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Abstract

A key component in understanding plant-insect interactions is the nature of host defenses.
Research on defense traits among Pinus species has focused on specialized metabolites
and axial resin ducts, but the role of lignin in defense within diverse systems is unclear. We
investigated lignin levels in the outer bark and phloem of P. longaeva, P. balfouriana, and P.
flexilis; tree species growing at high elevations in the western United States known to differ
in susceptibility to mountain pine beetle (Dendroctonus ponderosae; MPB). Pinus longaeva
and P. balfouriana are attacked by MPB less frequently than P. flexilis, and MPB brood pro-
duction in P. longaeva s limited. Because greater lignification of feeding tissues has been
shown to provide defense against bark beetles in related genera, such as Picea, we hypoth-
esized that P. longaeva and P. balfouriana would have greater lignin concentrations than P.
flexilis. Contrary to expectations, we found that the more MPB-susceptible P. flexilis had
greater phloem lignin levels than the less susceptible P. longaeva and P. balfouriana. No dif-
ferences in outer bark lignin levels among the species were found. We conclude that lignifi-
cation in Pinus phloem and outer bark is likely not adaptive as a physical defense against
MPB.

Introduction

Bark beetles (Coleoptera: Curculionidae, Scolytinae) are forest disturbance agents globally and
include many tree-killing species [1]. Overcoming tree defenses is a central challenge for bark
beetles which feed on living phloem and requires the destruction of tree vascular tissue for oft-
spring survival. Tree defenses provide protection against insect attack, thereby maintaining
the functional integrity of two subcortical high-fitness-value tissue types: phloem, which is
responsible for transport and distribution of photosynthate produced in leaves and needles;
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and xylem, which provides structural support and functions in translocation of water and dis-
solved minerals from roots to the rest of the tree. Both tissue types are involved in the produc-
tion and/or storage of defensive structures and compounds, and thus play a crucial role in
defense against bark beetles [2,3] and their fungal mutualists [4-6].

The mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins, Coleoptera: Curcu-
lionidae, Scolytinae) is an ecologically and economically significant bark beetle with an exten-
sive distribution across western North America [7,8]. While the majority of Pinus species are
considered MPB hosts [9], successful MPB attacks on P. longaeva (Great Basin bristlecone
pine) and P. balfouriana (foxtail pine) are rare [10], relative to the commonly attacked P. flexi-
lis (limber pine) [11-13]. In addition, MPB displays aversion to P. longaeva in both field [14]
and laboratory settings [15], and extremely few MPB offspring emerge from manually infested
P. longaeva relative to P. flexilis [16]. P. longaeva and P. balfouriana also have dense sapwood
and heartwood and possess high concentrations of constitutive specialized metabolite defense
compounds relative to co-occurring P. flexilis [10].

Specialized metabolites as well as anatomical structures are fundamental in conifer defense.
They can be expressed constitutively or upregulated upon attack as needed to maximize the
economy of available resources [17-20]. Variation among and within conifer species in chemi-
cal [10,21,22] and anatomical defenses [23,24] is well known and hypothesized to reflect resis-
tance to multiple bark beetle species [25,26]. Specialized metabolites include low molecular
weight (LMW) compounds (e.g., terpenes and their derivatives, phenolics) that can be toxic to
attacking bark beetle adults [27-29] and their eggs and larvae [30], and inhibit the propagation
of fungal symbionts [31]. Anatomical defenses are structural elements (e.g., resin ducts, ligni-
fied stone cells) that can deter invading insects by providing physical and chemical barriers to
nutrient-rich tissues [20,32,33].

Lignin, a fundamental plant structural element, is the second most naturally abundant bio-
polymer in plant cell walls, after cellulose [34,35]. Lignin is deposited in the secondary cell wall
of all vascular plants [36,37] where it provides rigidity for structural stability and impermeabil-
ity for more efficient water transport [38], as well as structural resilience against abiotic stress-
ors [39-42]. Lignin also plays a role in tree defense, where it can increase resistance to
degradation by microorganisms [43-45], and provide protection against pathogenic fungi
[46,47] and bacteria [48]. Cell wall lignification also confers tree resistance against herbivory
in the form of sublethal chemical defenses (i.e., antifeedant or antinutritional) [49,50] and
direct physical defenses [51].

In the family Pinaceae, sclerenchyma cells of the phloem occur as large stone cells that are
primarily comprised of lignin [32,52,53]. Increased stone cell frequencies within the phloem of
Sitka spruce (Picea sitchensis Bongard) were associated with decreased spruce weevil (Pissodes
strobi Peck) growth rate, survival, and fecundity, and disruption of larval establishment [53-
56]. Decreased growth rate and survival of great spruce bark beetle (Dendroctonus micans
Kugelann) larvae were also associated with increased lignin concentrations [32,57] and natu-
rally occurring compounds originating from lignin were found to have antifeedant effects on
the large pine weevil, Hylobius abietis (L.) [58]. Moreover, lignin synthase genes were found to
be more prevalent in spruce that were -resistant to P. strobi [53]. Because lignified tissue is dif-
ficult to chew and digest [32,53,59] it can reduce nutritional quality and nutrient bioavailability
[51,60,61] by preventing adequate feeding and increasing mandibular wear [32].

The genus Pinus, specifically, is known to have evolved various defensive strategies against
phloem-feeding insects, such as specialized metabolites [62-64] and resin ducts [20,65,66],
both of which show high variability within and among Pinus species [67,68]. Little is known,
however, of the role of lignin as a constitutive defensive mechanism against bark beetle attacks
in tree species growing at high elevations in the western United States that are at increasing
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risk due to climate change. We attempted to fill this gap by quantifying lignin in the outer bark
(i.e., rhytidome) and phloem of co-occurring P. longaeva, P. balfouriana and P. flexilis from
multiple sites and compared lignin concentrations within and among species and between the
two tissue types. We hypothesized that the more MPB-resistant P. longaeva and P. balfouriana
would have greater lignin concentrations than co-occurring P. flexilis.

Methods

Study locations and tree sampling

Between June and September 2016, trees were sampled at five sites across the ranges of P. long-
aeva and P. balfouriana, four of them in stands with co-occurring P. flexilis (Fig 1; Table 1).
Four of the five sites were also sampled by Bentz et al. (2017) [10], allowing a comparison with
results from that study. Equal numbers of P. longaeva and P. flexilis trees were sampled at three
geographically separated locations, and equal numbers of P. balfouriana and P. flexilis were
sampled at the Sierra Nevada site. At the Klamath site P. flexilis was not present, and only P.
balfouriana was sampled. At each site 15 live trees of each species were sampled, and diameter
at breast height (DBH, ~ 1.5 m above ground) ranged from 30-46 cm. Study sites without
signs of MPB or pathogen activity were chosen to avoid an influence of induced defenses. Per-
mission for sampling was obtained through the Inyo, Klamath, Sierra Nevada and Humboldt-
Toiyabe National Forests.

To assess lignin levels (mg/g fresh weight) in outer bark and phloem, trees were sampled by
boring into the tree at breast height with a 1” diameter circular hole saw (Milwaukee™). Four
samples were taken on the north, south, west, and east aspects of the tree trunk and pooled to
account for potential within-tree variation. Upon tissue removal, phloem thickness (mm) was
measured from the north and south aspect samples. Outer bark and phloem tissues were then
separated and placed immediately in a sealed vial in a cooler with dry ice for transport to the
Rocky Mountain Research Station (Logan, UT) for cold storage (-40°C).
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Fig 1. Distributions of Great Basin bristlecone pine (Pinus longaeva), foxtail pine (P. balfouriana), and limber
pine (P. flexilis), and sample site locations (see Table 1). Pine distributions are based on Little (1971) [69].

https://doi.org/10.1371/journal.pone.0250395.g001
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Table 1. Site locations (see Fig 1) and stand metrics including species sampled, number of phloem and bark samples analyzed, and mean + standard error of DBH

(diameter breast height).

Site Pinus species Latitude | Longitude | Elevation (m) | Number of samples (phloem/bark) | DBH (cm)

Klamath Mountains, CA, USA P. balfouriana---------- 41.21700 | -122.79700 1965 15/14 36.9+1.13
Snake Range, NV, USA P. longaeva 39.28849 | -114.20270 3048 15/13 40.7 £ 0.81
P. flexilis 15/10 379+ 1.02

Ruby Mountains, NV, USA P. longaeva 40.19808 | -115.55583 2932 15/8 40.5+1.01
P. flexilis 15/13 38.9+0.82

Sierra Nevada Mountains, CA, USA | P. balfouriana 36.49560 -118.17834 3046 14/12 37.7+1.24
P. flexilis 15/15 378+ 1.26

White Mountains, CA, USA p. longaeva 37.39338 -118.19019 3127 14/13 38.5+1.15
P. flexilis 14/5 37.8+0.93

https://doi.org/10.1371/journal.pone.0250395.t001

Lignin extraction

In the laboratory experiments, outer bark and phloem samples were prepared for lignin extrac-
tion using a ceramic mortar and pestle to grind tissue samples in liquid nitrogen. Tissues were
ground to a fine powder and placed in vials for lignin extraction. The mortar and pestle were
cleaned with 95% ethanol between each tissue sample. Lignin was extracted from the outer
bark and phloem tissues using thioglycolic acid digestion in a modification of the method of
Bruce and West (1989) [70], as described by Bonello et al. (1993) [71]. Spectral absorbance of
phloem lignin samples (n = 135) was measured at 280 nm using a NanoDrop™ 3300 Fluoros-
pectrometer (Thermofisher Scientific) with a 1:4 dilution in NaOH against a standard curve of
pure spruce lignin (Sigma-Aldrich) at 0, 18, 45, 90, and 360 micrograms/mL. The spectral
absorbance of outer bark lignin (n = 103) was measured under the same parameters using 1:64
dilution. All phloem samples were assessed as pure and free from contamination, although
thirty-two outer bark samples were removed from analysis due to residual phenolic compound
contamination (S1 Fig). In addition, three outliers, consisting of a single phloem sample from
each species (2% of total samples), exhibited lignin concentration > 6-fold the standard devia-
tion for each species. As the outer bark contained remarkably higher lignin concentrations
than the phloem, we removed these three outliers out of caution for potential tissue contami-
nation. Adjusted sample sizes for outer bark and phloem samples are shown in Table 1.

Statistical analysis

Differences among tree species in phloem and outer bark lignin concentrations, phloem thick-
ness, and DBH were assessed with a hierarchical mixed effect analysis of variance (ANOVA),
that accounts for variation among sites, using the package “lme4” [72] in R version 4.0.0 [73].
Multiple comparisons among sites were assessed using the package “multcomp” [74]. Linear
regression (package “lme4”) was used to assess the relationships between phloem and outer
bark lignin concentrations, phloem lignin concentration and phloem thickness, DBH and
phloem thickness, DBH and phloem lignin concentration, and DBH and outer bark lignin
concentration.

Results

Phloem lignin concentrations did not differ between P. longaeva and P. balfouriana, but, con-
trary to our hypotheses, P. flexilis had significantly higher (~2-fold) phloem lignin concentra-
tions than the other two species (Fig 2; Table 2). We found no differences among the species in
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Fig 2. Phloem and bark lignin concentratons (+ standard error) in P. longaeva, P. balfouriana, and P. flexilis
averaged across all sites. Different letters (i.e., a,b) denote statistically significant differences among species means
(p < 0.05). See Table 2 for statistics.

https://doi.org/10.1371/journal.pone.0250395.9002

outer bark lignin concentrations (Fig 2; Table 2). P. flexilis had thinner phloem than both P.
longaeva and P. balfouriana, but there were no differences in phloem thickness between P.
longaeva and P. balfouriana (Fig 3; Table 2). P. flexilis trees with thicker phloem tended to
have lower phloem lignin levels, but we found no relationship between phloem thickness and
phloem lignin levels in P. longaeva or P. balfouriana (Table 3). We also found no relationship
between phloem thickness and outer bark lignin levels in any species (Table 3). P. flexilis and
P. balfouriana were generally smaller than P. longaeva (Table 2), although DBH had no effect
on phloem or lignin concentrations in any of the species (Table 3). There was also no signifi-
cant relationship between phloem and outer bark lignin concentrations among trees, although
P. balfouriana with more phloem lignin tended to have less outer bark lignin (Table 3). There
were no significant differences among the sites in phloem lignin concentration for any species
(P. flexilis: p > 0.238; P. longaeva: p > 0.095; P. balfouriana: p = 0.101), although P. flexilis
outer bark lignin concentration differed at two sites (S1 Table).

Discussion
Contrary to our expectations, P. flexilis exhibited the highest levels of constitutive phloem lig-

nin relative to co-occurring P. longaeva and P. balfouriana although there were no differences

Table 2. Model estimates testing for species differences in diameter at breast height (DBH; cm), phloem thickness (mm), and phloem and bark lignin concentra-
tions (mg/g FW) among P. flexilis, P. balfouriana, and P. longaeva.

DBH Phloem thickness Phloem lignin Bark lignin
Est. (95%CI) P Est. (95%CI) P Est. (95%CI) p Est. (95%CI) P
P. flexilis vs P. balfouriana 0.71 (-1.76, 3.19) 0.780 -1.83 (-2.73, -0.03) <0.0001 0.91 (0.47, 1.33) <0.0001 | 3.04 (-4.91,11.0) 0.641
P. flexilis vs P. longaeva -2.19 (-4.40, 0.01) 0.052 -2.27 (-2.89, -1.65) <0.0001 1.03 (0.75, 1.32) <0.0001 | -1.54(-7.58,4.51) 0.821
P. balfouriana vs P. longaeva -2.91 (-5.38, -0.43) 0.016 -0.44 (-1.48, 0.61) 0.584 0.13 (-0.36, 0.62) 0.744 -4.57 (-13.5, 4.32) 0.448

Effect size (Est.) and 95% confidence interval (95%CI) estimates between comparison samples are shown. P-values (p) describe the likelihood of statistical difference

with values < 0.05 presented in bold.

https://doi.org/10.1371/journal.pone.0250395.t002
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Fig 3. Phloem thickness (+ standard error) in P. longaeva, P. balfouriana, and P. flexilis, averaged across all sites
(see Fig 1; Table 1). Different letters (i.e., a,b) denote statistically significant differences among species means
(p < 0.05). See Table 2 for statistics.

https://doi.org/10.1371/journal.pone.0250395.g003

among the species in outer bark lignin. We also found no consistent relationship between
phloem and outer bark lignin concentrations at the tree species level. Because P. flexilis is con-
sidered more susceptible to MPB and produces greater numbers of offspring than P. longaeva
and P. balfouriana, our results suggest that in these species constitutive lignin may not func-
tion as a direct defense against MPB attack or brood production. Our findings are similar to
previous studies that showed phloem lignification did not differ among ash species (Fraxinus
spp.) with varying resistance to the phloephagous emerald ash borer (Agrilus planipennis Fair.)
[75,76]. Although constitutive phloem lignin, as measured in our study, may not provide a sig-
nificant defense, methyl jasmonate-induced lignification of F. americana and F. pennsylvanica
phloem/outer bark was associated with resistance to the emerald ash borer [77]. The potential

Table 3. Modeled linear regression coefficients (i.e., slope) testing for the relationship between phloem thickness (mm) and DBH (diameter at breast height, cm),

phloem thickness and phloem lignin concentrations (mg/g FW), phloem lignin concentrations and DBH, bark lignin concentrations and DBH, and phloem and
bark thickness within P. flexilis, P. balfouriana, and P. longaeva across sites.

Phloem thickness x DBH | Phloem thickness xPhloem | Phloem lignin conc. x Bark lignin conc. x DBH | Phloem lignin conc. x Bark

lignin conc. DBH lignin conc.
Est. (95% CI) p Est. (95% CI) P Est. (95% CI) p Est. (95% CI) P Est. (95% CI) p
P. flexilis 0.14 (-0.02,0.31) | 0.097 | -0.35(-0.65,-0.03) | 0.037 |-0.03(-0.10,0.03) |0.310 |0.14(-0.95,0.74) |0.739 | 0.02 (-0.01,0.04) | 0.201
P. balfouriana | 0.03 (-0.23, 0.31) 0.812 | -0.32(-2.38,2.03) 0.772 | -0.01 (-0.03, 0.02) | 0.493 |-0.24 (-1.06,0.57) |0.565 | -0.01(-0.02,-0.00) |0.055
P. longaeva -0.10 (-0.37,0.15) | 0.448 |-0.11(-1.18, 0.88) 0.826 | 0.01 (-0.02, 0.05) 0.403 | 0.15(-0.84, 1.18) 0.765 | -0.00 (-0.01, 0.01) 0.892

Effect size (Est.) and 95% confidence interval (95% CI) estimates between comparison samples are shown. P-values (p) presented describe the likelihood of statistical
difference with values < 0.05 presented in bold.

https://doi.org/10.1371/journal.pone.0250395.t003
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for induced lignification to act as an active defense in the Pinus species we sampled has not
been investigated and should be part of future studies.

Pinus flexilis has consistently been found to have less constitutive and induced LMW spe-
cialized metabolites (i.e., terpenes and their derivations) than other species, including P. long-
aeva and P. balfouriana at the sites sampled for this study [10], P. contorta and P. ponderosa
[78], and the closely related bristlecone species P. aristata (Soderberg et al. in review).
Although interspecific differences in selective pressure may have led to differences in invest-
ment in phloem specialized metabolite defenses [10,79,80], our findings suggest an inverse
relationship between lignification and phloem chemical defenses that are known to provide
defense against bark beetles [26,31]. In our study, P. flexilis had thinner phloem, but greater
lignin concentrations and absolute abundance than P. longaeva and P. balfouriana, the latter
two having thicker phloem. Moreover, P. flexilis with the thickest phloem had the lowest lignin
concentrations, further suggesting a negative relationship between phloem thickness and ligni-
fication. That outer bark lignin concentrations did not differ among the tree species but
phloem concentrations did, suggest that lignification within the phloem may be under differ-
ent selective pressures relative to outer bark. Trait associations and underlying mechanisms
facilitating phloem lignification may be unique to the functions of nutrient transport or
defense against invading bacteria or pathogens [81].

In summary, if defense against bark beetle attack were a strong selective driver for higher ligni-
fication in Pinus, higher lignin levels would be expected within both outer bark and phloem tis-
sues of species considered less susceptible to MPB. This expectation is supported by prior
research in Picea that was focused on species that are generally not considered primary mortality
agents of mature trees, including Pissodes larva that feed in terminal buds [53-56,69], H. abietis
that girdle seedlings [58], and the base-feeding D. micans [32,57]. MPB is a bole feeder that often
kills mature trees. Our results showing that the more frequently MPB-attacked P. flexilis had
greater phloem lignin concentrations relative to the less MPB-susceptible P. longaeva and P. bal-

fouriana suggest that the defensive function of lignin may be dependent on the plant tissue con-
sumed and aggressiveness of the insect. We also found that the species with the greatest
constitutive phloem lignin concentrations, P. flexilis, was previously found to produce lower levels
of constitutive LMW specialized metabolites than the other two species. While increased tissue
lignification may have an additive effect with specialized metabolites on host defenses against
MPB, there may be metabolic tradeoffs that are not accounted for between LMW specialized
metabolites and lignin. Therefore, greater lignification within feeding tissues does not appear to
be generally adaptive as a defense against MPB. Moreover, interspecific differences in phloem but
not outer bark lignin concentrations highlight that the benefits and costs of lignification in Pinus
are likely specific to phloem tissue. High elevation Pinus species are increasingly threatened by
MPB as a result of warming temperatures. Our results enhance the important knowledge base of
defense strategies employed by MPB-susceptible high elevation Pinus.

Supporting information

S1 Fig. Lignin extracts of phloem and outer bark samples. All phloem samples were clear
and colorless and therefore assumed pure (left vial). Outer bark samples were assumed to be
pure when clear and colorless to light pink (right vial), but incompletely digested and/or con-
taminated when dark red (middle vial).

(JPG)

S1 Table. Model estimates testing for differences in phloem and bark lignin concentrations
(mg/g FW) among sample sites of P. flexilis, P. longaeva, and P. balfouriana (see Table 1,
Fig 1). Effect size (Est.) and 95% confidence interval (95% CI) estimates between comparison
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samples are shown. P-values (p) presented describe the likelihood of statistical difference with
values < 0.05 presented in bold.
(DOCX)
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