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Abstract: Several methods have been recently proposed to calculate configurational entropy, based
on Boltzmann entropy. Some of these methods appear to be fully thermodynamically consistent in
their application to landscape patch mosaics, but none have been shown to be fully generalizable
to all kinds of landscape patterns, such as point patterns, surfaces, and patch mosaics. The goal
of this paper is to evaluate if the direct application of the Boltzmann relation is fully generalizable
to surfaces, point patterns, and landscape mosaics. I simulated surfaces and point patterns with a
fractal neutral model to control their degree of aggregation. I used spatial permutation analysis to
produce distributions of microstates and fit functions to predict the distributions of microstates and
the shape of the entropy function. The results confirmed that the direct application of the Boltzmann
relation is generalizable across surfaces, point patterns, and landscape mosaics, providing a useful
general approach to calculating landscape entropy.
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1. Introduction

The calculation of configurational entropy of landscapes has emerged as a topic of
considerable recent interest, as appreciation of the connections between thermodynamics
and landscape processes becomes more apparent [1,2]. Several recent methods have been
proposed to calculate configurational entropy, based on Boltzmann entropy. The Cush-
man [3,4] method directly applies the classic and iconic Boltzmann relation (s = klogW) to
spatial patterns. The Boltzmann relation states that the entropy of a system is proportional
to the logarithm of the number of macrostate, or unique configurations, that produce
the observed macrostate, or global system property. Other authors have proposed more
complex solutions based on multiresolution analysis [5,6] and Wassenstein entropy [7,8].
There has yet to be a formal comparison of the relationships among these different methods
and their consistency with fundamental thermodynamic principles. Recently, Gao and
Li [9] showed that modification of the Gao et al. [5,6] multiresolution approach was mostly
thermodynamically consistent and applicable to both patch mosaics and surface patterns.
Cushman [10] (this volume) showed that the Cushman method of directly applying the
Boltzmann relation to calculate configurational entropy through spatial permutation and
counting the number of arrangements (microstates) that produces the same total edge
length (macrostate) of a landscape mosaic lattice was fully thermodynamically consistent.
The goal of this paper is to show that the Cushman method is also fully generalizable to
surfaces, point patterns, and landscape mosaics.

The Boltzmann relation is potentially a foundational method for computing config-
urational entropy for several reasons. First and foremost, it is the original, classic, and
iconic formulation expressing the entropy of the system in terms of the arrangement of
its particles. The concept of entropy being proportional to the logarithm of the number of
microstates in a macrostate is a transformative idea in science. It provides an elegant and
profound understanding of order and disorder in relation to the probability distribution
of different states. Second, as a framework for computing the configurational entropy of
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landscapes, the Boltzmann relation is particularly appropriate given the direct analogies
between particular arrangements of landscape elements and microstates in the Boltzmann
system and measured spatial attributes of a landscape pattern as the Boltzmann macrostate.
Cushman [3,4] applied this to landscape mosaics. The goal of this paper is to show that
the direct application of the Boltzmann relation for computing landscape entropy also
applies in the exact same way to measuring the entropy of point patterns and surfaces.
This is important, in that showing that the elegant and simple Boltzmann relation is also
generalizable to all kinds of spatial patterns provides a strong unification of theory with
methods for ecological and spatial thermodynamics.

The essence of the Cushman [3,4] approach is to apply the Boltzmann relation directly
to spatial patterns of a landscape mosaic of categorical patches. This is done in three
steps. First, a landscape mosaic is spatially permuted a large number of times, producing
a distribution of randomized patterns (random shuffling of the locations of pixels while
not changing their values). Then the total edge length (the linear distance along edges
of pixels where two different cover classes touch) is calculated for the actual landscape
and the large number of permuted patterns. Next, following the Central Limit Theorem,
Cushman [4] showed that the edge lengths of the permuted landscapes (microstates) are
normally distributed. A Gaussian function is fit to this distribution. Cushman [4] also
showed that the entropy function resulting from this distribution is parabolic, given that
the logarithm of a normal distribution is a parabola, and entropy is proportional to the
logarithm of the number of microstates producing a given macrostate.

Cushman [10] showed that application of the Cushman approach to calculating the
Boltzmann entropy of a landscape mosaic was fully thermodynamically consistent in that:
(1) the distribution of microstates was indeed Gaussian; (2) the entropy function was
parabolic; (3) the mean value of the Gaussian distribution of microstates was a linear func-
tion of landscape dimensionality; (4) the standard deviation of the Gaussian distribution of
microstates was a power function of landscape dimensionality with power equal to exactly
0.5; (5) the entropy of a pattern is maximal in a state of spatial randomness and is lower
when the pattern is both aggregated and when it is dispersed; (6) the entropy increases in
random mixing experiments toward maximum entropy achieved at fully spatial random-
ness; and (7) at maximum entropy a random mixing experiment maintains the landscape
in the region of maximum entropy (full spatial randomness).

These results seem to suggest that the simple, direct application of the classic Boltz-
mann relation to calculating landscape entropy is theoretically fully consistent with classic
formulations of Boltzmann entropy with no modification, and is fully thermodynamically
consistent. To be a fully generalized method, however, the approach must be shown to be
applicable to all kinds of spatial patterns, including surfaces and point patterns, in addition
to landscape mosaics. This paper presents simulations to show that the Cushman approach
to calculating Boltzmann entropy is equally applicable to surfaces, point patterns, and
landscape mosaics, and in each case is fully thermodynamically consistent.

2. Methods

I build on the simulation framework used in [4] in which I used a neutral landscape
model [11] to generate fractal landscape mosaics that control the dimensionality of the
landscape, the number of cover classes, and the degree of spatial aggregation. Specifically,
I chose a landscape dimension of 16 × 16 pixels, two cover classes, each with 50% coverage.
For that landscape composition, I varied configuration by controlling the H parameter of
QRULE, which controls fractal aggregation. H increases from 0 for unaggregated patterns
to 1 for highly aggregated patterns. In [4] I varied the H parameter across 10 levels, from
0.1 to 1 by steps of 0.1 (Figure 1). I also produced a fully spatially random map and a fully
dispersed map (checkerboard pattern).
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Figure 1. The 12 test landscapes. (a) spatially random; (b) H1; (c) H2; (d) H3; (e) H4; (f) H5; (g) H6;
(h) H7; (i) H8; (j) H9; (k) H10; (l) checkerboard.

In this generalization of the Cushman method of calculating Boltzmann configura-
tional entropy, I use landscape dimensionality of 32 × 32 pixels across the same levels of H
(10 steps from 0.1 to 1.0). Instead of a binary, two class landscape, however, I use QRULE to
generate surfaces and point patterns. To generate a surface, I specified 10 cover types each
with 10% cover extent. This produces a surface which has the same fractal aggregation
as the binary map, but in which the 10 cover types represent sequential “heights” of the
surface (Figure 2).
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Point patterns were similarly generated using the H parameter in QRULE. This was
done by selecting the centroids of pixels with value 10 from the multiclass fractal maps
used to produce surfaces. This produces fractal gradient of point aggregation across the
10 steps of H aggregation parameter from 0.1 to 1.0 (Figure 3).
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The Cushman approach to directly apply the Boltzmann relation to calculate config-
urational entropy is highly consistent when applied to landscape mosaics, surfaces, and
point patterns (Figure 4). The approach works in six steps: (1) obtain a landscape map
(either a mosaic, a surface or a point pattern); (2) calculate the state variable (edge length
for a mosaic, mean slope for a surface, mean distance between points for a point pattern);
(3) permute the map, recalculating the state variable a large number of times; (4) fit a
normal probability function to the permuted distributions; (5) calculate the logarithm of
the fitted normal probability function, which is the “entropy function”; and (6) find the
value of entropy (y axis) that corresponds to the observed value of the state variable in the
sample landscape.

The application of the Cushman [4] method to calculate configurational entropy
to a landscape lattice mosaic is based on the value of edge length between dissimilar
classes of pixels. An analogous measure to generalize this to surfaces is the local slope,
which is conceptually equivalent to an “edge” on a surface. Therefore, for each surface
pattern and the permuted distributions of them I computed the local slope as the average
absolute difference in value (height) between each cell and its four orthogonal neighbors.
In other words, to calculate local slope I calculated the average of the absolute differences
between each focal cell and its four orthogonal neighbors. This is the average slope (delta
elevation/delta distance) in the four directions around each focal cell. This produces a
measure of the total “slope” of the surface at the scale of neighboring pixels. To generalize
to point patterns in a conceptually consistent way I computed the mean distance between
all pairs of points. This measure computes the average distance between pairs of points
which is analogous to the mean slope of a surface number.



Entropy 2021, 23, 1616 5 of 12

1 
 

 

Figure 4. Schematic showing the analytical consistency of applying the Boltzmann relation to calculate configurational
entropy for landscape mosaics (a), surfaces (b), and point patterns (c). There are six main steps that are identical between
the three methods: (1) obtain a landscape map (either a mosaic, a surface or a point pattern); (2) calculate the state variable
(edge length for a mosaic, mean slope for a surface, mean distance between points for a point pattern); (3) permute the map,
recalculating the state variable a large number of times; (4) fit a normal probability function to the permuted distributions;
(5) calculate the logarithm of the fitted normal probability function, which is the “entropy function”; and (6) find the value
of entropy (y axis) that corresponds to the observed value of the objective parameter.

Following the same procedures as in [4], I spatially permuted the surfaces (Figure 2)
and point patterns (Figure 3) a large number of times (1,000,000), each time recalculating
the local slope for each pixel (for surface analysis) and mean distance between points (for
point patterns). I then used the same procedure as [4] to fit a normal distribution of mi-
crostates across values of the macrostate (average slope or mean distance). I then computed
the entropy function for both surface and point patterns and plotted the distribution of
entropies of the 11 example landscapes (spatially random, H1 . . . H10). For both surfaces
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and point patterns the analysis was undertaken using MATLAB and R scripts written
by the author (Supplementary Material), which conduct spatial randomization and then
calculate mean slope (for surfaces) and mean distance (for point patterns).

3. Results
3.1. Surface Patterns

There was a perfect match between the distribution of mean slope of permuted
surfaces and a normal distribution, as expected if the method is generalizable to surfaces
(Figure 5). At 1,000,000 permutations the simulated distribution is very closely aligned
with the Gaussian function with the same mean and standard deviation (Figure 5). This
shows that the method produces a normal distribution of microstates, which is one of the
key criteria identified in [10] to confirm the thermodynamic consistency of the method.
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I computed the entropy function of this distribution of microstates across macrostate-
space as in [4] by computing the log of the normal distribution, producing a parabolic
entropy function (Figure 6). I tested this in a large number of permutations of the surfaces
(1 × 1010) and the relationship was a perfect fit to a parabolic relationship (power 2),
explaining 100% of the variance in the logarithm of the number of microstates in every
level of the macrostate of mean slope (Figure 6).

I computed the entropy (lnW) for the 11 surface patterns (spatially random and
the 10 levels of H aggregation; Figure 7). This showed, consistent with expectation and
the performance of the method on landscape mosaics [3,4], that entropy is highest for
random surfaces and is progressively lower for more aggregated patterns (Figure 7). This
confirms that the Cushman method of direct application of the Boltzmann relation is fully
generalizable to surfaces.
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3.2. Point Patterns

For point patterns I also found a very close match between the mean distance between
points and a normal distribution across the permuted point patterns (Figure 8). This shows
that the method produces a normal distribution of microstates for point patterns, and for
lattices and surfaces, which suggests the method is thermodynamically consistent and
generalizable across all three kinds of landscape pattern [10].
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Similar to the surface pattern analysis, I fit the entropy function across 1 × 1010 per-
mutations and confirmed it was also a perfect fit to a parabolic function. I then plotted
the entropies of the 11 simulated point patterns across this entropy function (Figure 9).
The simulated point patterns perfectly fall along the entropy curve in the expected pattern,
with the spatially random distribution at the peak of the entropy function (maximum
entropy) and the more aggregated point patterns progressively lower in entropy. This
showed, consistent with expectation and the performance of the method on landscape
mosaics [3,4], that entropy is highest for random point patterns and is progressively lower
for more aggregated patterns (Figure 9). This confirms that the Cushman method of direct
application of the Boltzmann relation is fully generalizable to point patterns, in addition to
landscape mosaics and surfaces.
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4. Discussion

Demonstrating that a single method to compute spatial configurational entropy is
thermodynamically consistent and applicable to all spatial patterns is fundamentally im-
portant to provide a foundation for thermodynamic landscape ecology [10]. Until the
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present there have been relatively few explorations of the thermodynamic consistency and
generalizability of spatial entropy methods. Cushman [3] proposed the direct application
of the Boltzmann relation to computing configurational entropy in an attempt to be as faith-
ful as possible to original theory with minimal modifications or additional assumptions.
Cushman [4] also showed that this application is feasible based on the normal distribution
of microstates and the parabolic entropy function, facilitating application to landscape
mosaics of any number of classes or extent in pixels. Until the present, however, it had not
been demonstrated that the method was thermodynamically fully consistent or extensible
to all kinds of landscape patterns. Cushman [10] evaluated the thermodynamic consistency
of the method and found that it met the three criteria of normal distribution of microstates,
parabolic function of entropy, and monotonic increase in entropy in random mixing experi-
ments from both aggregated and dispersed starting conditions. This paper takes the next
step to generalize the Cushman method of computing configurational entropy to all kinds
of landscape patterns, which include landscape mosaics, points patterns, and surfaces [12].

There are six important insights produced from this analysis. First, and most impor-
tantly, this analysis shows that the Cushman method of direct application of the Boltzmann
relation to compute configurational entropy is directly and fully applicable to landscape
mosaics, point patterns, and surfaces. The entropy of any landscape pattern can be calcu-
lated with the same theory, algorithm, and method. The only difference is the state variable
used, which differs slightly among mosaics, surfaces, and point patterns. However, the
state variable is fully analogous between them and conceptually equivalent within the
physiognomy of the different landscape models. Specifically, the state variable for comput-
ing the entropy of a landscape mosaic is edge length; for surface patterns it is mean local
slope; for point patterns it is the mean distance between pairs of points. Other than the
state variable, the method is entirely the same between these approaches.

Second, this analysis shows that for any landscape pattern from any landscape concep-
tual model (sensu [12]) the entropy is readily calculated using the Boltzmann relation based
on the sum of neighbor differences compared to the distribution of the sum of neighbor
differences. As noted above, the only difference is the state variable used to calculate
neighbor differences (edge, slope, or distance). For mosaics the sum of neighbor differences
is the amount of edge. For mosaics the sum of neighbor differences is mean slope. For
point patterns it is mean distance between points.

Third, in each case the number of microstates across the distribution of macrostates is
normally distributed. Fourth, this analysis confirms the entropy function is parabolic. Fifth,
it also confirms that maximum that entropy is reached at spatial randomness, for any kind
of spatial pattern, including surfaces, point patterns, or patch mosaics. Sixth, the parabolic
entropy function and the values of entropy calculated for the simulated landscape patterns
confirm that entropy is minimized in extreme aggregation or dispersion.

Based on its consistency with fundamental theory (the original Boltzmann relation),
its full thermodynamic consistency [10], and its generalizability to all kinds of landscape
patterns, the Cushman approach for computing the configurational entropy of landscape
patterns would seem to be potentially useful as a foundation for entropy research in
landscape ecology. There have been several other approaches proposed to compute config-
urational entropy. The Gao [5,6] method has developed over several modifications into
an approach that uses multi-resolution aggregation to compute Boltzmann entropy. This
method has been implemented in an analytical tool, making it the first method that is
readily available to practitioners who are not themselves technical experts in spatial data
and permutational methods [13]. It has also been shown to be partly thermodynamically
consistent and is applicable to both surfaces and landscape mosaics [9]. Similarly, there has
been recent interest in applications of the Wassenstein formulation of Boltzmann entropy
to computing the entropy of spatial patterns [7,8]. This method has not yet been fully
evaluated for thermodynamic consistency and generalizability across different kinds of
spatial patterns. More work is needed to compare the performance of these and other
new approaches to computing landscape entropy. Future work should evaluate their
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similarities and differences across controlled gradients of pattern in mosaics, surfaces and
point patterns to confirm their thermodynamic consistency and full generalizability.

It is often said that science should produce theories that are as simple as possible,
but not simpler. Parsimony is an important principle of science and reflects fundamental
attributes of nature. The simplest theory that explains the data is usually the best, not only
in terms of heuristic value but also in matching ontological reality [14]. The astronomical
model of Ptolemy seemed to match empirical observations as well as that of Copernicus,
but with many more parameters requiring convoluted theory. In that case the elegance
of theoretical simplicity matched reality. Similarly, the direct application of the simplest
version of the original and iconic Boltzmann relation to spatial patterns seems to provide a
parsimonious, consistent, generalizable, and interpretable measure of spatial entropy.

Of course, the development of a generalized metric for calculating configurational
entropy of a landscape is an evolutionary rather than revolutionary advance; it is hardly a
Copernican moment. However, I strongly believe that putting landscape ecology into a the-
oretical framework based on thermodynamics and entropy will prove to be revolutionary
and transformative, and that quantitative methods to robustly calculate configurational
entropy of any landscape model are essential to that effort. The connections between calcu-
lating landscape configurational entropy and classic thermodynamics are at several levels.
First, conceptually using entropy relation to describe patterns in terms of entropy is a useful
foundation for exploring more formal thermodynamic pattern–process relationships at the
landscape level. Second, this method does not demonstrate that landscape pattern entropy
is directly linked to formal thermodynamic processes, such as energy flow, emergence, and
maintenance of dissipative structures. However, generalized and consistent methods of
computing landscape configurational entropy are the foundation for taking this next step
to explore linkages between energetic entropy and structural entropy at landscape scales.

There have been many efforts over the last five decades to link ecological theory with
thermodynamics and entropy [2]. In the 1960s geomorphology and hydrology was first
cast into the context of entropy, and methods and theories developed to describe landscape
evolution as a process of entropy maximization to achieve the most probable distribution
of energy and matter [15]. The calculation of configurational entropy of landscapes is
conceptually closely linked to concepts of landscape evolution in geomorphology, and
linking these branches of research is likely to be very fruitful. Specifically, the applications
of entropy in hydrology and geomorphology have focused on developing predictions of the
most likely condition of the system given its composition and constraints, and considered
that most likely state to maximize entropy, and evaluated departure from that maximum
entropy state. This is conceptually the same as that attempted by the different methods
to calculate configurational entropy, which is to evaluate current landscape conditions
relative to the most likely condition, based on the distribution of microstates.

An important topic for further exploration is that not all microstates of landscape con-
figuration are likely to be equally probable, given constraints on landscape evolution due to
gravitational, tectonic, erosive, hydrological, and vegetative processes, and anthropogenic
factors. This suggests future work should explore modifications of the direct application of
the Boltzmann relation to consider the unequal probability of different microstates, using,
for example, Gibbs entropy instead of the Boltzmann relation. The challenge then becomes
estimating the different probabilities of all possible microstates, which requires understand-
ing and simulating complex space–time processes, which is a vastly more difficult task
than using the assumption of equal probability of microstates and the Boltzmann relation
as a null model.

One of the areas in which applications of entropy methods and concepts have been
most widely developed in recent years is in work related to the Maximum Entropy Theory
of Ecology [16], which is considered to be an entropy-based theory of distribution, abun-
dance, and energetics. METE has largely used information entropy methods to evaluate
the structure of ecological systems under the theory that ecosystems evolve to maximize
entropy. It would be particularly useful to pursue work to integrate spatially-explicit
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measures of landscape entropy into evaluations of ecological complexity, macroecology,
and the Maximum Entropy Theory of Ecology, given that the structure, function, and
evolution of ecosystems are deeply influenced by pattern–process relationships at a range
of scales [17]. Spatial configuration is a critical attribute of ecosystems, and any theory
of ecology based on entropy therefore should formally engage and employ measures of
configurational entropy within its analyses and theories.

The emergence of structure and order at a landscape scale is produced through
the dynamics of dissipative structures [1,18,19]. Indeed, ecosystems are best considered
to be spatially dependent networks of self-replicating dissipative structures. Integrating
spatial measures of landscape entropy with thermodynamic analysis of ecosystem structure
and energetics appears to be important to advancing and generalizing thermodynamic
ecological research. I end with a quote from Boltzmann which encapsulates the profound
simplicity of the second law as the arbiter of nature: “We have discovered the statistical
way in which systems evolve. We see that the irreversibility of natural change results not
from certainty but from probability. All structures and events correspond to the evolution
of the Universe through successive states of increasing probability” (Figure 10).

Entropy 2021, 23, x FOR PEER REVIEW 11 of 12 
 

 

of Ecology [16], which is considered to be an entropy-based theory of distribution, abun-
dance, and energetics. METE has largely used information entropy methods to evaluate 
the structure of ecological systems under the theory that ecosystems evolve to maximize 
entropy. It would be particularly useful to pursue work to integrate spatially-explicit 
measures of landscape entropy into evaluations of ecological complexity, macroecology, 
and the Maximum Entropy Theory of Ecology, given that the structure, function, and evo-
lution of ecosystems are deeply influenced by pattern–process relationships at a range of 
scales [17]. Spatial configuration is a critical attribute of ecosystems, and any theory of 
ecology based on entropy therefore should formally engage and employ measures of con-
figurational entropy within its analyses and theories. 

The emergence of structure and order at a landscape scale is produced through the 
dynamics of dissipative structures [1,18,19]. Indeed, ecosystems are best considered to be 
spatially dependent networks of self-replicating dissipative structures. Integrating spatial 
measures of landscape entropy with thermodynamic analysis of ecosystem structure and 
energetics appears to be important to advancing and generalizing thermodynamic eco-
logical research. I end with a quote from Boltzmann which encapsulates the profound 
simplicity of the second law as the arbiter of nature: “We have discovered the statistical 
way in which systems evolve. We see that the irreversibility of natural change results not 
from certainty but from probability. All structures and events correspond to the evolution 
of the Universe through successive states of increasing probability” (Figure 10). 

 
Figure 10. Boltzmann’s tomb. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. 

Funding: This research received no external funding. 

Data Availability Statement: The data presented in this study are available in the supplementary 
material. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 10. Boltzmann’s tomb.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/e23121616/s1.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the Supplementar Material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cushman, S.A. Thermodynamics in landscape ecology: The importance of integrating measurement and modeling of landscape

entropy. Landsc. Ecol. 2015, 30, 7–10. [CrossRef]
2. Cushman, S.A. Calculating the configurational entropy of a landscape mosaic. Landsc. Ecol. 2016, 31, 481–489. [CrossRef]
3. Cushman, S.A. Calculation of configurational entropy in complex landscapes. Entropy 2018, 20, 298. [CrossRef] [PubMed]
4. Cushman, S.A. Entropy in Landscape Ecology: A quantitative textual multivariate review. Entropy 2021, 23, 1425. [CrossRef]

[PubMed]

https://www.mdpi.com/article/10.3390/e23121616/s1
https://www.mdpi.com/article/10.3390/e23121616/s1
http://doi.org/10.1007/s10980-014-0108-x
http://doi.org/10.1007/s10980-015-0305-2
http://doi.org/10.3390/e20040298
http://www.ncbi.nlm.nih.gov/pubmed/33265389
http://doi.org/10.3390/e23111425
http://www.ncbi.nlm.nih.gov/pubmed/34828124


Entropy 2021, 23, 1616 12 of 12

5. Gao, P.; Zhang, H.; Li, Z. A hierarchy-based solution to calculate the configurational entropy of landscape gradients. Landsc. Ecol.
2017, 32, 1133–1146. [CrossRef]

6. Gao, P.; Zhang, H.; Li, Z. An efficient analytical method for computing the Boltzmann entropy of a landscape gradient. Trans. GIS
2018, 22, 1046–1063. [CrossRef]

7. Zhao, Y.; Zhang, X. Calculating spatial configurational entropy of a landscape mosaic based on the Wasserstein metric. Landsc.
Ecol. 2019, 34, 1849–1858. [CrossRef]

8. Gao, P.; Li, Z. Computation of Boltzmann entropy of a landscape: A review and a generalization. Landsc. Ecol. 2019, 34, 2183–2196.
[CrossRef]

9. Zhang, H.; Wu, Z.; Lan, T.; Chen, Y.; Gao, P. Calculating the Wasserstein metric-based Boltzmann entropy of a landscape mosaic.
Entropy 2020, 22, 381. [CrossRef] [PubMed]

10. Cushman, S.A. Thermodynamic consistency of the Cushman method of computing the configurational entropy of a landscape
lattice. Entropy 2021, 23, 1420. [CrossRef] [PubMed]

11. Gardner, R.H. RULE: A program for the generation of random maps and the analysis of spatial patterns. In Landscape Ecological
Analysis: Issues and Applications; Klopatek, J.M., Gardner, R.H., Eds.; Springer: New York, NY, USA, 1999; pp. 280–303.

12. Cushman, S.A.; McGarigal, K. Metrics and models for quantifying ecological resilience and landscape scales. Front. Ecol. Evol.
2019, 7, 440. [CrossRef]

13. Nowosad, J.; Gao, P. Belg: A tool for calculating Boltzmann entropy of landscape gradients. Entropy 2020, 22, 937. [CrossRef]
[PubMed]

14. Cushman, S.A.; Huettmann, F. Spatial Complexity, Informatics, and Wildlife Conservation; Springer: Cham, Switzerland, 2010.
15. Leopold, L.B.; Langbein, W.B. The Concept of Entropy in Landscape Evolution; Theoretical Papers in the Hydrologic and Geomorphic

Sciences; US Government Printing Office: Washington, DC, USA, 1962; 20p.
16. Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics; Oxford Series of Ecology and Evolution;

Oxford University Press: Oxford, UK, 2011.
17. Turner, M.G. Landscape ecology: The effect of pattern on process. Ann. Rev. Ecol. Syst. 1989, 20, 171–197. [CrossRef]
18. Svirezhev, Y.M. Thermodynamics and ecology. Ecol. Mod. 2000, 132, 11–22. [CrossRef]
19. Neilsen, S.N.; Muller, F.; Marques, J.C.; Bastianoni, S.; Jorgensen, S.E. Thermodynamics in ecology—An introductory review.

Entropy 2020, 22, 820. [CrossRef] [PubMed]

http://doi.org/10.1007/s10980-017-0515-x
http://doi.org/10.1111/tgis.12315
http://doi.org/10.1007/s10980-019-00876-x
http://doi.org/10.1007/s10980-019-00814-x
http://doi.org/10.3390/e22040381
http://www.ncbi.nlm.nih.gov/pubmed/33286154
http://doi.org/10.3390/e23111420
http://www.ncbi.nlm.nih.gov/pubmed/34828118
http://doi.org/10.3389/fevo.2019.00440
http://doi.org/10.3390/e22090937
http://www.ncbi.nlm.nih.gov/pubmed/33286706
http://doi.org/10.1146/annurev.es.20.110189.001131
http://doi.org/10.1016/S0304-3800(00)00301-X
http://doi.org/10.3390/e22080820
http://www.ncbi.nlm.nih.gov/pubmed/33286591

	Introduction 
	Methods 
	Results 
	Surface Patterns 
	Point Patterns 

	Discussion 
	References

