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Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth.
This integration process is sometimes referred to as ‘climatic memory.’ While widely perceived, the physiological
processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates
(NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-
drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic
extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought.
To quantify the linkages between drought legacies, climate memory and NSC, we measured tree growth (via tree ring
widths) and NSC concentrations in three dominant species across the southwestern USA. We analyzed these data with a
hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We
then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related
to forward-predicted growth during the hot 2011–2012 drought and subsequent 4-year recovery period. Populus
tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the
2011–2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more
negative) drought legacies. Conversely, Pinus edulis trees with longer temperature memory had smaller (less negative)
drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though
the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC
are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to
increasingly frequent drought events under climate change.
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Introduction

Tree growth is a fundamental process driving forest productivity
across forested ecosystems (Pan et al. 2011). The accumulation
of tree-ring datasets has led to a surge in the use of tree-ring
data to address questions related to the physiological basis of
tree growth (Klesse et al. 2020) and the legacies of climatic
extremes (e.g., drought) (Anderegg et al. 2015). More broadly,
past work has investigated growth correlations with both recent
and antecedent climate variables among species or sites to
infer growth behaviors (e.g., Makinen et al. 2000, Sarris et al.
2007, Mazza and Manetti 2013, Bond-Lamberty et al. 2014,
Marquardt et al. 2018, Liu et al. 2019). Perhaps because
trees are long-lived organisms, with physiological inertia driving
difficult to explain variation across their life-spans (Melvin and
Briffa 2008, Esper and Frank 2009), large scale syntheses
across forest ecosystems and continents have revealed new
temporal complexities in tree growth responses to drought
severity and frequency (Anderegg et al. 2015, Peltier et al.
2016, Schwalm et al. 2017, Peltier and Ogle 2019a, 2019b).

The lagged effects of climate (e.g., ‘climatic memory’; Ogle
et al. 2015) on tree growth are prevalent in semi-arid forests
and woodlands (Peltier et al. 2018), systems in which trees
experience highly variable climate conditions (Knowles et al.
2020). The mechanisms of climatic memory are not well
understood, though physiological observations following cli-
matic extremes such as drought hold promise. For example,
cessation of 11 years of irrigation in Pinus sylvestris led to
lagged declines in canopy and leaf area metrics as well as
radial growth over 4 years post-irrigation (Zweifel et al. 2020).
Across temperate forests, precipitation extremes lead to multi-
year perturbations to the sensitivity of tree growth to climate
(Anderegg et al. 2015, Peltier and Ogle 2020) with implications
for terrestrial carbon fluxes (Babst et al. 2014, Nehrbass-Ahles
et al. 2014, Schwalm et al. 2017). These effects have been
shown to be most prevalent in conifers in semi-arid regions
(Anderegg et al. 2015, Peltier et al. 2016). While not a
major focus of regional tree-ring syntheses, there is also large
variation in climatic memory and drought legacies across sites,
with implications for forest resilience to changing frequency
and severity of temperature and moisture extremes across the
landscape (Williams et al. 2020). Yet, the drivers of this variation
are also poorly studied, as studies (e.g., Anderegg et al. 2015,
Peltier et al. 2016) often focus more on quantifying average
responses across large regions (e.g., the western USA) or
taxonomic groups (e.g., conifers). Quantifying and exploring
the drivers of variability in climatic memory, as well as the
differences among species, can lend insight to the underlying
physiological mechanisms—ultimately necessary if we are to
improve our ability to predict tree growth and resilience under
future climate change and drought.

Despite widespread recognition and interest in drought lega-
cies (perturbed growth-climate responses) and lagged effects
of climate on tree growth (under normal climate conditions, i.e.,
non-perturbed), the physiological mechanisms of these effects
are rarely the focus of experimental observation (reviewed in
Kannenberg et al. 2020, Peltier and Ogle 2020; but see von Arx
et al. 2017, Zweifel et al. 2020). The multi-year persistence of
conifer needles, which results in slow canopy area dynamics,
was proposed as an initial explanation for lagged climate
responses of conifers (e.g., LaMarche Jr and Stockton 1974).
To explain multi-year drought legacies, more recently proposed
mechanisms include lasting hydraulic damage, particularly if
trees are large enough that whole-tree conductance requires
multiple years to recover (demonstrated in Trugman et al.
2018). Similarly, transient depletion or changes in allocation
of non-structural carbohydrates (NSC) might also explain slow
recovery following drought (Peltier et al. 2016), particularly if
trees must remobilize very old NSC pools, as has been observed
in some mature trees (Carbone et al. 2013). Post-drought
allocation of NSCs has been shown to be biased belowground in
one conifer species (Hagedorn et al. 2016), but aboveground
in multiple species in the eastern USA, leading to no change
in productivity following drought (Kannenberg et al. 2019).
The most often cited function of NSC storage is to sustain
tree functions in periods when carbon demand exceeds supply,
buffering trees from stress (Dietze et al. 2014, Kozlowski
1992). Thus, we may expect that NSCs serve to decouple tree
growth from cotemporaneous climatic variability, giving rise to
climatic memory (von Arx et al. 2017).

In this study, we quantify variation in both the length and tem-
poral pattern of climatic memory in dominant tree species across
the southwestern USA. We explore how climatic memory of
tree growth is related to NSC through multiple approaches. We
leverage a combined tree-ring and snapshot NSC dataset across
a network of 22 sites in the southwestern US, encompassing
three dominant tree species: Pinus edulis, Juniperus osteosperma
and Populus tremuloides. We used these data to address the
following questions: (Q1) How does the temporal pattern of
the climatic memory of tree growth vary across ecologically
sampled sites (Nehrbass-Ahles et al. 2014) in the southwestern
USA? Following a severe, hot regional drought in 2011–2012
(Williams et al. 2013, Cook et al. 2014, Anderegg et al. 2019,
Figure 1), we ask: (Q2) Is regional variation in drought legacies
(post-drought perturbed growth-climate response) explained by
the length of climatic memory (average lag in growth response
to climate across the record)? For example, do trees with longer
climatic memory also experience longer legacies of drought,
or conversely, does longer climatic memory buffer trees from
the impacts of drought, resulting in reduced recovery times?
Because we also sought to understand potential mechanisms
underlying temporal properties of tree growth-climate relations
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across species in the Southwest, we also ask: (Q3) Is there a
role of NSC in explaining the length of climatic memory and/or
the severity of drought legacies with respect to tree growth?

While growth time-series are easily obtained from tree core
collections, long time-series of physiological processes are lim-
ited (Pérez-Ramos et al. 2010, Vacchiano et al. 2017). Without
time-series of physiological data, physiological measurements
are essentially a ‘snapshot’ with respect to the time-scales
of tree growth processes. However, while variation in NSC
concentrations may reflect recent climate (e.g., precipitation
surpluses or deficits; Dietze et al. 2014), variation across
individuals or species may also be partially explained by species
traits (Godfrey et al. 2020)—perhaps reflecting NSC storage
capacity and wood anatomy (Hoch et al. 2003)—or acclimation
to prevailing site climate conditions (Piper et al. 2017). As we
have recently explored how NSC concentrations in this network
respond to moisture stress at varying time scales (Peltier et
al. 2020), we focus here on these other sources and drivers
of NSC variation. Thus, in addressing Q3, we hypothesize
that trees within a species maintaining relatively higher NSC
concentrations will have relatively longer climatic memory, and
therefore exhibit comparatively minor (small) legacies following
the 2011–2012 drought.

Methods

Study sites and climate data

We sampled P. tremuloides (aspen), P. edulis (piñon) and J.
osteosperma (juniper) across 22 sites (11 piñon-juniper and
11 aspen sites) in Utah, Colorado, New Mexico and Arizona.
The sites spanned a broad range of mean temperature and
precipitation conditions (Figure 1). Sampling sites were located
in close proximity to Forest Inventory and Analysis (FIA) per-
manent sample plots. Information from the FIA database was
used to help identify sites; for example, sites were chosen
based on criteria such as species composition, stand density
and accessibility (public ownership), and excluded if potentially
impacted by a disturbance, such as wildfire, that occurred since
the last FIA measurement period.

Sampling for NSC concentrations took place twice at each site
during 2016 (pre- and mid-monsoon season, defined below),
and tree core sampling took place in summer 2017. Tree-ring
widths (described below) were related to monthly precipitation
(P) and temperature (T) data obtained from the PRISM group
(PRISM climate group 2004), and to self-calibrating Palmer
Drought Severity Index (PDSI, hereafter D) obtained from the
West Wide Drought Tracker (Abatzoglou et al. 2017); all climate
datasets are 4 km spatial resolution.

Tree coring and processing

We collected at least two replicate tree cores from 15–17
trees per site in summer 2017 to measure growth (i.e., ring

widths). We sampled relatively ‘ecologically’ (Nehrbass-Ahles
et al. 2014), that is, we aimed to select fairly representative
trees in each site, spanning different sizes and canopy positions.
Towards the same goal, we did not exclude trees with fire
scars, up to moderate canopy dieback, or common aspen
conks (Phellinus tremulae), though we only selected piñon and
juniper trees with single stems. Tree cores were collected with
5.15 mm Haglof (Sweden) or Jim-Gem (Forestry Suppliers Inc.)
increment borers as close to the ground (base) as possible, and
perpendicular to hill slopes. Cores were sometimes collected
above breast height in aspen to avoid collecting cores with
substantive heart-rot, or not parallel to hill slopes in piñon or
juniper trees with irregularly shaped or partially dead boles.
Coring height, diameter at coring height and diameter at breast
height (DBH, cm) were recorded for all trees. We attempted but
did not always succeed in coring through the pith (e.g., in very
old trees or irregularly shaped boles). Some piñon and juniper
trees cored were over 300 years old, while aspen trees tended
to be <100 years old.

Tree cores were processed following standard methods (Fritts
and Swetnam 1989): cores were air dried, mounted and sanded
with increasingly fine-grained sand-paper. Cores were then
visually crossdated and measured on a Velmex tree-ring mea-
surement system (Bloomfield, NY). Visual crossdating was ver-
ified with COFECHA, and problematic cores were re-dated or
excluded from subsequent analyses. Juniper cores from some
sites proved extremely difficult to crossdate, and thus ring
widths at only four sites were ultimately included in this analysis
for juniper (Table 1). Tree-ring widths were detrended for age
effects for the entire length of each core using a modified
negative exponential or flat line using the dplr package (Bunn
2008) in R Core Team (2019). Thus, increasing trends in ring
width with age were considered to be ecological (not an actual
age effect) and were not removed. This detrending resulted in
tree-level ring width indices (hereafter ‘RWI’), with mean RWI
equal to 1 representing ‘average’ growth. To align this, the
climate data, we excluded all RWI observations preceding 1899
(4 years after the beginning of PRISM climate data, Figure S1
available as Supplementary data at Tree Physiology Online).

NSC sampling

To capture maximum seasonal variability in NSC, sites were
visited between DOY 158–180 (June 6–28; pre-monsoon)
and 229–261 (August 16-September 17; mid-monsoon) in
2016, capturing the hot-dry period preceding the onset of the
North American monsoon (NAM) and the comparatively cool
and wet period at the height of NAM activity, respectively. We
sampled a subset (five) of the 15–17 study trees (subsequently
cored in 2017, described above) per species per site for
NSC measurements. We collected leaf (or needle) and twig
tissues using clippers or pole pruners in mid-afternoon from
three sides of each tree canopy, and subsequently processed
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Figure 1. Climate summaries in the southwestern USA show the imprint of the hot 2011–2012 drought across the tree-ring network where (a)
MAP for the 30-year period 1981–2010, (b) water-year (October–September) precipitation anomaly (as percent of MAP) during the 2011–2012
drought, (c) mean growing season (April–October) temperature (1981–2010) and (d) growing season temperature anomaly (as deviation from
mean growing season temperature) during the 2011–2012 drought. Warmer colors indicate drier and/or warmer conditions. Climate data are from
PRISM climate group. The 22 study sites are indicated by the symbols (triangles = aspen sites; circles = piñon-juniper sites). States are UT = Utah,
CO = Colorado, AZ = Arizona and NM = New Mexico. Site-specific climate anomalies are summarized in Table 1.

these tissue samples according to standard methods (Quentin
et al. 2015, Landhäusser et al. 2018): tissue samples were
immediately frozen on dry ice for transport to lab facilities in

Flagstaff, Arizona, USA. Transport times ranged from 1 to 6 days
(most often a maximum of 2–3 days). For piñon, we separated
twigs and needles according to annual cohorts, and analysis
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Table 1. Site locations, names, elevations (m a.s.l.), summary climate information, and description of the numbers of trees sampled and cores
successfully crossdated; summary tree-ring statistics (sensitivity) are also included. MAP (mm) and mean annual temperature (MAT, ◦C) are calculated
from over 30 years (1981–2010) of the PRISM climate data. Series range describes the years spanned by the dated tree-ring series at a given
site. Sensitivity is the ‘mean sensitivity’ obtained from COFECHA. Site abbreviations are defined in Figure 1, species are a = aspen, P = piñon and
J = juniper. 2011–2012 climate anomalies are also shown in Figure 1b and d

State Site Location Elevation
(m)

MAP
(mm)

MAT (◦C) 2011–12
MAP
anomaly (%)

2011–12 MAT
anomaly (◦C)

Trees Cores Series range Sensitivity

AZ A1 35.16, −112.17 2157 606.58 9.69 83 1.8 15 30 1951–2016 0.48
AZ P1 36.50, −112.73 1680 320.66 12.7 87 1.0 9 17 1930–2016 0.534
AZ A2 36.41, −112.17 2781 821.65 6.1 72 1.1 14 26 1933–2016 0.359
AZ P2 35.92, −111.83 1937 347.84 9.6 91 0.6 15 30 1952–2016 0.317
AZ A3 33.97, −109.32 2845 660.81 5.95 76 2.1 15 30 1968–2016 0.393
AZ P3 35.06, −112.21 1896 538.72 11.1 87 1.9 14 28 1947–2016 0.36
AZ P4 34.57, −110.78 2001 400.84 10.46 86 0.9 15 30 1916–2016 0.456
CO A4 37.74, −108.22 2791 681.51 4.2 81 1.8 15 29 1951–2016 0.311
CO A5 37.46, −106.24 2714 501.38 3.57 67 1.9 12 25 1935–2016 0.46
CO A6 37.81, −107.91 3147 932.1 1.9 74 1.9 15 30 1944–2016 0.229
CO P5 38.24, −108.43 1962 351.03 9.36 70 1.4 15 30 1890–2016 0.451
CO J1 38.24, −108.43 1962 351.03 9.36 70 1.4 15 30 1850–2016 0.673
CO A7 38.26, −108.05 2915 645.67 4.39 75 1.5 15 30 1962–2016 0.304
NM P6 36.97, −107.81 2069 391.15 9.85 72 2.5 14 26 1898–2016 0.45
NM J2 36.97, −107.81 2069 391.15 9.85 72 2.5 13 23 1883–2016 0.527
NM A8 36.64, −106.18 2825 552.12 5.25 71 2.2 15 30 1965–2016 0.433
NM P7 33.92, −108.46 2140 360.11 9.13 90 1.0 15 30 1951–2016 0.432
NM P8 36.40, −107.12 2246 372.05 7.85 86 1.1 14 27 1904–2016 0.45
NM J3 36.40, −107.12 2246 372.05 7.85 86 1.1 6 11 1907–2016 0.736
NM A9 33.68, −108.58 2853 372.05 8.07 71 2.2 15 30 1969–2016 0.411
UT A10 38.00, −111.80 2944 641.54 3.93 91 0.9 15 33 1937–2016 0.225
UT P9 38.08, −109.52 2019 314.26 10.56 66 1.6 14 26 1890–2016 0.51
UT A11 38.25, −112.42 2941 838.98 4.08 84 1.3 15 30 1931–2016 0.258
UT P10 37.22, −112.80 1827 390.25 11.72 84 1.9 15 31 1860–2016 0.424
UT J4 37.22, −112.80 1827 390.25 11.72 84 1.9 15 27 1830–2016 0.569
UT P11 38.25, −110.11 1949 237.4 11.49 74 1.0 14 28 1910–2016 0.63

here focused on the youngest cohorts (formed in 2016). After
transport, samples were microwaved, oven dried for 72 h at
60◦C, and subsequently frozen at −20◦C until analysis. We used
a phenol–sulfuric acid method to extract NSCs and analyzed
in-house tissue- and species-specific standards with each run.
See Methods S1 for full reporting of NSC methods. For this
study, NSC concentrations for the two key fractions, (soluble)
sugars and starch, were each aggregated into means for each
combination of site and species for a given tissue (leaf or
twig) and sampling period (pre-monsoon or mid-monsoon) to
be comparable to site-level estimates of climatic memory and
drought legacies (see implicit and additive roles of NSC). Further
information on the NSC dataset is also available in Peltier et al.
(2020).

Tree growth (RWI) model

Following Peltier et al. (2018), we analyzed the tree-level RWI
data via a hierarchical mixed effects model based upon the
stochastic antecedent modeling (SAM) framework (SAM; Ogle
et al. 2015, Ryan et al. 2015). A description of the theory

and motivation underlying the modeling framework are given
in (Ogle et al. 2015), additional model description is provide
in Methods S2, and full model code in Methods S3. The key
concept of the SAM framework is the antecedent covariates, Xant,
themselves weighted averages of past monthly climate values,
X (here, precipitation [P], temperature [T] or PDSI [D]), with
weights, wl,m,st,v, subscripted by years l into the past, month
m (m = 1, 2, . . . , 12 for January, February, . . . , December),
site-species combination st and covariate v (i.e., P, T or D);
hence,

Xant
st,y =

4∑

l=0

12∑

m=1

wl,m,st,v · Xy−l,m,st (1)

We extended the weights to 4 years into the past (l = 0, 1,
. . . , 4 for current year, previous year, . . . , 4 years prior) relative
to year y, encompassing 5 years including the year of ring
formation. Thus, since the PRISM dataset starts in 1895, 1899
is the first year of growth (RWI) data considered in the model.
The weights (w) used to construct these antecedent covariates
are stochastic parameters that are estimated (see Methods S2),
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allowing inference on both the length and temporal pattern
of climatic memory (see Calculated quantities) of tree growth
responses to climate (Peltier et al. 2018) across our study sites
and species.

Then, we fit a simple linear model to the RWI data, conditional
on the antecedent climate covariates (Pant, Tant and Dant; Eqn 1).
This tree growth model regresses RWI on antecedent climate
covariates of precipitation (Pant), temperature (Tant) and PDSI
(Dant), and includes an additive AR1 term (i.e., previous-year
RWI). Note that here, the effect of Dant represents an interaction
between Pant and Tant, as the PDSI product we use is derived
directly from PRISM precipitation and temperature data (Peltier
and Ogle 2019a, 2019b). We also include two-way interactions
between precipitation and PDSI (Pant × Dant) and between
temperature and PDSI (Tant × Dant) to capture non-linearity in
the climate responses. The intercept term, the main effects
of Pant, Tant, Dant and previous-year RWI, and the two 2-way
interaction effects are all estimated uniquely for each tree, and
these tree-level effects parameters are modeled hierarchically
around overall site-species effects (e.g., see Peltier et al. 2018).

The aforementioned tree growth model was fit to the RWI
data spanning 1899–2012 (RWI for 2013 and beyond were
withheld for evaluating drought legacies, see next section). The
model was implemented in a hierarchical Bayesian framework in
JAGS (Plummer and others 2003) through R Core Team (2019)
via the package ‘rjags’ (Plummer 2013), following standard
methodology, as described in previous applications of the SAM
model to tree-ring data (e.g., Peltier et al. 2018).

Quantifying climatic memory and drought legacies

We evaluated two components of climatic memory (sensu Ogle
et al. 2015): (1) the temporal pattern of memory and (2)
the length of memory. First, the temporal pattern of memory
is inferred directly from the temporal pattern of the estimated
monthly weights (w, Eqn 1). Note that the temporal pattern of
memory for PDSI is somewhat difficult to resolve, given inherent
autocorrelation; however previous work with this model (Peltier
and Ogle 2019a, 2019b) has shown PDSI to be the best choice
of covariate, both because it represents an interaction between
Pant and Tant (see tree growth model), and improves computational
behavior of the model. For the length of memory, we used the
weights to quantify the time into the past at which 50% of
the influence of a given climate variable has been reached for
a given site or species; that is, we identified the month (into
the past) at which the cumulative sum of the monthly weights
exceeds 0.5 (e.g., Ogle et al. 2015). Conceptually, this measure
quantifies the antecedent window of time necessary to capture
50% of the climate (e.g., precipitation) information relevant to
growth (according to the weights). We refer to this quantity
as P50, T50 and D50 for precipitation, temperature and PDSI,
respectively. We also estimated X75 and X90 (for X = P, T or D),
which represent the months into the past where the cumulative

weights equal 75% and 90%, respectively. Calculations of X50,
X75 and X90 were performed within the JAGS simulation model,
allowing parallel estimation of the associated uncertainty in
these indices of the length of climatic memory.

Again, we withheld RWI observations from 2013 to 2016
from the model fitting and parameter estimation stage and used
these data to calculate drought legacies. The AR1 covariate
(previous-year RWI) was propagated forward for the years
2013–2016. That is, the 2013 RWI prediction was informed by
observed RWI in 2012, whereas the 2014 RWI prediction was
informed by predicted RWI in 2013 (the previous year’s RWI
prediction). Thus, we quantified the drought legacies for each
tree following the 2011–2012 drought—which was severe
(Williams et al. 2013, Cook et al. 2014)—as the difference
(error) between observed RWI (RWIobs) and predicted RWI
(RWIpred); thus, the drought legacy effect, dy,tr, in year y (for years
2012–2016) for tree tr is defined as:

dy,tr = RWIobs
y,tr − RWIpred

y,tr (2)

Drought legacies (d) were estimated at the tree-level and then
averaged across trees to obtain site-level legacies for each year
(d∗

yr). We assume that legacies (d) that are similar across the
tree ring network are thus indicative of the impact of the 2011–
2012 drought. While numerous other factors may influence tree
growth–climate sensitivity (Peltier and Ogle 2020), drought is
the most likely driver of regionally coherent perturbations to tree
growth–climate sensitivity, particularly in the southwestern USA
(Anderegg et al. 2015).

Implicit and additive roles of NSC

We explored potential relationships between climatic memory
and NSC concentrations measured in 2016 in these legacies,
and the implicit role of NSCs in climatic memory, using a two-
step linear regression process (Methods S4). First, to select the
indices of memory length most important in driving site-level
drought legacies, we regressed annual legacies (i.e., d∗

yr for
2012–2016) on the different indices of memory length (P50,
P75, . . . and D90). To select the most important relationships,
we only focus on the linear regressions that were significant
(P < 0.05) and for which the coefficient of determination (R2)
was greater than 0.10.

Next, to understand the implicit versus additive roles of NSC
pools in drought legacies, we subsequently only focused on
the memory indices that were deemed important for under-
standing drought legacies (above), implementing two types of
regressions. First, to understand the ‘implicit’ roles of NSC, we
regressed these memory length indices (e.g., T75,st , among
others) directly on site-level mean NSC concentrations to test
whether memory may be related to variation in NSC pools
across sites; e.g., for site st, NSC fraction fr and date (pre-
monsoon or mid-monsoon) m, we regressed T75,st on NSCfr,st,m,
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and so forth for the other important memory length indices.
These relationships (‘implicit’ effects) describe the effect of
variation in NSC concentrations across sites upon variation in
climate memory indices relevant to drought legacies. Second,
we evaluated the ‘additive’ roles of NSC by expanding the
original regressions of drought legacies to include both the
previously identified important memory indices and site-level
mean NSC concentrations; e.g., we regressed d∗

yr on T75,st

and NSCfr,st,m. These relationships (‘additive’ effects) describe
the additional variation in drought legacies explained by NSC
when also including effects of memory indices. These analyses
were all performed in base R, and are further described, along
with the workflow of all prior steps (fitting tree growth model,
memory indices, drought legacies) leading up to these analyses,
in Methods S4.

Results

We successfully crossdated and measured 717 (∼73%) of the
984 cores collected (Figure S1 available as Supplementary data
at Tree Physiology Online). This subset represented 96% of the
aspen, 90% of the pinyon and 30% of the juniper cores. Sites
successfully crossdated and used in subsequent analyses are
given in Table 1. Overall fit of the tree growth model was moder-
ately high (coefficient of determination, R2 = 0.64). The model
fit was higher for piñon (R2 = 0.67) and juniper (R2 = 0.67)
and relatively lower for aspen (R2 = 0.58), reflecting lower mean
sensitivity in aspen, both in the crossdating statistics (Table 1),
and with respect to sensitivity to precipitation and temperature
(Figure 2a and b).

Dendroecological variation in climate responses
and climatic memory

Responses to climate differed among species, but also showed
strong variation across the study region (Figure 2). Tree RWI
responded positively to antecedent precipitation (Pant) across the
study region with the exception of aspen trees at site A6, the
highest elevation site with the highest mean annual precipitation
(MAP, Figure 2a). Responses of RWI to antecedent temperature
(Tant) could be positive or negative in aspen, but were primarily
negative in piñon and juniper (at the four sites we were
able to crossdate, Figure 2b). Except for site A6, responses
to antecedent PDSI (Dant) were negative or non-significant
(Figure 2c). The Dant effects are consistent with previous
applications of this modeling framework using the same
climate data products, where Dant is equivalent to an interaction
between precipitation and (negative) temperature (Peltier and
Ogle 2019a, 2019b). Thus, negative Dant responses suggest
higher precipitation sensitivity under warmer temperatures,
consistent with evidence that VPD was a major component
of the 2012 drought event (Williams et al. 2013, Figure 1d).
Given the aforementioned interpretation, the Pant × Dant and

Figure 2. Posterior means and 95% central credible intervals (CI) for
the site-level climate effects indicate strong site- and tree-level variation
in climate sensitivity across the ecologically sampled tree-ring network.
Climate effects are shown for: (a) antecedent precipitation (Pant), (b)
antecedent temperature (Tant) and (c) antecedent drought or PDSI (Dant)
for each aspen (green triangles and lines), piñon (black triangles and
lines) and juniper (brown triangles and lines). The mean ± 95% CIs
for the tree-level (a-c) effects (dark gray points and light gray vertical
lines) are shown behind the site-level effects (darker, colored symbols).
Within species and site, all effects are sorted according to magnitude and
thus a particular tree or site in one panel does not directly align with
another panel. The horizontal dashed lines indicate the zero line, and
95% CIs that overlap this line denote non-significant effects. Pant × Dant

and Tant × Dant interactions and AR1 effects are reported in Figure S2
available as Supplementary data at Tree Physiology Online.

Tant × Dant interactions represent small curvature in the effects
of Pant and Tant on growth; these interaction effects were
variable across sites and species, including positive, negative
and non-significant effects (Figure S2d and e available as
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Supplementary data at Tree Physiology Online). The site-level
AR1 effects were largest for piñon (posterior mean ± sd:
0.45 ± 0.14) and juniper (0.48 ± 0.07) and considerably
smaller for aspen (0.27 ± 0.13) (Figure S2f available as
Supplementary data at Tree Physiology Online). Unlike the
climate effects, the within-site variation in AR1 effects was
comparable to among-site variation in AR1 effects (Figure S2f
available as Supplementary data at Tree Physiology Online).

Across species, there was also notable variation in the
temporal pattern of the climate response (based on the monthly
weights, wl,m,st,v) across sites (Figure 3). Mean trends in
monthly weights also showed clear differences across species,
particularly for the effects of Pant (Figure 3a). Consistent with
the longstanding use of piñon and Juniperus spp. species
in dendrochronology, weights in these species were highly
peaked (Figure 3a) and concentrated on the period between
the previous fall through the current growing season (previous
September to current July), a pattern also typical of other South-
west conifers (Figure 3a, Peltier et al. 2018). The temporal
pattern was notably more diffuse in aspen, showing greater
reliance on antecedent precipitation conditions 1 and 2 years
prior to the year of ring formation. For aspen, defined peaks
of importance weight associated with Pant also occurred during
previous late summer periods 1 and 2 years prior to the year of
ring formation (lags of 16–19 and 29–30 months, Figure 3a).

The temporal patterns of antecedent temperature responses
were more similar across species and more diffuse compared to
the antecedent precipitation weights. Though, there was a trend
for the temperature importance weights to be concentrated
(higher) during the early and late growing season of the year
of or year prior to ring formation (Figure 3b). The weights also
showed comparatively lower importance of winter temperature
conditions across species (Figure 3b). Again, Dant represents
an interaction between Pant and Tant; the weights for Dant show
that this effect (amplified precipitation sensitivity during warmer
periods) was most important during the warm and dry pre-
monsoon periods, and this pattern is particularly apparent for
piñon (19-month lag, Figure 3c).

Consistent with the temporal patterns described by the
weights (Figure 3), the length of precipitation memory was
longest in aspen compared to the other two species (Figure 4a).
In particular, P50 was ∼8 months longer and P75 was
∼7 months longer in aspen compared to piñon, with larger
differences when compared to juniper (Figure 4a). Memory in
juniper was similar or shorter than in piñon, but we hesitate to
compare given that means for juniper only represent four sites.
Temperature memory length was fairly similar across species
(Figure 4b), but PDSI memory length was somewhat longer in
aspen, particularly with respect to D75 (∼8 months longer in
aspen than piñon; Figure 4c). Temperature and PDSI memory
length in juniper were again somewhat shorter than in piñon
(Figure 4b and c).

Legacies following the 2011–2012 drought

Trees of all three species grew ∼50% less than was predicted
by the model following the 2011–2012 drought (drought lega-
cies were negative, Figure S3 available as Supplementary data
at Tree Physiology Online). That is, tree responses to climate
were altered by the 2011–2012 drought event in ways not
captured by the fitted model, despite the model having included
the effects of antecedent climate. For comparison, 2002 was
another extreme regional drought, and data for this drought
was included in model fitting. In the 4 years following 2002,
average prediction error (legacy) magnitude across species was
∼0.07, around 1/5 of the magnitude of the errors following
2012 (Figure S3 available as Supplementary data at Tree
Physiology Online), and was not consistent in sign (overall mean
0.005 ± 0.30). Again, prediction error was smaller for the
2002 drought because the data associated with this event were
included in model fitting, suggesting some characteristics of the
2012 drought were unique, or that the forward predictive power
of the model is somewhat limited. Notably, species-level (mean
of d∗

yr) legacies in juniper were similar in magnitude to the other
two species, in contrast to previous studies finding little evidence
of drought legacies in the Cupressaceae (Anderegg et al. 2015,
Peltier et al. 2016).

Contrasting roles of climate memory in drought responses

Variation in the magnitude of drought legacies (d∗
yr) across

sites was highly correlated with indices of memory (Table 2).
Perhaps unexpectedly however, legacies were unrelated to
variation in precipitation memory. Instead, drought legacies were
more strongly related to variation in temperature and PDSI
memory, but the sign of these relationships was opposite for
aspen and piñon (Table 2). For example, the drought legacies
(d∗

yr) in aspen were negatively correlated with memory length
indices of temperature and PDSI, indicating more severe (more
negative) legacies at aspen sites with longer climate memory
(Table 2). In contrast, legacies were positively correlated with
memory length indices of temperature and PDSI in piñon,
indicating smaller (less negative) legacies at piñon sites with
longer climate memory.

Memory and legacies are strongly related
to NSC concentrations

We found strong relationships between climate memory length
and NSC concentrations measured in 2016, especially with
respect to twig NSC pools (implicit effects, Figure S4 available
as Supplementary data at Tree Physiology Online). In aspen,
sites with longer PDSI memory also had higher twig sugar
concentrations in the pre-monsoon (R2 = 0.43, respectively,
Figure 5a). Piñon at sites with longer memory of temperature
or PDSI tended to have lower twig starch concentrations but
higher leaf and twig sugar concentrations (e.g., Figure 5b);
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Figure 3. Patterns of climatic memory in piñon and juniper show peaked importance during the year of ring formation and the year prior, but climate
memory in aspen is more diffuse over antecedent time. The thick lines show the posterior means and 95% central CIs of species-level monthly
weights (w, see Eqn 1) corresponding to (a) antecedent precipitation (Pant), (b) antecedent temperature (Tant) and (c) antecedent drought or PDSI
(Dant) for aspen (green lines and green dashed lines), piñon (black lines and black dashed lines) and juniper (brown lines and brown dashed lines).
Species-level means and 95% CIs are overlaid on the 95% CI’s of site-level monthly weights (wl,m,st,v) for aspen (green shading), piñon (gray shading)
and juniper (brown shading). Vertical gray lines separate calendar years, and lag (months) is defined such that lag = 1 is December of the year of
ring formation and lag = 60 is January 4 years prior to the year of ring formation.

these relationships were also fairly strong (R2 = 0.32–0.64,
Figure S4 available as Supplementary data at Tree Physiology
Online). However, NSC concentrations (again only in twigs)
were also directly related to drought legacies (d∗

yr) when
considered as additional covariates in regressions of the drought

legacies on climate memory length (additive effects), and these
regressions led to fairly high total R2 values. For example, at
aspen sites where trees had higher twig starch concentrations,
trees grew more than expected during the drought year, but had
larger (more negative) drought legacies 2–4 years post-drought

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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Figure 4. Climatic memory is longest in aspen, summarized here as indices of memory length (species mean ± sd) for (a) antecedent precipitation
(pant), (b) antecedent temperature (Tant) and (c) antecedent drought or PDSI (Dant). The color of the bars and lines denote species: Aspen (green),
piñon (black) and juniper (brown). Lowercase letters denote significant differences (P < 0.05, Dunn test following Kruskal-Wallis test) among species
for a particular memory length index (e.g., M50, M75 or M90).

Table 2. Sign (shading) and strength (R2) show opposite influences of memory length (M50, M75 or M90, for M = P for precipitation, T for temperature
and D for drought or PDSI) on drought legacy severity (d∗

201X; predicted – Observed RWI for year 201X = 2013, 2014, 2015 or 2016) in aspen and
piñon; but variation in precipitation memory length is unrelated to variation in drought legacy severity. Range of observed coefficients of determination
(R2) between annual drought legacies (d∗

201X) and memory length indices are reported for each recovery year (2013–2016) and covariate (P,
T, PDSI). Shading indicates sign, where orange (blue) shading denotes negative (positive) correlations among memory length (P50, . . . , D90) and
drought legacy magnitude. For example, because drought legacies are negative, here, negative (positive) correlations indicate more severe (less
severe) drought legacies with longer climate memory

(Figure 5c). In piñon, higher twig sugars were associated with
larger (more negative) drought legacies during the year after
drought (Figure 5d).

Discussion

Using ecologically sampled tree-ring data for three species
across 22 sites in the southwestern USA, we quantify site and
species variation in the memory length of tree growth responses
to climate (Figure 3). We show that site-to-site variation in
memory and legacies of the 2011–2012 drought were each
strongly related to 2016 NSC concentrations (Figure 5), despite
that these do not represent the amount of NSCs available to
trees during the actual drought event or subsequent recovery
(discussed below). Complex variation across individuals and

populations in the climate sensitivity of tree growth is ubiquitous
(e.g., Pederson et al. 2020), but it is uncommon to quantify
variation among populations in the temporal lags of the growth
responses to climate, that is, variation in the temporal pattern
(Figure 3) and length (Figure 4) of memory (Ogle et al. 2015).
While patterns emerging at the species level (across all sites)
match expectations of tree growth responses to climate, we also
found evidence for large among-site variability (Figure 3). For
example, patterns in precipitation memory in piñon and juniper
align with those reported in dendrochronological studies and
datasets (e.g., Fritts et al. 1965, Peltier et al. 2018), reveal-
ing a strong response to prior winter precipitation (Figure 3).
However, it is also clear that individual piñon sites may sup-
port relatively higher or lower (close to zero) importance of
winter precipitation conditions (Figure 3). That we did not see

Tree Physiology Volume 00, 2021
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Figure 5. Variation in memory length and drought legacies across sites are related to NSC concentrations in aspen (green colors; a, c) and piñon
(black colors; b, d). PDSI memory length (e.g., M50 = triangles, M75 = squares and M90 = circles) is related to sugar concentrations in (a) aspen
twigs and (b) piñon leaves, but the sign differs (implicit effects) such that memory decreases with increasing sugars in aspen, but the opposite
relationship occurs for piñon. After accounting for the effect of (c) PDSI memory length in aspen or (d) temperature memory length in piñon on the
legacy effects of recent droughts, NSC concentrations explain additional variation in drought legacies (additive effects). Solid lines signify significant
linear regressions (P < 0.05) and dashed lines indicate marginal relationships (0.05 < P < 0.1). In (c, d), R2 of both the residual regressions (after
accounting for memory length) and total regressions (including memory length) are reported.

similar variation is juniper is likely because we were only able
to accurately crossdate sites (n = 4 sites) that had similar
climate sensitivity to co-occurring piñon (Table 1). Because we
attempted to select representative trees at each site and did
not limit our selection to very old, isolated individuals, these
results may reflect this more ‘ecological’ tree-ring sampling
strategy (Nehrbass-Ahles et al. 2014). We found no evidence
for systematic spatial variability in either climate sensitivity or
memory, perhaps due to the complex climatological controls on
moisture and heat stress in the southwestern USA (Douglas et
al. 1993, Szejner et al. 2016).

Implications of variation in memory across species

Clear differences in the climate memory of tree growth across
species did emerge, which may be related to broad differences
in NSC storage between gymnosperms and angiosperms
(Hoch et al. 2003). The precipitation and PDSI memories
were longer in aspen compared to the two conifer species,
while temperature memory was more similar across species
(Figure 4a-c). Some portion of the climate memory of growth
is likely driven by multi-year storage and remobilization of NSCs
(Kozlowski 1992, Carbone et al. 2013, Ogle et al. 2015), and
because angiosperms tend to have higher NSC concentrations

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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in many tissues, particularly wood (Hoch et al. 2003), this
could underlie comparatively longer memory of moisture-related
climate conditions in aspen. In general, climatic memory may
have been influenced by NSC storage across seasons, years
and decades, but also likely snowmelt dynamics, particularly in
the southern Rockies in the western USA (Truettner et al. 2018,
Love et al. 2019). Though, repeated cavitation of the stem
xylem and carbon allocation dynamics also probably induce
lagged growth responses to climate (Trugman et al. 2018,
Kannenberg et al. 2019). The temporal patterns in memory
observed for piñon and juniper are well documented (Peltier et
al. 2018) and consistent with a deep body of dendrochronology
literature in the southwestern USA (Fritts 1976). In contrast, the
climate sensitivity and memory of aspen is comparatively poorly
quantified, though recent work has shown aspen growth to be
limited under warm and dry conditions (Ireland et al. 2020).
Longer precipitation memory in aspen could emerge from more
mesic climate conditions experienced in mixed conifer forests
where these trees occur, or relatively greater NSC concentrations
(Peltier et al. 2020). Aspen trees in this study were also
less sensitive to precipitation on average compared to piñon
and juniper (Figure 2a), and were perhaps buffered by more
mesic conditions, or hillslope hydrology leading to multi-year
soil moisture storage (Rempe and Dietrich 2018, Love et al.
2019).

Long climate memory does not necessarily confer drought
resilience

Across species, climatic memory could confer some benefits to
trees: by integrating climate responses across multiple seasons
and years, memory allows trees to grow in response to reduced
‘perceived’ variation in climatic conditions (Figure S5 available
as Supplementary data at Tree Physiology Online). That is,
trees with longer memory might be less impacted by transient
droughts because growth is driven by precipitation condi-
tions experienced over multiple years. While this expectation—
greater drought resilience in trees with longer climate memory—
seems supported in piñon, relationships among memory and
drought legacies in aspen suggest long memory of temperature
can instead negatively impact post-drought growth (Table 2).
Notable for both species was the absence of correlations
between drought legacies and precipitation memory indices.
Temperature memory best explained variation in drought lega-
cies across our study sites, consistent with a major role of
heat stress via VPD in contemporary drought in the western
USA. That is, while recent (post-2000) conditions may not be
exceptionally dry compared to paleo-climate records, they are
very clearly exceptionally warm (Williams et al. 2013, 2020,
Cook et al. 2014; Figure 1d), and this additional VPD stress
may drive additional stomatal limitations. Here, the length of
temperature memory in piñon was associated with relatively

lower post-drought impacts (less negative legacies; Table 2).
However, the opposite was true for aspen, where growth at
sites with longer temperature memory tended to be more over-
predicted by the model following the 2011–2012 drought
(Table 2). In piñon, these results suggest simply that sites
with longer temperature memory are buffered from transient
temperature extremes that often coincide with drought events.

In contrast, the relationship quantified for aspen could suggest
lasting negative impacts of warmer conditions at sites where
trees have longer memory of temperature conditions, perhaps
related to lasting hydraulic damage. Aspen occurs in higher
elevation, more mesic forests, and there is evidence that aspen
is poorly adapted to regulate water loss during recent drought
events (Anderegg et al. 2012). While there is some evidence for
the ability to repair embolism in this species (Love and Sperry
2018), complete recovery of hydraulic function is unlikely
given evidence of widespread cavitation fatigue and multi-
year hydraulic deterioration (Anderegg et al. 2013, 2014).
Additionally, drought may also deplete NSC reserves and deep
soil moisture resources, and may exacerbate existing nega-
tive impacts of pre-existing insect pests or fungal pathogens
(Manion 1991, Voelker et al. 2008). Larger prediction errors
(i.e., more negative drought legacies, d∗

yr) following the 2011–
2012 drought at aspen sites with long temperature memory
could also suggest that rather than precipitation, temperature
conditions (or temperature controls on precipitation response,
via PDSI) tend to govern recovery from drought in this species. In
a global synthesis of carbon flux data, post-drought temperature
extremes were found to be more influential than low precip-
itation in modulating post-drought recovery (Schwalm et al.
2017).

Legacy-NSC relationships reflect multiple functions of NSC

While some studies have explored drought recovery in pot
experiments or lysimeters with seedlings or saplings (O’Brien et
al. 2014, Hagedorn et al. 2016, Sapes et al. 2019, Kannenberg
and Phillips 2020), this is the first study to explore the relation-
ships between the temporal characteristics of tree growth and
drought recovery with variation in snapshot measurements of
NSC concentrations in mature trees. NSC concentrations were
measured in 2016, so relationships among these ‘snapshot’
physiological measurements and indices of climatic memory and
multi-year drought legacies may seem surprising (Figure 5). In
this study, we consider the relevant variability in NSC concen-
trations here to indicate broad differences in carbon allocation
strategies (perhaps genetically driven [Blonder et al. 2020,
Godfrey et al. 2020, Blumstein and Hopkins 2021], mean
climate conditions (as they influence carbohydrate supply or
sink strength, e.g., growth, but also osmoregulation (Piper et al.
2017)), or maximum NSC storage capacity (Hoch et al. 2003)
across sites. Differences in storage capacity may themselves
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covary with climate, driven perhaps by wood anatomical features
and investments in structural vs. storage tissues. While some
proportion of the variability in NSC’s likely reflects recent climate
conditions (including the preceding drought event Peltier et al.
2020), short-term variability is of course unrelated to quantities
describing tree growth over years to decades (i.e., drought
legacies and climatic memory).

This may be why significant relationships between memory
or legacies and NSC were nearly exclusively related to NSC
pools in twigs (rather than leaves; Figure 5). Leaf NSC pools
are more likely to reflect short-term (fast) fluctuations in carbon
supply following recent moisture and temperature conditions.
Using similar logic, one might expect to find primarily rela-
tionships with starch pools, as sugar concentrations have in
the past been conceptualized to reflect ‘fast’ dynamics (Dietze
et al. 2014). However, we found significant relationships with
sugar and starch concentrations, pointing towards regulation of
osmotic potentials as a key functional role of sugars (Guo et al.
2020), or at least a pool of carbohydrates that is significantly
modulated by climate conditions. That this was related to climate
variation suggests trees are locally adapted to their climate via
osmoregulatory mechanisms, where trees at lower elevations
or hotter, drier sites may store more sugars in twig tissues
(Lintunen et al. 2016, Piper et al. 2017, Godfrey et al. 2020).
In the southwestern USA, perhaps due to the influence of the
North American Monsoon, we did not find clear patterns in NSC
pool sizes across elevations or sites that were clearly related to
climate (results not shown).

Conclusion

Strong relationships between growth and NSC concentrations
suggests that differences in tree carbon allocation are broadly
detectable across sites, and that carbon allocation priorities
(such as growth, respiration, osmoregulation or starch storage
in twigs) can influence tree-ring width responses to climate
across long time scales. We argue that climatic memory of
tree growth is a critical property of the tree growth response
to climate across species (Peltier et al. 2018), where for
example, accounting for memory can influence predictions of
drought recovery (Peltier and Ogle 2019a, 2019b). Here, after
accounting for climate memory, much of the site variation in
post-drought prediction error can be explained by variation
in memory length and NSC concentrations. Future work to
improve our understanding of the mechanistic links between
physiological traits and the temporal characteristics of tree
growth should focus on generating physiological time series
over multiple years, particularly focused on climate extremes.
These types of datasets will improve our understanding of the
physiological processes driving the memory of tree growth and
the legacy effects of extreme climate events such as severe
droughts.
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