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 Introduction

Forest sustainability is explicitly tied to soil health, which has been defined as “the 
capacity of a soil to function within ecosystem boundaries to sustain biological 
productivity, maintain environmental quality, and promote plant and animal 
health” (Doran et al., 1996; Sigua, 2018). This definition includes the ability of soil 
to function effectively as a component of healthy forests (Schoenholtz et al., 2000) 
and is linked to the soils ability to support physical, chemical, and biological prop-
erties while also suppressing plant pathogens (van Bruggen and Semenov, 2000). 
In broad terms, forest soil health can be defined as a capacity for water retention, 
carbon (C) sequestration, and plant productivity, or it could simply be defined as 
the ability of the soil to produce biomass (Schoenholtz et al., 2000). For forested 
ecosystems to be sustainable, soil health must be maintained. Forest soil health is 
linked with the amount and composition of surface and mineral soil organic mat-
ter (SOM; Harvey et al., 1979; Harvey et al., 1981). In fact, the U.S. Department of 
Agriculture (USDA) Forest Service requirement to leave 25 to 27 tons ha-1 of 
coarse woody material greater than 14 cm in diameter. comes from the need to 
provide ‘parent material’ for decayed wood in many forest ecosystems (Harvey 
et al., 1981) and ensure a healthy population of ectomycorrhizal fungi. Although 
mineral SOM is a small fraction of mineral soil mass (1–5%), it is responsible for a 
majority of soil physical, chemical, and biological properties through plant litter 
and anthropogenic inputs (Liang et al., 1998; Six and Jastrow, 2002). Since SOM 
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also improves soil health, it also increases the chances for successful restoration 
after disturbance (Hagen-Thorn et al., 2004).

Forest and agroforest soils provide many ecosystem services including tim-
ber, clean water, flood control, and biodiversity, but maintaining soil health is 
difficult because of numerous stressors (i.e., climate change, air pollution, 
altered water tables, intensive harvesting and site preparation, wildfire, inva-
sive species, and overgrazing). No single forest soil health indicator is adequate 
because changes in one property will likely influence others. Therefore, using 
a variety of chemical, physical, and biological indicators (properties), land 
managers can better understand the impacts of stand- and watershed-scale 
manipulations, temperature and moisture variability, deep soil processes, and 
invasive species on soil health.

Evaluating forest soil health is difficult because soils are dynamic systems influ-
enced by physical, chemical, and biological properties that are quantifiable using 
several appraisal techniques, many already being used to assess soil health. For 
example, the USDA Forest Service Forest Inventory and Analysis (FIA) program 
collects soil data during its inventory of the Nation’s forest resources. Furthermore, 
many national forests use the Forest Soil Disturbance Monitoring Protocol (Page-
Dumroese et  al.,  2009) to collect short- and long-term data on changes in soil 
physical attributes after land management, but routine measurements of multiple 
soil health indicators can be expensive. Therefore, remote sensing (Chaudhary 
et al., 2012) is often combined with in-field sensors to substitute for more expen-
sive laboratory testing of physical, chemical, and biological properties (e.g., 
Hemmat and Adamchuk, 2008; Sudduth et al., 2013). Recently, the Comprehensive 
Assessment of Soil Health (CASH) approach has been used in the eastern U.S. to 
measure 15 physical, biological, and chemical indicators using a scoring system 
(Fine et al., 2017). These efforts, and many others, are providing the baseline data 
needed to test and assess both soil- and ecosystem-health. Currently there is no 
universally accepted protocol for assessing soil health, but Table 6.1 lists several 
key soil chemical, physical, and biological properties that are widely used, with 
some being static (point-in-time) measures and others dynamic (process level) 
measures.

There are many different indicators that can be used to assess soil health, but 
those that are simple, easy to measure, relatively rapid to use, cover the largest 
number of soil types, and sensitive to environmental changes and land manage-
ment are the most desirable (Doran and Zeiss, 2000; Knoepp et al., 2000). Herein, 
we discuss how soil health is being assessed in complex agroforest, tropical and 
temperate ecosystems. Additionally, we present a national perspective using FIA 
protocols.
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7aEle ��� ([aPSleV�RI VRLl�SK\VLFal,�FKePLFal,�aQG ELRlRJLFal�SURSeUtLeV�tKat�aUe�XVeG�
tR aVVeVV�tePSeUate,�aJURIRUeVt,�aQG tURSLFal�IRUeVt�VRLl�KealtK.

Indicator* Reference Comment

Soil Physical Properties
Visual assessment of surface
soil changes

Page-Dumroese 
et al., 2009

Rapid forest soil disturbance 
monitoring protocol

Soil compaction Shestak and 
Busse, 2005;

Soil compaction linked to 
biological processes

Aggregate stability Herrick et al., 2001 Rapid field assessment kit
Porosity Schoenholtz et al., 2000; 

Udawatta et al., 2006
Including texture, aeration, 
runoff, infiltration, water 
holding capacity

Coarse fragments Page-Dumroese 
et al., 1999; Jurgensen 
et al., 2017

Importance of coarse-
fragments for calculating 
nutrient pools and supporting 
logging equipment.

Water holding capacity Schoenholtz et al., 2000 Determines water flux, 
erosion, runoff, infiltration, 
storage

Soil Chemical Properties
Active C Page-Dumroese 

et al., 2015
Rapid field test

Organic C Harris et al., 1996 Specific scoring functions for 
plant productivity

Busse et al., 2006; Changes in fungal and 
bacterial biomass

Sanchez et al., 2006a
Organic matter Gregorich et al., 1994; 

Laik et al., 2009; Wang 
and Wang, 2007

Soil organic matter pools 
respond to changes in plant 
productivity, climate, and land 
use

Nutrients
Nitrogen (organic and mineral) Doran and Parkin, 1994 A primary indicator of soil health
Base cations (e.g., Calcium, 
magnesium, potassium) and 
Cation Exchange Capacity

Merilä et al., 2010 With linkages to plants and 
soil microbial communities

Integrated physical and 
chemical measures

Amacher et al., 2007 Integrates 19 measured 
physical and chemical 
properties into a single ‘vital 
sign’ of overall soil quality.
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 Ecosystem Examples

Agroforestry

Agroforestry (AF) is an intensive land management practice where trees and shrubs 
are integrated into crop and/or livestock management practices to optimize numer-
ous benefits arising from biophysical interactions among the components (Gold and 
Garrett,  2009). Five main AF practices are: riparian buffers, alley cropping, wind-
breaks, silvopasture, and forest farming. Riparian buffers exist around water bodies 
while upland buffers are mostly located on contours to create alley cropping. 
Windbreaks protect crops, livestock, and farm structures from wind and snow. 
Silvopasture is the integration of trees, forage, and livestock and is designed to pro-
duce a high-value timber product, while providing short-term cash flow from live-
stock (Klopfenstein et al., 1997). Furthermore, AF practices were approved by both 
the afforestation and reforestation programs and under the Clean Development 
Mechanisms of the Kyoto Protocol for C sequestration (IPCC, 2007; Watson et al., 2000; 
Smith et al., 2007). However, current literature lacks information on the role of AF 
practices on soil health. This section will highlight benefits of AF practices on soil 
health parameters including soil C, physical, biological, and chemical soil properties 
and a soil’s capacity to degrade harmful chemicals and promote biodiversity.

7aEle ��� �&RQtLQXeG)

Indicator* Reference Comment

Salinity (electrical 
conductivity)

Doran and Parkin, 1994 Basic indicator of soil health

Soil biological Properties
Decomposition of standard 
substrates

Jurgensen et al., 2006; 
González et al., 2008

Index of organic matter decay 
as influenced by biotic and 
abiotic factors

Fauna van Straalen, 1998; 
Knoepp et al., 2000; 
González and 
Seastedt, 2001

Bioindicator of soil health

PFLA, DNA or RNA-based 
techniques

van Bruggen and 
Semenov, 2000

Microbial diversity and 
function, species richness, 
disease suppression

Microbial techniques 
combined with organic 
matter and nutrient analyses

Arias et al., 2005

* Linkages to forest soil health are too numerous to list, only a select few are noted here.
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Carbon Sequestration

A decrease of soil C causes degradation of soil health that could lead to a food 
insecurity and declining ecosystem sustainability (Godfray et  al.,  2010; 
Montgomery, 2010). Agroforestry practices increase soil C and reduce greenhouse 
gases (Schoeneberger et  al.,  2012a; Udawatta and Jose,  2012; Stefano and 
Jacobson, 2018) because perennial vegetation stores more C in above- and below-
ground biomass, soil, living and dead organisms, and root exudates (Cairns and 
Meganck, 1994; Pinho et al., 2012) as compared to row crops or grazing. Since 
both forest and grassland C sequestration and storage patterns are active in AF 
ecosystems, a higher percentage of C is allocated to belowground biomass through 
an extended growing season (Schroeder, 1993; Kort and Turnock, 1999; Sharrow 
and Ismail, 2004; Morgan et al., 2010). Diverse vegetation also promotes diverse 
soil communities (fauna and flora), development of surface and deep roots, and 
reduced soil disturbance which, combined, enhance C sequestration potential 
(Udawatta et  al.,  2009; Kumar et  al.,  2010; Paudel et  al.,  2011; Udawatta and 
Jose,  2012). In addition, SOM concentrations are greater at the soil surface 
(0–15 cm) and near the base of trees as compared with soil located greater dis-
tances from perennial vegetation or deeper in the soil profile (Seiter et al., 1995; 
Sauer et al., 2007; Fig. 6.1). Brandle et al. (1992) estimated that 22.2 metric tons of 
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C is stored on 1.96  million ha of shelterbelts and is a model for enhanced 
sequestration to mitigate climate change.

In the United States, pasture and grazing lands occupy 266 and 52 million ha, 
respectively with the potential to sequester as much as 516 Tg C yr-1 just by con-
verting 10% of the pasture lands to silvopasture and 10% of the crop land to alley 
cropping (Nair et  al.,  2009). Furthermore, Udawatta and Jose (2012) have esti-
mated that silvopasture, alley cropping, windbreaks, and riparian buffers could 
sequester 642 Tg C yr-1 in the United States (Fig. 6.2).

Soil Physical Indicators

Climate change is expected to increase the intensity of rainfall in the 21st century 
increasing soil erosion 16 and 58% (Nearing et al., 2004). This predicted climatic 
shift emphasizes the importance of soil conservation. By using AF practices, soil 
health can be increased through improved soil bulk density, aggregate stability, 
porosity, water holding capacity, infiltration, and limiting sediment movement 
(Seobi et  al.,  2005; Udawatta et  al.,  2006;  2009;  2011a; Adhikari et  al.,  2014). 
Aggregate stability is greater in AF soils as compared to soil under row crops or in 
grazed lands (Udawatta et al., 2008; Paudel et al., 2011, 2012) and can lead to a 
more stable SOM pool (Novara et al., 2012). Bulk density in AF sites was reduced 
by 2.3% after six years with a concomitant increase in porosity (Seobi et al., 2005). 
These changes in soil bulk density, porosity, and SOM also serve to increase infil-
tration, saturated hydraulic conductivity, water holding capacity, and water stor-
age (Kumar, 2012; Akdemir et al., 2016; Alagele et al., 2018) resulting in enhanced 
production of food, fiber and, thus, soil health (Balandier et al., 2008; Dimitriou 
et al., 2009; Udawatta et al., 2011a).

Soil Biological Indicators

Soil fauna composition, microbial activity, microbial biomass, and enzyme 
activity are good soil health indicators that can be used to predict land manage-
ment effects on water, microbes, nutrient use efficiency, and disease suppres-
sion (Bandick and Dick,  1999; Boerner et  al.,  2000; Schloter et  al.,  2003; 
Brussaard et al., 2007). Soil enzymes are greater in AF soils as compared to row 
crop and grazed lands (Mungai et  al.,  2006; Udawatta et  al.,  2009; Paudel 
et al., 2011) because of improved litter quality and quantity, diverse vegetation, 
and root exudates. In addition, a diverse microbial community can sequester 
eight to ten times more C than monoculture systems (Polgase et al., 2008). These 
changes imply positive effects on soil biochemical processes and microbial resil-
ience which ultimately leads to greater soil health, resilience, and productivity 
(Rivest et al., 2013).
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Soil (nUiFhPent anG 'eFontaPination

Nutrient additions, long-term productivity, sustainability, and the reduction of 
water pollution and hypoxia conditions all enrich soil functions (Jose,  2009; 
Udawatta et al., 2009; Zomer et al., 2009; Udawatta et al., 2011b). Soil enrichment 
occurs through filtering of nutrients and sediment within the root zone and in the 
reduction of water erosion and sediment losses (Udawatta et  al.,  2011b; Allen 
et al., 2004). Agroforestry practices retain nutrients and C by filtering nutrients 
and sediment and reducing water erosion and these properties increase as buffer 
width increases (Broadmeadow and Nisbet, 2004; Schultz et al., 2009; Udawatta 
et al., 2011b).

There are many sources of soil contamination (e.g., mining, industrialization, 
rapid urbanization, herbicides, pesticides, antibiotics, personal care products) and 
phytoremediation is a cost effective, noninvasive, and socially preferred approach 
to remove environmental contaminants (Boyajian and Carreira, 1997). Fast grow-
ing tree species such as poplars (Populous spp) and forage grasses (e.g., Panicum 
vigatum) can produce large amounts of biomass and deep roots that can both tol-
erate and extract large amounts of contaminants through plant uptake (Dhillon 
et al., 2008; Gomes, 2012; Zalesny et al., 2019). To date, more than 400 plant spe-
cies have been identified that can accumulate heavy metals. These plants remove 
a contaminant from the soil and accumulate the contaminants in shoots and/or 
roots. This helps reduce contamination in the soil and increase soil health (Paz-
Ferreiro et al., 2014).

Key soil health benefits associated with changes in soil properties by AF opera-
tions are reduced water pollution, enhanced soil microbial population and diver-
sity, and increased C sequestration which also result in healthier ecosystems and 
land productivity. Indicators such as bulk density, porosity, infiltration rate, and 
microbial diversity can help track changes with the AF ecosystems and show 
reduced water loss and erosion, climate change mitigation, and enhanced ecosys-
tem resilience.

7UoSiFal )oUests

As with AF systems, tropical soil health reflects the interaction of physical, chemi-
cal, and biological components, but the relative importance of those properties 
differs depending on local climate and vegetation. There are two types of tropical 
forests: Moist/wet (2000 to > 8000  mm of precipitation yr-1) and dry (several 
months of severe drought). Tropical forests occur about 25° north and south of the 
Equator and have both evergreen and deciduous tree species. In tropical forests 
rainfall seasonality, distribution, and variability drive soil moisture, litter accumu-
lation and decay, soil respiration, and overall productivity. Further, the length of 
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the wet season will, in part, dictate the amount of SOM storage (Rohr et al., 2013). 
Threats to soil health in tropical systems include a changing climate, fire, hurri-
canes, and land conversion (Jaramillo and Murray-Tortarolo, 2019; Cusack and 
Marín-Spiotta, 2019).

To understand the drivers of tropical soil health, it is critical to understand the 
rates of decomposition and incorporation of organic material to determine the 
capacity of an ecosystem to sequester C and cycle nutrients important for produc-
tivity, fertility, and overall ecosystem health. In tropical ecosystems, climate may 
be less important than the biological regulation by soil macro-fauna (Lavelle 
et al., 1993; Heneghan et al., 1999; González and Seastedt, 2001). Soil macrofauna 
are more common in the tropics than in temperate zones while soil microfauna 
are more abundant in the temperate regions (González and Seastedt,  2000; 
González, 2002). This latitudinal variation in the types of micro- and macrofauna 
and their relative importance can have a significant effect on litter breakdown 
rates. Consequently, biological properties including the diversity of micro- and 
macrofauna are an important determinant of soil health in the tropics (González 
and Lodge, 2017). In addition, the abundance of various soil fauna also changes 
with latitude (Swift et al., 1979).

(nYiUonPental *UaGients anG )XtXUe &liPate 3UoMeFtions

Henareh Khalyani et al. (2016) assessed different general circulation models and 
greenhouse gas emission scenarios of downscaled climate projections to inform 
future climatology and its potential impacts to tropical regions in the U.S., namely 
the Caribbean islands. Those projections indicate a reduction in precipitation and 
an increase of 4 to 9°C in air temperature. In addition, they projected a high likeli-
hood of shifts in ecological life zones to drier conditions. The combination of 
decreased rainfall, increasing variability of rainfall, and higher air temperatures 
would lead to reductions in soil moisture and changes to SOM dynamics. Though 
microbial soil processes will likely adjust to changes in rainfall, additional stress-
ors of climate change may lower microorganism diversity or productivity, thus 
reducing microbial pool resiliency (Silver,  1998). Consequently, tropical forest 
soils may be affected by the changing climate through increased variability in 
SOM decay and potential changes to soil biota, oxygen concentrations, and nutri-
ent accessibility (González et al., 2013).

Additional research at the Luquillo Experimental Forest in Puerto Rico suggests 
that threats of a changing climate to forest soil health vary along elevational gra-
dients. In a field soil translocation experiment, Chen et  al. (2017) studied the 
impacts of decreasing temperature but increasing moisture on soil organic C and 
respiration along an elevation gradient in northeastern Puerto Rico. Soils 
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translocated from low- to high- elevation showed an increased respiration rate 
with decreased soil organic C content, which suggested that the increased soil 
moisture and altered soil microbes may affect respiration rates. Further, soils 
translocated from high- to low-elevation also showed an increased respiration rate 
with reduced soil organic C, suggesting that the higher temperature at low eleva-
tions enhanced decomposition rates. Thus, tropical soils at high elevations may be 
at risk of releasing sequestered C into the atmosphere giving a warming climate in 
the Caribbean (Chen et al., 2017).

In tropical forests, seasonal soil decomposition is closely tied to wet and dry 
cycles, suggesting that seasonal adjustments in temperature and moisture due to 
climate change are likely to affect decomposer communities, soil resource quan-
tity and distribution, and litter quality (Silver, 1998). Decomposer organisms can 
be key determinants of decay in Puerto Rico (e.g., González and Seastedt, 2001). 
Yet, the contribution of different groups of decomposers to the decay of coarse 
woody debris, might vary among the different forest types located along elevation 
and environmental gradients (González and Luce, 2013). For example, González 
and Luce (2013) found the decay of coarse woody debris was most strongly cor-
related with white rot fungi in cloud forests (tropical wet forests) located at the 
tops of mountains (high elevation). In contrast, wood decay rates in tropical dry 
forests (low elevation) was related to the high diversity of species and functional 
groups of wood-inhabiting animals (Torres and González,  2005, González 
et al., 2008). Thus, the distribution of particular groups of organisms might be 
more important predictors of wood decay in tropical regions than climatic con-
straints (González, 2002, 2016).

7UoSiFal Soil &hePiFal anG %ioloJiFal 3UoSeUties

Tropical forests are places where large quantities of debris are periodically gen-
erated during tropical storms and hurricanes. Such disturbances may increase 
nutrient losses from the forest depending on how the debris is managed, how 
the microbiota responds to the disturbance, and the chemical and physical char-
acteristics of the soil (Miller and Lodge, 1997). Canopy disturbances associated 
with severe hurricane storms dramatically alter the physicochemical environ-
ment and the amounts of debris deposited into the forest floor (Lodge et al., 1991; 
Ostertag et  al.,  2003; Shiels and González,  2014). In addition, canopy distur-
bances alter the patterns in litterfall and associated nutrient cycling (Scatena 
and Lugo, 1995; Lugo and Scatena, 1996); hurricane litter contains a high pro-
portion of green leaves from which nutrients have not been translocated, thus 
altering the litter quality in the forest floor (Richardson et al., 2010). Cascading 
effects from canopy openness can account for most of the shifts in the forest 
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biota and biotic processes, which include increased plant recruitment and 
richness, as well as the decreased abundance and diversity of several animal 
groups (Richardson et  al.,  2010; Shiels et  al.,  2015). Opening the canopy 
decreases litterfall and litter moisture, thereby inhibiting lignin-degrading 
fungi, decreasing litter invertebrate richness, diversity, and biomass, and ulti-
mately slowing decomposition (González et al., 2014; Lodge et al., 2014; Shiels 
et  al.,  2015). Yet, modeling exercises relate the long-term effect of hurricane 
generated debris to a positive effect of decaying large woody debris on soil P 
exchange capacity (Sanford et al., 1991; Zimmerman et al., 1995).

Decaying wood may impact the physical, chemical, and biotic properties of the 
underlying soil (Zalamea et  al.,  2016), stabilize soil temperature (Spears 
et  al.,  2003), and contribute to the spatial heterogeneity of soil formation and 
resultant nutrient cycling in tropical forests (Zalamea et al., 2007, 2016). Further, 
tree species and decay stage are important factors defining the effect of decaying 
wood on the distribution of available nutrients (Zalamea et al., 2016). Lodge et al. 
(2016) found that surface soil on the upslope side of the logs can have significantly 
more nitrogen (N) and microbial biomass, likely from accumulation of leaf litter 
above the logs on steep slopes. To summarize, tropical cyclones deposit 
coarse woody debris on forest floors and significantly alter soil C and N dynamics, 
which consequently alter soil fertility, soil health, and forest productivity (Lodge 
et al., 2016).

(aUthZoUPs as Bioindicators

The occurrence or abundance of soil fauna can be considered a soil health bioin-
dicator as it can reflect some habitat characteristics. These non-anthropogenic 
disturbances may increase nutrient losses from tropical forests, depending on 
how the debris is managed, how soil organisms respond to disturbance, and the 
chemical and physical characteristics of soil and litter (González and Barberena-
Arias, 2017). Earthworms are recognized as indicators of soil fertility and health 
because they play an active role in organic matter movement and decay, soil for-
mation, and improvement of soil structure by channeling and bioturbation 
(Fragoso and Lavelle, 1992; Liu and Zou, 2002). Their relatively large size (ranging 
from 1 to 80 cm, or larger), slow displacement in soil, and ability to re-colonize 
sites make earthworm concentrations and diversity easy to measure and an attrac-
tive bioindicator of soil health (Paoletti, 1999).

Tropical land-use changes affect the abundance and community structure of 
earthworms. Converting tropical forests to pastures often results in the reduction 
of aboveground plant litter inputs, causing the disappearance of soil surface litter 
layer (Zou and González, 1997; Paoletti, 1999). In short-term field experiments, 
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manipulating plant litter inputs lead to a decrease in anecic worms (those that 
build permanent burrows in the mineral soil; González and Zou, 1999; Sánchez 
and Zou, 2004). Furthermore, deforestation and establishment of exotic grasses 
decreases the diversity of earthworm communities in tropical Oxisols and Ultisols 
(Zou and González, 1997; Sánchez et al., 2003). Native earthworm communities 
are often negatively affected by non-native tree species, but they can be preserved 
in plantations where native tree species are planted (Zou and González, 2001). 
Conventional practices of site preparation and harvesting favors nonnative soil 
dwelling earthworms which often have a deleterious effect on native litter-dwell-
ing worms. Therefore, forest management practices can drastically alter earth-
worm populations and diversity, and yet, maintaining a healthy population of 
earthworms can further promote forest nutrition and soil health in tropical tree 
plantations (Zou and González, 2001).

7ePSeUate )oUests

Temperate forests, located at mid-latitudes north and south of the Equator, are 
comprised of both evergreen and deciduous tree species and influenced by strong 
seasonal temperature shifts and other climate differences. Tree species, climate, 
parent material, and topography all influence temperate forest soil formation 
(Binkley and Fisher, 2012), but overstory species often influence soil chemistry 
(e.g., pH), biology (litter decomposition rate and rooting depth), and soil available 
water (Adams et al., 2019).

A number of natural and anthropogenic threats make temperate forest soil 
health vulnerable to degradation. One of the greatest concerns is environmental 
change due to catastrophic fires, but since temperate forests are often found near 
population centers, soil health can also be threatened by N deposition, acid rain, 
and invasive earthworms, plants, insects, and diseases. Forest management affects 
soil C storage through harvesting and site preparation operations that signifi-
cantly alter surface and subsurface physical, chemical, and biological properties. 
However, in temperate and other ecosystems, if the external stress is not too great 
and the frequency and severity of disturbance are low, many soil properties will 
return to pre-disturbance conditions if given enough time (Morris et al., 1997).

Similar to AF and tropical forest soils, an important indicator of temperate for-
est soil health is SOM. This was documented by a 1958 Calhoun Experimental 
Forest study and gradually became a way to restore forest cover to land previously 
damaged by agriculture throughout the southeastern U.S (Metz, 1958). The long-
term dataset documented the effect trees had on building surface organic hori-
zons and improving soil moisture retention (Richter and Markewitz,  2001). 
Further, increasing C inputs led to even higher rates of decomposition (Richter 
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et al., 1999), and also soil changed porosity and nutrient cycling, thus generally 
improving soil health.

The North American Long-Term Soil Productivity Study

One important program for forest soil health is the Long-Term Soil Productivity 
(LTSP) study (Mushinski et al., 2017; Powers et al., 2005). This coordinated net-
work of over 100 sites (Fig.  6.3) was initiated to address concerns that SOM 
removal and compaction were causing declines in temperate forest soil health. In 
general, loss of branches and twigs from the site did not alter tree growth, but 
when the surface organic horizons were removed many site experienced declines 
in productivity. Further, the effects of harvesting, compaction, and SOM removal 
varied considerably from site-to-site.

7ePSeUate )oUest Soil Health

Because temperate forests are widely distributed, a decline in soil health is likely 
to be of global importance. A rise in temperature of 1–2°C will have regional 
impacts on precipitation amounts and patterns leading to a changes in soil tem-
perature and moisture properties (Adams et al., 2019). These changes, coupled 
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with land use change, air pollution, and biotic effects will control forest productiv-
ity, SOM decomposition, and the C balance within the soil and in the atmosphere 
(IPCC, 2003).

(leYateG &aUEon 'io[iGe
Rising carbon dioxide (CO2) is considered to be a major driver of climate change 
and can significantly affect forest growth, SOM, and soil health. For example, the 
Free-Air Carbon Dioxide (CO2) Experiments (FACE) study sites have shown that 
an increase in CO2 can increased forest productivity, but there was no evidence to 
suggest that C storage increased in mineral soils beneath temperate forests (Norby 
et al., 2002). This is likely due to increased soil respiration (Phillips et al., 2012), 
root turnover (Bader et al., 2009), and microbial activity (Larson et al., 2002). It 
has also been shown that litter quality and species changes can change the quality 
of C inputs to the soil (MacKenzie et al., 2004). Changes in atmospheric and soil 
C associated with changing climate emphasizes the need to maintain soil bulk 
density, aeration, surface organic horizons, and other properties that promote soil 
aggregation and stable nutrient cycling.

)iUe
In many temperate forests, wildfire is the most severe threat to soil health. 
With persistent and recurring drought, often coupled with high tempera-
tures, wildfire risk and severity have been increasing and have resulted in 
greater loss of all or part of the surface organic horizons and mineral 
SOM. Those effects cascade into sediment loss, loss of C storage, and degrada-
tion of aggregate stability, but they may be partially off-set by creation of 
pyrogenic C. In fire-prone ecosystems, DeLuca and Aplet (2008) estimate that 
pyrogenic C inputs may account for 15 to 20% of the total C in temperate, 
coniferous forest mineral soils, but subsequent harvesting or thinning activi-
ties may reduce this amount. A recent meta-analysis noted an overall increase 
in C in frequently burned forests, but this varies by ecosystem type and burn 
severity (Pellegrini et al., 2017).

Thinning or Bioenergy Harvests
Many temperate forest stands need restoration because of lack of harvesting, fire 
suppression, and insect or disease outbreaks have resulted in excess woody bio-
mass within many stands. There is also recent interest in using forests for bioen-
ergy feedstock which may increase harvest operations on many sites. Little is 
known regarding the impact on soil health of repeated harvest due to forest thin-
ning operations or feedstock extraction, but loss of SOM from periodic stand dis-
turbances can be either negligible (Sanchez et al., 2006b) or significant, depending 
on soil type, tree species, ecosystem, or climatic regime (Grigal and Vance, 2000). 
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Conversely, excess biomass left during thinning or bioenergy harvest may provide 
fuel for uncharacteristically severe wildfires (Page-Dumroese et al., 2010).

Temperate forests supply important ecosystem services and therefore, it is criti-
cal to maintain a healthy, productive soil. Many nations have strong forest inven-
tory and monitoring programs that also incorporates soil data collection. These 
inventories provide an opportunity to be pro-active in response to stressors that 
may alter forest or soil health.

8sinJ 1ational )oUest ,nYentoUy anG Analysis 'ata to Assess )oUest 
Soil Health

In 1928, the McSweeney- McNary Forest Research Act (P.L. 70–466) directed the 
U.S. Department of Agriculture Forest Service to make “. . . a comprehensive sur-
vey of the present and prospective requirements for timber and other forest prod-
ucts of the United States. . .” The first inventories were completed in the 1930s and 
focused on the economic value of the forest by documenting the extent and status 
of timber resources (Cowlin and Moravets, 1938; Cunningham and Moser, 1938; 
Spillers,  1939). Seventy years later the Agriculture Research, Extension, and 
Education Reform Act of 1998 (16 USC 1642(e)) mandated that the Forest Service 
Forest Inventory and Analysis (FIA) program “make available to the public a 
report, prepared in cooperation with State foresters, that . . . contains an analysis 
of forest health conditions and trends.” This Act resulted in the development of 
comprehensive sampling protocols designed to monitor forest soils (chemical and 
physical properties), down and dead wood, lichens, ozone damage, tree crown 
condition, and vegetation diversity (O’Neill et  al.,  2005a; O’Neill et  al.,  2005b; 
Woodall et al., 2011).

Soil sampling conducted by the FIA program differs from the USDA National 
Cooperative Soil Survey (NCSS) in several critical ways. The FIA program is based 
on providing a spatially balanced, statistical sample of the landscape (Reams 
et al., 2005). In contrast, NCSS identifies relatively homogenous map units for the 
purpose of sampling (Soil Science Division Staff, 2017). Although digital soil map-
ping provided by the NCSS facilitates the estimation of error or uncertainty asso-
ciated with soil properties (Kienast-Brown et  al.,  2017), the design-based 
framework used by FIA allows calculation of statistically robust estimates of vari-
ous attributes along with associated estimates of uncertainty (Scott et al., 2005). 
Additionally, because of the explicit focus on the forest resource, FIA has a much 
greater sampling intensity across the forested landscape, under both public and 
private ownerships (Table 6.2). In contrast to the NCSS use of soil scientists who 
describe genetic horizons and sample the soil using soil pits (Schoeneberger 
et al., 2012b), FIA field crews collect ocular estimates of soil properties (erosion 
and rutting) and sample soils adjacent to the field plot by depth (0–10 and 
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7aEle ��� )RUeVt�VRLl�VaPSlLQJ�LQteQVLt\�RI ),$�SlRtV�E\�IRUeVt�t\Se�JURXS.

)oUest�tySe JUoXS Number of plots

Alder/maple 27
Aspen/birch 447
California mixed conifer 65
Douglas-fir 387
Elm/ash/cottonwood 365
Exotic hardwoods 16
Exotic softwoods 13
Fir/spruce/mountain hemlock 351
Hemlock/Sitka spruce 69
Loblolly/shortleaf pine 356
Lodgepole pine 164
Longleaf/slash pine 75
Maple/beech/birch 718
Nonstocked 229
Oak/gum/cypress 142
Oak/hickory 1573
Oak/pine 253
Other eastern softwoods 33
Other hardwoods 46
Other softwoods 1
Other western softwoods 76
Pinyon/juniper 814
Ponderosa pine 253
Redwood 2
Spruce/fir 307
Tanoak/laurel 18
Tropical hardwoods 135
Western larch 15
Western oak 85
Western white pine 2
White/red/jack pine 163
Woodland hardwoods 328
Grand Total 7528
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10–20 cm) by using a slide hammer and volumetric soil core sampler whenever 
possible (USDA Forest Service, 2011). Both organizations submit their samples 
to laboratories for physical and chemical analyses. FIA samples soil in associa-
tion with a comprehensive sample of the aboveground forest resource (USDA 
Forest Service, 2017) to facilitate our understanding of linkages between soil 
and forest health (O’Neill et al., 2005b).

Observed soil properties are extrapolated by NCSS using map units. FIA does 
not define homogenous units for the purposes of sampling or extrapolation. 
Instead, it relies on two statistical strategies for estimation. The first method uses 
the base sample and the underlying sample in a design-based framework to con-
vert point observations to estimates (Scott et al., 2005). The second method imple-
ments statistical imputation techniques to convert point observations to 
continuous surfaces (Wilson et al., 2012; Wilson et al., 2013; Domke et al., 2016; 
Domke et al., 2017).

Soils data collected by the FIA program have been used in a number of different 
assessments, either in isolation or in combination with other attributes, ranging 
from regional to national scales.

For example, the Forest Service is responsible for producing the official for-
est C estimates submitted to the UN Framework Convention on Climate 
Change (US Environmental Protection Agency, 2018). While soil C stocks 
have been reported since the early 1990s, they were initially estimated with-
out the benefit of field observations on the FIA plot network. Estimates were 
based on linkages between FIA plots and NCSS map units (Smith and 
Heath,  2002, Amichev and Galbraith,  2004). With the addition of the soil 
indicator to the FIA program in 1999, the foundation was laid for reporting 
forest C stocks by using continuous, integrated field monitoring (Perry 
et  al.,  2009). Forest floor and mineral soil C stocks are currently estimated 
using an imputation approach (Domke et al., 2016, Domke et al., 2017). In a 
testament to the value of the inventory, Domke et  al. (2016) demonstrated 
that current Good Practice Guidance for Tier 1 approaches (estimates based 
on simples methods and default values) overestimate forest floor C stocks. 
These empirical data have also demonstrated the importance of reforestation 
for C sequestration (Nave et al., 2018).

In addition to the FIA program, the Forest Service has a Forest Health 
Monitoring program that plays a role nurturing thoughtful investigations of forest 
health, including soil data. Their annual National Technical Reports serve as ven-
ues to explore nascent trends detected across the monitoring network. Early 
reports summarized evaluations of soil C and other physical and chemical proper-
ties (Perry and Amacher,  2007a; Perry and Amacher,  2007b; Perry and 
Amacher,  2007c). Building on these assessments of individual soil properties, 
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Amacher et al. (2007) developed a technique to integrate the multiple chemical 
and physical observations from FIA plots into an index of forest soil health. 
Furthermore, FIA data has been used to map the legacy of atmospheric deposi-
tion observed in Ca:Al ratios (Perry and Amacher, 2012) and increased mortality 
of sugar maple (Acer saccharum; Perry and Zimmerman,  2012). These myriad 
analyses illustrate how FIA has become a foundation for national forest resource 
assessment (Perry and Amacher, 2009).

While there are tremendous strengths in the Forest Service’s monitoring of 
 forest soils, it is important to acknowledge known limitations. First, the soil pro-
gram is considered ‘Core Optional’, and is not implemented across the nation on a 
regular basis (Fig. 6.4). This limits the program’s ability to map soil health proper-
ties of interest (e.g., SOC, N) and document change. Inference from this inven-
tory program is limited by the sampling protocol. Fixed depth sampling is a 
reproducible method of data collection, but it may yield samples straddling soil 
horizons and mixing soils of divergent properties (Schoeneberger et al., 2012b); 
this complicates interpretation of the resulting data and estimates. Finally, sam-
pling frequency could be optimized to detect changes of interest to the Forest 
Service and partners concerned about managing forest health. The intensity of 
FIA’s field campaigns currently yield a complete sample of the forest resource 
every 5 to 7 yr in the eastern U. S. and every 10 yr in the western U.S. Because the 
annual FIA program was implemented in stages beginning in the late 1990s, 
sampling is not necessarily completed uniformly across years. Sampling is also 
paused between inventory cycles to increase the likelihood of capturing changes 
in soil properties.

Despite these limitations, soil sampling conducted by the FIA program repre-
sents a tremendously valuable, statistically sound sample of forest soil health. 
How might it be improved? The most common concerns fit broadly under sam-
pling intensity. First, the mineral soil is sampled to 20  cm by a bulk density 
sampler where possible. However, IPCC Good Practice Guidance suggests 
monitoring of soil carbon to at least 30 cm (IPCC, 2003) in agricultural soils. 
However, deeper sampling (at least to 80 cm) in forested soils should be con-
ducted to better assess deep soil C pools and changes over time (Harrison 
et al., 2011). Second, only one sample of mineral soil is collected on each plot. 
This efficient use of limited funds provides landscape-level information, but it 
provides no detail on small-scale variation in soil health. Third, soil samples 
are collected only on a subset of the full plot network; originally soil sampling 
represented a 1/16th subset, but the program is exploring the value of sampling 
at greater intensities. Another major concern is the narrow focus on physical 
and chemical properties when microbes are now understood to have a critical 
role in forest diversity and productivity (van der Heijden et al., 2008). Sampling 
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soil metagenomics to understand fungal diversity may be a relatively inexpen-
sive way to understand this impactful biological property (Tringe et al., 2005, 
Fierer et al., 2012) and has been piloted on FIA plots in northern Idaho (Ross-
Davis et al., 2016).

)oUest Soil Health 'ata /iPitations anG 0anaJePent ,PSliFations

Often, forest health measurements look at only aboveground responses 
because they are easier to measure than belowground responses. Numerous 
studies indicate that forest management and inherent soil factors will elicit 
differing tree responses (e.g., Greacen and Sands,  1980; Senyk and 
Craigdallie, 1997; Heninger et al., 2001; Slesak et al., 2017). Ideally, above- and 
belowground data are needed at a site before harvest operations are conducted 
so that the magnitude of change and the functions and processes affected can 
be quantified (Grigal and Vance, 2000). Further, many studies constrain their 
sampling efforts to the surface mineral soil and to the fine fraction (< 2mm) 
and omit coarse wood, large rocks, or roots from sampling because of financial 
or time limitations. Recent studies have pointed out that coarse-fragments 
(Jurgensen et al., 2017) and deep soil nutrient pools and OM should also be 
considered to evaluate long-term impacts on soil health (Harrison et al., 2011). 
Not accounting for these factors could result in faulty soil health assessments 
(Slesak et al., 2017). In many cases baseline information might not be availa-
ble. In this case, local specialists, use of the Natural Resource Conservation 
Service databases, or use of information from similar sites elsewhere may be 
necessary to make inferences on soil productivity changes. In general, low 
fertility, coarse-textured soils are at greater risk of nutrient limitations from 
land management than higher fertility soils with finer textures (Garrison 
et al., 2000).

Long-term studies are key to being able to link belowground ecological 
changes associated with land management. Metagenomics, standard decompo-
sition substrates, soil fauna, and microbial biomass are all techniques that help 
link soil physical, chemical, and biological responses. Data gathered immedi-
ately after harvesting are a valuable tool, and there are many examples of devel-
oping risk rating systems for forest sites (e.g., Reeves et al., 2012). In fact, best 
management practices (BMPs) have been developed by some states that mini-
mize or avoid soil impacts considered detrimental to forest productivity. Risk 
rating tools can provide a framework that, with local calibration, can be used 
across a wide variety of forested landscapes to depict soils that may be at risk of 
damage during ground-based harvest activities (Reeves et al., 2012). Use of a 
standardized soil monitoring protocol is also useful for assessing short- and 
long-term soil health based on several soil quality indices (Heninger et  al., 
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2001; Page-Dumroese et al., 2010). This data will be useful for meta-analyses 
that examine soil and forest health changes.

&liPate &hanJe� )iUe ShiIts� ,nYasiYe SSeFies

Three points are clear: soil C is a pervasive material within all forested soils, it is 
crucial for providing ecosystem services (e.g., soil water quality and quantity), and 
it is an essential indicator of soil health. Current US federal policy is to harvest 
forests in a manner that protects soil, watershed, fish, wildlife, recreations, and 
esthetic resources. Consequently, soil health must also be protected to ensure all 
other values are maintained. Since soil C is critical, we must begin to assess its 
vulnerability to climate, fire, and invasive species shifts and to understand these 
changes more widely.

Fire can affect soil C by changing the quantity and quality of C inputs by 
 mineralizing surface OM and altering mineral soil C (Neary et al., 1999). However, 
those changes may be offset by creation of black C during wildfires, prescribed 
burns, or through the addition of biochar to forest soils (Page-Dumroese 
et al., 2018). Since many public lands have a short window for burning unmer-
chantable woody material, alternative markets such as bioenergy or bio-based 
products are one way to reduce the amount of residual woody material while 
simultaneously conserving C.

Linked to changes in soil C and N is an increase in invasive species. The initial 
increases in invasive species is caused by a chronic disruption in N, SOM, or nutri-
ent cycling (Hobbs and Huenneke, 1992). Working to adjust these soil imbalances 
may be one method for restoring microbial-fauna-soil-plant relationships and fos-
ter increased soil health.

 &onFlXsion� &UiteUia anG ,nGiFatoUs IoU 0onitoUinJ 
)oUest Soil Health

Monitoring forest soil health is a process to estimate changes in soil conditions 
that have occurred since the last time it was measured. However, this approach 
gives no indication of future soil conditions that may result from continuing 
impacts of degrading processes (e.g., climate change, pollution; Wagenet and 
Hutson, 1997). Our roles as forest soil scientists should be to anticipate effects in 
a prospective manner rather than retrospectively (Wagenet and Hutson,  1997; 
Adams et al., 2000). We must stretch our knowledge of soil data to encompass 
dynamic processes that underpin soil health assessments. Data from each of the 
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previous examples can be used to give a qualitative perspective on the impact of 
management scenarios on soil health and provides resources that further our 
understanding. Information and data from both short- and long-term studies can 
be placed into decision trees that help integrate soil property changes into site-
specific land management decisions (Wagenet and Hutson, 1997). Current meas-
urements can also be combined with archived samples from numerous sources to 
help provide additional historical context about how soils are impacted over time 
by a changing climate and/or land management activities.

Researchers take static measurements of forest soil properties (cation 
exchange capacity, C, base cations, etc.), but it is imperative to also determine 
the cause and effect relationships between management and soil properties. 
These static measurements can also be used to develop risk rating systems. 
Risk rating systems used to develop BMPs are one way to use data to describe 
acceptable management retrospectively. Once these relationships are under-
stood we can identify indicators of soil change that could lead to a decline in 
soil health and forest growth. From the empirical trials we can then move 
toward forecasting acceptable management across a wide-range of soil types 
and required ecosystem services.

Use of a standardized soil monitoring protocol is also essential for assessing soil health 
based on several soil characteristics (compaction, rutting, displacement, erosion, ground 
cover, burn severity; Heninger et al., 2001; Page-Dumroese et al., 2009). This data can 
then be used with meta-analyses that examine soil and forest health changes.

 Summary

 ● Sustainable management of temperate and tropical forests as well as AF sites 
depends on healthy soils and the ability to identify soil change indicators that 
reflect soil health declines.

 ● There are no widely-applicable standardized measurements or methods for 
assessing forest soil health.

 ● Soil texture influences how compaction or SOM loss can alter soil health.
 ● Faunal and microbial inventories, and the development of specialized taxo-

nomic expertise, is needed to better describe organisms and biological property 
changes and links with aboveground changes.

 ● FIA forest and soil data can be used as an index of ecosystem health.
 ● Soil monitoring of management practices will help elucidate if we are meeting 

criteria for sustainability.
 ● Using long-term trials and archived samples we can begin to forecast ecosystem 

processes changes that may require a change in management.
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