 1 – – – 0.733 – – – 0.12 – –

FT4_GYR – – – 1 – – – 0.968L–

0.555 Q
– – – 0.17

FT5_PLAND 2 5 6 2 1.964 1.556 0.988 1.028L–

0.072Q
0.90 0.70 0.46 0.55

FT6_GYR – 2 5 3 – - 0.443 - 0.675 - 0.701 – - 0.10 - 0.06 - 0.13

FT6_PLAND 2 – – 2 - 1.827 – – - 0.777 - 0.11 – – - 0.23

LC2_PLAND – 5 – – – - 1.130L–

0.770Q
- 0.10

LC4_PLAND 2 2 1 – - 0.647 - 0.496 - 0.486 – - 0.08 - 0.13 - 0.06 –

LC6_GYR 1 – – – - 0.613 – – – - 0.04 – – –

TC2_GYR – – 2 – – – - 0.704 – – – -0.11 –

TC2_PLAND – – 5 1 – – - 1.437 - 2.353 – – - 0.02 - 0.58

TRI_FM – – – 2 – – – 1.165L–

1.671Q
– – – 0.13

TRI_SD – – 2 – – – 0.384 – – – 0.38 –
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MSO and MSSO, correlation length of open forest

(TC2_GYR) in MSO, percentage of shrubland/grass-

land (LC4_PLAND) in the 16 km SSO, 16 k m SSSO,

and MSO models, and correlation length of urban

areas (LC6_GYR) in the 16 km SSO model. Three

variables in shape-optimized models (16 km SSSO

and MSSO) exhibited a positive parabolic relationship

between probability of tiger presence and increasing

variable values (Fig. 2; Online Resource 3, Fig. 4).

These included standard deviation of elevation

(DEM_SD; SSSO/MSSO), focal mean of terrain

roughness index (TRI_FM; MSSO), and correlation

length of reforested areas (FT4_GYR; MSSO). This

indicates probability of tiger presence peaks at inter-

mediate values of these variables.

Variable importance

In the 16 km SSO model, AICc variable importance

was similar across variables with the number of model

subsets in which variables were represented ranging

from n = 1 to 2 (Table 4). Key variables in this model,

as determined by standardized coefficients, included

percentage of bamboo forest (FT5_PLAND;

b = 1.964 ± 0.314), percentage of secondary forest

(FT6_PLAND; b = - 1.827 ± 0.424), and camera

effort (Cam_eff; b = 1.355 ± 0.279). Variables

which demonstrated the strongest effect on probability

of tiger presence were camera effort (D0.97), percent-

age of bamboo forest (D0.90) and standard deviation

of compound topographic index (D0.22).

The 16 km SSSO model exhibited different pat-

terns in AICc variable importance, with the number of

model subsets in which variables were represented

ranging from n = 1 to 5. Variables with notable stan-

dardized coefficients, included percentage of bamboo

forest (FT5_PLAND; b = 1.556 ± 0.440), percent-

age of mosaic cropland (LC2_PLAND; L b =

- 1.130 ± 0.495; Q b = - 0.770 ± 0.516), and

camera effort (Cam_eff; b = 1.487 ± 0.311). The

strongest effect on probability of tiger presence were

evident in camera effort (D0.94) and percentage of

bamboo forest (D0.70).

The MSO model had notable variation in AICc

variable importance, ranging from n = 1 for percent-

age shrubland/grassland (LC4_PLAND) to n = 6 for

camera effort (Cam_eff) and percentage of bamboo

forest (FT5_PLAND). Variable importance, in terms

of the magnitude of standardized coefficients, was

strongest for percentage open forest (TC2_PLAND;

b = - 1.437 ± 0.349), camera effort (Cam_eff;

b = 1.415 ± 0.299), and percentage of bamboo forest

(FT5_PLAND; b = 0.988 ± 0.238). Changes in prob-

ability of tiger presence were greatest among camera

effort (D0.96), standard deviation of compound topo-

graphic index (CTI_SD; D0.46), percentage of bam-

boo forest (D0.44), and standard deviation of terrain

roughness index (TRI_SD; D0.38).

The MSSO model had some degree of variation in

AICc variable importance, ranging from n = 1 for

standard deviation of elevation (DEM_SD), correla-

tion length of reforested areas (FT4_GYR), and

percentage of open forest (TC2_PLAND) to n = 3

for camera effort (Cam_eff) and correlation length of

secondary forest (FT6_GYR). Standardized coeffi-

cients indicated the importance of percentage of open

forest (TC2_PLAND; b = - 2.353 ± 0.457), camera

effort (b = 1.460 ± 0.309), focal mean of terrain

roughness index (TRI_FM; b = 1.165 ± 0.502Lb =

- 1.671 ± 0.579Q) and percentage of bamboo forest

(FT5_PLAND; b = 1.028 ± 0.525Lb =

- 0.072 ± 0.232Q). Variables with the strongest

effect on probability of tiger presence included camera

effort (Cam_eff; D0.92), percentage of open forest

(TC2_PLAND; D- 0.58), and percentage of bamboo

forest (D0.55).

Shape of variables

While five functional forms were tested during

variable selection for the 16 km SSSO and MSSO

models—linear, quadratic, logarithmic, exponential,

and negative exponential—only three were repre-

sented in fully averaged models. Quadratic relation-

ships (for which linear terms were also included) were

evident in percentage of bamboo forest

(FT5_PLAND) at 16 km (SSSO/MSSO), standard

deviation of elevation (DEM_SD) at 16 km (SSSO/

MSSO), focal mean of terrain roughness index

(TRI_FM) at 16 km (MSSO), percentage of mosaic

bFig. 2 Partial effects plots for the multi-scale and shape-

optimized (MSSO) model showing changes in predicted

probability of tiger presence when variables increase from their

10th to 100th percentile, holding other variables at their

medians. Graphic generated in R (R Development Core Team

2017)
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cropland (LC2_PLAND) at 16 km (SSSO) and corre-

lation length of reforested areas (FT4_GYR) at 8 km

(MSSO). Three variables—percentage of secondary

forest (FT6_PLAND) at 16 km (MSSO), correlation

length of secondary forest (FT6_GYR) at 16 km

(SSSO), and percentage of evergreen forest

(FT1_PLAND) at 16 km (SSSO)—exhibited logarith-

mic relationships. Linear relationships were observed

in correlation length of secondary forest (FT6_GYR)

at 4 km (MSSO), percentage of reforested areas

(LC4_PLAND; SSSO), and percentage of open forest

(TC2_PLAND; MSSO) at 16 km.

Model prediction

Correlation between prediction maps (Fig. 3) for the

four top models was reasonably high. Correlation of

the prediction maps for SSSO–SSO was the highest

(0.95), followed by MSSO–MSO (0.92), and MSSO–

SSO (0.84; Table 5).

Differences between pixel values were generally

highest in the central part of the landscape, within

TLNP and PSNP, with SSSO and SSO 16 km models

having a notably higher predicted presence of tigers

over a broader area compared to MSSO and MSO

models (Online Resource 3, Fig. 5. Between these

models, SSSO had higher predicted values elsewhere

in the complex. Predicted tiger presence was higher in

a smaller core area of the complex in MSSO and lower

predicted presence outside this area compared with

other models. The MSO generally had lower predicted

tiger presence in more central areas compared to other

models though predicted higher probability of pres-

ence in certain areas elsewhere in the complex such as

in small areas of PSNP and KYNP. Average absolute

difference was highest between SSSO and MSO maps

(0.17) and lowest between MSSO and MSO maps

(0.04; Table 4).

Percentage of high-quality habitat ([ 0.7 predicted

tiger presence) in the landscape was highest in the

16 km SSSO (* 12.3%), followed by the MSSO

(* 5.5%), the 16 km SSO (* 4.7%), and was

notably low in MSO (* 0.7%; Table 6). Extent of

mid-high quality habitat ([ 0.5 predicted tiger pres-

ence) was also highest in the 16 km SSSO (* 20.8%),

followed by the 16 km SSO (* 11.7%), MSSO

(* 7.9%), and MSO (* 4.1%). Mid- to high-quality

habitat was generally more dispersed in MSO than

other models, as indicated by relatively higher PD, and

lower LPI and GYR values, characterized by several

distinct patches. In the 16 km SSSO/SSO and MSSO,

both mid-high and high quality habitat were largely

represented by single patches.

Discussion

The focus of this study was to quantitatively evaluate

the relative impacts of scale- and functional shape-

optimization on model performance, prediction and

interpretation in habitat selection studies, using a

globally important tiger population as a case study.

Our study confirms the scale-dependence of habitat

selection in tigers, and our results suggest it is

important for further confirm the importance of habitat

selection research to formally evaluate and optimize

scale as a component of the modelling process. In

contrast, we did not find strong and clear effects of

optimizing models to account for different, nonlinear

functional shapes of relationship between species

occurrence and environmental variables.

Consistent with our first hypothesis, we found that

tiger occurrence probability is highly scale dependent.

There were strong differences in the univariate

strength of relationship between most variables across

scale. In addition, we found large differences in model

Table 5 Matrix of correlation (COR) and average absolute

difference (AAD) between prediction maps between the single-

scale optimized (SSO) 16 km model, multi-scale optimized

(MSO) model, single-scale shape-optimized (SSSO) 16 km

model, and multi-scale and shape-optimized (MSSO) model

SSO MSO SSSO MSSO

SSO 0.09 0.10 0.08 AAD

MSO 0.84 0.17 0.04

SSSO 0.95 0.83 0.15

MSSO 0.84 0.92 0.83

COR

bFig. 3 Prediction maps of probability of tiger presence, with

values ranging from 0 (predicted absent) to 1 (predicted

present), generated from the top four fully averaged models—

(i) the single-scale optimized (SSO) 16 km model, (ii) the scale-

optimized (MSO) model, the single-scale shape-optimized

(SSSO) 16 km model, and (iv) the scale- and shape-optimized

(MSSO) model. Map generated with ArcGIS 10.3.1 (Environ-

mental Systems research Incorporated, ESRI, Redlands, CA,

USA, 2011)
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performance and interpretation, indicating that the

ability to predict tiger occurrence is strongly affected

by the scale in which variables are measured. This

scale-dependence in model interpretation is particu-

larly stark between top models and smaller scale

single-scale models (SSO/SSSO). Nine variables in

top models were not present in fine-scale single-scale

optimized (SSO) models (250 m–4 km) and ten

variables represented in these fine-scale SSOs/SSSOs

were not present in top models. This is particularly

important, as most past tiger habitat modelling, similar

to past modelling for other large carnivores (Mateo-

Sánchez et al. 2015), have used SSO models with a

relatively fine (* 500 m–1 km) focal scale.

Our results reinforce that the lens with which the

niche of organism is evaluated, specifically its rela-

tionships with habitat, has a considerable influence in

the interpretation of models. This high degree of scale-

dependence is evident in other tiger studies (Rostro-

Garcı́a et al. 2016; Krishnamurthy et al. 2016; Reddy

et al. 2017), as well as studies on cheetah (Rostro-

Garcı́a et al. 2015), leopard (Pitman et al. 2017; Kittle

et al. 2018), puma (Zeller et al. 2014) and clouded

leopard (Hearn et al. 2018; Macdonald et al. 2019).

Substantial differences in model interpretation and

identification of optimal habitat based on the scale of

analysis is also consistent with numerous studies of

other taxonomic groups (Thompson and McGarigal

2002; Wasserman et al. 2012; Mateo-Sanchez et al.

2014; Wan et al. 2017). Scale-dependence in habitat

relationships is a foundational idea in wildlife ecology

(Wiens 1989; Levin 1992; Thompson and McGarigal

2002) and critical for analyses which aim to quantify

species niches (Hegel et al. 2010). Our results strongly

reinforce this and demonstrate the importance of the

scale of analysis for predicting tiger presence.

A majority of variables were most strongly asso-

ciated with tiger occurrence at the broadest spatial

scales, which was consistent with our second hypoth-

esis. In the multi-scale optimized (MSO) model, 71%

of the included variables were measured at the

broadest (16 km) or second broadest (8 km) scale.

Similarly, in the multi-scale and shape optimized

(MSSO) model, 88% were selected at the broadest or

second broadest scale, with more than half at the

broadest scale. Notably, there were clear patterns of

improvement in AUC in both single-scale model

approaches (SSO/SSSO) from fine to broad scales.

The 16 km SSO and SSSO models, in which all

variables were measured at the broadest scale, were

the best performing among these single-scale models.

The high consistency among these top models clearly

suggests that habitat selection for tigers in our study is

largely related to broad-scale habitat factors. These

results are aligned with previous studies on tigers

(Krishnamurthy et al. 2016; Rostro-Garcı́a et al. 2016;

Reddy et al. 2017), brown bear (Mateo-Sánchez et al.

2015), leopard (Kittle et al. 2018), and clouded

leopard (Hearn et al. 2018), all of which found

dominant effects of environmental variables at broad

scales. Importantly, however, most habitat relation-

ship studies, even for large bodied and highly mobile

animals, typically have utilized single-scale analysis

of fine scale (e.g. 500 m–1 km) environmental data

(McGarigal et al. 2016). Our analysis suggests that

such fine-scale analysis would fail to accurately or

Table 6 Landscape metrics of high ([ 0.7) and mid-high

([ 0.5) probability of tiger presence among the four top

models. Landscape metrics include percentage of landscape

(PLAND), patch density (PD), largest patch index (LPI), and

radius of gyration/correlation length (GYR)

Habitat Quality Model PLAND PD LPI GYR

HIGH SSO 4.6680 0.0005 4.668 6106

MSO 0.7400 0.0013 0.275 1557

SSSO 12.3025 0.0003 12.303 9767

MSSO 5.4998 0.0005 5.388 6812

MID-HIGH SSO 11.6668 0.0003 11.6668 9599

MSO 4.0950 0.0059 4.0534 6673

SSSO 20.7904 0.0006 20.7506 12,173

MSSO 7.8861 0.0008 7.7687 7739
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fully elucidate species habitat selection patterns, even

if model performance is reasonably strong, such as

with single, fine-scale models in our study.

Our third hypothesis was that the multi-scale

optimized models (MSO and MSSO) would outper-

form any single-scale optimized (SSO/SSSO) model.

This follows from arguments and observations made

by McGarigal et al. (2016) who reviewed a large

number of habitat modelling papers and found that, in

nearly all cases that were formally evaluated, multi-

scale optimization outperformed single-scale mod-

elling of habitat relationships. The habitat niche of any

species consists of a number of dimensions, each

composed of environmental variation at particular

characteristic scales. Our results are not fully consis-

tent with this third hypothesis. Both the multi-scale

optimized and the best single-scale optimized models

(16 km SSO/SSSO) performed exceptionally and

equivalently well. These results suggest that a sin-

gle-scale model may sometimes perform as well as a

multi-scale optimized model, but only when organ-

ism-habitat relationships are dominated by a single-

scale response and that the appropriate scale of

analysis is evaluated. This has also been observed in

other studies (Martin and Fahrig 2012; Krishnamurthy

et al. 2016; Timm et al. 2016). In the case of tigers

(Krishnamurthy et al. 2016; Reddy et al. 2017), a

single, broad-scale model might produce very similar

results to a multi-scale optimized model. However, we

emphasize that it is impossible to assess the appropri-

ate scale of analyses for a single-scale model a priori.

Further, even when a single, large scale may be

optimal, broad application can result in potentially

important fine-scale niche dynamics being under-

represented (Mateo-Sanchez et al. 2014) leading to

oversimplified and potentially misleading interpreta-

tions of model results. Therefore, even when a single-

scale model provides the strongest prediction, it

requires use of scale-optimization to identify and

confirm this. Further, when a single-scale model isn’t

optimal, multi-scale optimization is required to iden-

tify the optimal multi-scale model.

Perhaps the most novel aspect of our study is the

comparison of the multi-scale and shape-optimized

model (MSSO) with multi-scale optimized (MSO) and

single-scale optimized (SSO/SSSO) models. We

expected that the multi-scale and shape-optimized

model and single-scale shape-optimized (SSSO) mod-

els would out-perform non-shape-optimized models.

This is because, like scale-dependence, species occur-

rence probability may have a different functional

response shape for each variable, with some responses

being linear, some unimodal, and some curvilinear

(Austin et al. 1990). Results of similar studies suggest

that optimizing for functional form may have mean-

ingful influence in the selection of top models (DeVoe

et al. 2015; Mateo-Sánchez et al. 2015), potentially

allowing for the expression of otherwise obscure

environmental effects (Carle 2006), which may

improve explanatory power. We hypothesised that

optimizing the response shape of variables, like

optimizing the scale of response, would measurably

improve the predictive ability of the model. Our

results do not support this.

While the multi-scale and shape-optimized models

were tied as the highest performing model based on the

most widely used criterion (AUC), the 16 km single-

scale optimized model performed equally well. Fur-

thermore, the multi-scale optimized and the single-

scale optimized 16 km models performed slightly

better based on other measures. The single-scale

optimized (SSO) and single-scale shape-optimized

(SSSO) models exhibited similar patterns in model

performance, with AUC values generally increasing

with scale. While AUC was slightly higher (0.01) in

finer-scale shape-optimized models compared to cor-

responding non-optimized models, this was not the

case at broader-scales. This suggests that shape-

optimization may be less important than scale-

optimization.

While model performance was not substantially

improved by shape-optimization in our study, the

inclusion of variables at their optimal functional form

clarified relationships between habitat characteristics

and species response. For example, topographic

variables (i.e. elevation and terrain roughness) are

present exclusively in non-linear forms (i.e. quadratic

and logarithmic) in shape-optimized models (SSSO/

MSSO). In effect, the multi-scale and shape-optimized

model suggested a more complex relationship

between species presence and topographic hetero-

geneity than in non-optimized models. Expression of

these types of relationships are also evident in other

species-habitat modelling studies, in particular, the

representation of quadratic relationships in final

models (Mashintonio et al. 2014; DeVoe et al. 2015;

Timm et al. 2016; Macdonald et al. 2018; Macdonald

et al. 2019). Notably, inclusion of variables at their
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optimal functional form influenced representation of

variables in final, fully averaged models with differ-

ences in variables included between optimized (SSSO)

and non-optimized (SSO) models. For example, in 8

and 16 km models, only two variables were included

in both SSSO and SSO models out of 12 and 11 total

variables in these models, respectively. Further, only

two out of 11 total variables were represented in both

SSO and MSSO models. This illustrates that models

may be sensitive to optimizing for functional form, as

with scale, and may lead to considerable differences in

model interpretation and conclusions about species–

habitat relationships.

Limitations/caveats

Our fundamental goal in this study was to evaluate the

effect of scale- and shape-optimization on the perfor-

mance, prediction and interpretation of habitat rela-

tionships models. We use a single case study species

and system (tigers in Thailand) for this evaluation,

which limits the generality of our conclusions, how-

ever, in exchange we feel our example provides

realism in that it reflects actual relationships of a focal

species of ecological and conservation importance.

We suggest future work employ simulation studies

which can control scale and shape effects and,

therefore, more reliably and completely evaluate the

sensitivity of modelling methods to scale- and shape-

optimization. Second, given our focus was on explor-

ing the novel question of impacts of scale- and shape-

optimization simultaneously, rather than evaluating

the best approaches for scale optimization, our exam-

ple uses GLM modelling because it is the most well

understood and widely-used method in habitat mod-

elling, and the dominant approach in multi-scale

habitat modelling studies published to date (McGari-

gal et al. 2016). This approach to scale selection is

consistent with many other species-habitat modelling

studies (Rostro-Garcı́a et al. 2016; Kittle et al. 2018;

Macdonald et al. 2018). However, with the rapid

emergence and adoption of other modelling methods,

in particular machine learning approaches (e.g., Evans

et al. 2011; Cushman and Wasserman 2018), we

suggest future work should focus on comparing

performance of scale- and shape-optimization in a

wider range of modelling approaches. In particular,

tree-based machine learning approaches like random

forests perhaps can automatically optimize nonlinear

functional shape (Evans et al. 2011), which could be a

great advantage, while others, like Maxent, do not

(Elith et al. 2011). While there are a myriad of

approaches for habitat–selection analysis, we opted to

utilize GLMs given their intuitiveness, flexibility, and

their wide-spread use in studies investigating scale in

similar studies (McGarigal et al. 2016).

We also note that our definition of optimization

closely follows the definition proposed by McGarigal

et al. (2016) of pseudo-optimization as the scales we

evaluated were selected a priori. Importantly, this

approach does not optimize scale relationships across

a continuous range, and does not optimize them

multivariately and simultaneously. A true optimized

approach may have allowed for inclusion of more

specific scales that best explain variation in tiger

occurrence. However, we feel that the scales selected

for evaluation were sufficient for understanding rele-

vant scales of relationships between covariates and

tiger occurrence and, most importantly, allowed for a

more effective and straightforward evaluation of

scale-dependence in our study compared to a true-

optimized approach. However, improvement of scale-

optimization approaches is an important current topic

in habitat relationships modelling (McGarigal et al.

2016), and we strongly suggest future research to

explore the performance of a range of continuous and

multivariate simultaneous optimization approaches.

Species management implications

We recommend central DPKY, particularly areas of

closed forest cover containing bamboo forest patches

within a 16 km window, should be managed as an area

of high conservation priority for tigers in this

landscape. Our models reinforce the importance of

protecting surrounding broad-scale (8 to 16 km) forest

within protected areas with low human impact as part

of a landscape-scale management strategy. Protection

of this core area and facilitating unconstrained move-

ment to other available habitat will be critical to the

long-term recovery of this population. Scale-depen-

dence in species-habitat relationships, as demon-

strated by this and other studies (Wasserman et al.

2012; Mateo-Sanchez et al. 2014) can have monu-

mental implications for species management. As such,

efforts to develop management and recovery strategies

should account for scale-dependence of tigers in this

landscape. Our results are consistent with other
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literature highlighting the importance of large pro-

tected areas and low human disturbance for tiger

populations (Trisurat et al. 2010; Sunarto et al. 2012;

Ngoprasert et al. 2012; Hebblewhite et al. 2014;

Reddy et al. 2017).

It is pertinent to highlight that our results reflect an

expression of the tigers’ realized niche within DPKY

that may be severely constrained in comparison with

its theoretical fundamental niche. The tigers’ range

itself has suffered considerable declines and its current

range likely reflect its refuge in areas less likely to be

impacted by human activities, which are the chief

driver of range and population declines (Goodrich

et al. 2015). In our study area, areas of the landscape

with flat topography are typically highly affected by

human activities, which may explain their lower

selection. Historically, Thailand’s lowland forests,

now converted by human activity, would have likely

represented preferable habitat due to high prey den-

sities (Rabinowitz 1993; Sunquist et al. 1999).

Conclusion

While shape-optimization did not substantially

improve performance over other models, it did allow

for the expression of potentially important relation-

ships between tigers and covariates that were not

apparent in the models assuming linear forms. Impor-

tantly, our study clearly reinforces previous studies

(McGarigal and Cushman 2002; McGarigal et al.

2016) which highlight the importance of accounting

for scale when modelling habitat selection and other

ecological relationships, particularly for wide-ranging

species such as tigers. We recommend that habitat-

selection studies on tigers and other species incorpo-

rate a robust, ecologically-relevant scale-optimization

framework and consider the inclusion and evaluation

of shape-optimization in model development.

Acknowledgements We would like to extend our deepest

thanks to Thailand’s Department of National Parks, Wildlife and

Plant Conservation (DNP), particularly Dr. Somphot

Duangchantrasiri, Dr. Saksit Simcharoen, and the DNP’s

protected area rangers. Data were generated from tiger survey

work conducted by the DNP and Freeland Foundation,

supported in part by Panthera and WWF-Thailand. Funding

support was provided by the U.S. Fish and Wildlife Service

Rhinoceros and Tiger Conservation Fund, David Shepherd

Wildlife Foundation, Care for the Wild International/Born Free

Foundation, 21st Century Tiger, and Point Defiance Zoo &

Aquarium. Authors EA and ZK were supported by the

Robertson Foundation via grants to DWM. We thank Dr.

Kevin McGarigal for assistance during analysis. We also wish to

thank Dr. Songtam Suksawang, park managers and staff,

Christopher Hallam, Luke Stokes, Paul Thompson, and Dr.

Rob Steinmetz.

Open Access This article is licensed under a Creative Com-

mons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any med-

ium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in

the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

References

Ash E, Kaszta _Z, Noochdumrong A, Redford T, Chanteap P,

Hallam C, Jaroensuk B, Raksat S, Srinoppawan K, Mac-

donald DW (2020) Opportunity for Thailand’s forgotten

tigers: assessment of Indochinese tiger Panthera tigris
corbetti and prey from camera-trap surveys in Eastern

Thailand. Oryx, 1–8. https://doi.org/10.1017/

S0030605319000589

Austin MP, Nicholls AO, Margules CR (1990) Measurement of

the realized qualitative niche: environmental niches of five

Eucalyptus species. Ecol Monogr 60:161–177

Bar-Massada A, Wood EM, Pidgeon AM, Radeloff VC (2011)

Complex effects of scale on the relationships of landscape

pattern versus avian species richness and community

structure in a woodland savanna mosaic. Ecography

35:393–411

Barber-Meyer SM, Jnawali SR, Karki JB, Khanal P, Lohani S,

Long B, Mackenzie DI, Pandav B, Pradhan NMB, Shrestha

R, Subedi N, Thapa G, Thapa K, Wikramanayake E (2013)

Influence of prey depletion and human disturbance on tiger

occupancy in Nepal. J Zool 289:10–18

Bartoń K (2018) Multi-Model Inference (MuMIn). Compre-

hensive R Archive Network (CRAN), Version 1.40.4
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