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Methods We used a predictive map of existing for-
est types (major tree species dominating forest com-
position) and a trait-based map of fire resistance. We 
examined large-scale spatial patterns of fire severity 
derived from Landsat imagery in 611 wildfires across 
the range of western larch in the Inland Northwest 
USA (1985–2014). We then applied structural equa-
tion modeling to study complex relationships between 
fire resistance and high-severity fire in each wildfire.
Results Forest types dominated by fire-resister spe-
cies (e.g., ponderosa pine) experienced lower fire 
severity than forest types dominated by non-resister 
species such as lodgepole pine (fire-embracer) and 
subalpine fir (fire-avoider). We found a strong nega-
tive correlation between the fire resistance index and 
average values of the relative differenced normalized 
burn ratio, as well as an indirect relationship between 
fire resistance and high-severity patch size.
Conclusions The large-scale differences in fire 
severity among forest types generally reflect the 
degree of fire resistance that fire-related traits confer 
to individual trees species, providing evidence that 
incorporating plant traits has the potential to assist in 
assessing fire resistance at large spatial scales.

Keywords Fire severity · Fire regime · Mixed-
severity fire · Bark thickness · Patch size · Remote 
sensing

Abstract 
Context Several plant traits are associated with 
resistance to fire, thus fire-resistant species may give 
rise to more fire-resistant landscapes. However, up-
scaling from plant traits to landscape- and regional-
scale fire effects remains a challenge.
Objectives We test two hypotheses: (1) forests 
composed of fire-resistant species experience lower 
fire severity than forests composed of less fire-resist-
ant species; and (2) wildfires affecting forests with 
greater fire resistance experience smaller patches of 
high-severity fire.
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Introduction

Functional trait biogeography can improve the predic-
tion of fire regimes in fire-prone ecosystems (Stevens 
et al. 2020). Certain plant traits (i.e., characteristics of 
plants and their organs) are associated with resistance 
to fire (Archibald et  al. 2018; Stevens et  al. 2020). 
However, up-scaling (i.e., predicting at larger scales 
with information from finer scales) from plant traits 
to landscape fire effects is challenging (Schwilk 2015; 
Pausas et al. 2017). As a result, research models have 
only recently begun to examine linkages between 
plant traits and fire severity across landscape scales 
(Pellegrini et  al. 2017; Archibald et  al. 2018). Here, 
we examine the influence of tree species composition 
on fire severity in forest ecosystems at broad spatial 
scales.

Tree species can be classified into five strategies 
according to their response to fire: resister, embracer, 
avoider, endurer, and colonizer (Rowe 1983; Agee 
1993; Wirth 2005; Tautenhahn et  al. 2016). Each 
strategy is associated with certain traits that enhance 
fitness (i.e., survival or reproduction success) under a 
given fire regime (Keeley et  al. 2011; Keeley 2012; 
Pausas 2012, 2015b). In brief: (1) resisters survive 
frequent surface fires due to their thick bark, (2) 
embracers suffer crown fires but recover quickly from 
a canopy seed bank, (3) avoiders are easily killed by 
fire but occupy environments where fires are infre-
quent, (4) endurers are able to resprout after fire, and 
(5) colonizers establish on burned areas due to their 
long-distance seed dispersal (Appendix S1).

At individual plant level, fire resistance can be 
characterized by a suite of traits that decrease the 
likelihood of being injured or killed by fire (Stevens 
et al. 2020). Tree mortality is a major component of 
fire severity in forest ecosystems that arises from fire-
caused injury to crown (branches, foliage and buds), 
stem (cambium) and root system (Agee 1993; Hood 
et al. 2018a). Recently, Stevens et al. (2020) created 
a quantitative fire resistance score (FRS) for conifer 
species in the western United States. The FRS ranges 
from zero to one and is based on six traits that con-
fer resistance against surface fires: bark thickness, 
tree height, self-pruning, and three relating to litter 
flammability (Stevens et al. 2020). For instance, bark 
insulates the cambium from heat, where the degree of 
heat insulation by bark is proportional to the square 
of its thickness (Peterson and Ryan 1986; Pausas 

2015a). Likewise, the absence of lower branches 
reduces the risk of crown fires, and thus decreases the 
exposure of foliage and buds to fire damage (Schwilk 
and Ackerly 2001; Keeley 2012; Pausas 2015b). The 
FRS is a standardized index that allows quantifying 
the relative resistance to surface fires of single species 
and forest communities where species distribution 
and abundance data are available.

The presence and dominance of fire-resistant spe-
cies may give rise to more fire-resistant landscapes 
resulting in lower fire severity (Belote et  al. 2015). 
For example, in the boreal forest biome, relative 
abundance of species with different fire strategies 
helps explain differences in fire severity between 
North American and Eurasian forests (Rogers et  al. 
2015). In this study, fire resistance refers exclu-
sively to tree survival from fire (i.e., fire severity), as 
opposed to landscape-scale fire resistance that fre-
quently refers to the capacity to limit fire spread (Fer-
nandes 2013; DeRose and Long 2014). Although fac-
tors such as forest structure, topography, climate and 
weather are strong drivers of fire severity (Parks et al. 
2018), generally we do not know how much variabil-
ity in fire severity at landscape and regional scales 
is due to forest stand composition. Remote sensing 
studies document differences in fire severity patterns 
between potential vegetation zones (i.e., broad zones 
distinguished by the tree species that would dominate 
in late-successional stages; e.g., Miller et  al. 2012; 
Harvey et al. 2016a; Reilly et al. 2017; Haugo et al. 
2019). If current species composition and fire regimes 
are linked in forests of the western USA (Stevens 
et al. 2020), species-driven differences in fire severity 
should also manifest at regional scales from remote 
sensing data, even if species composition is the only 
driver taken into consideration.

Satellite images are essential tools for large-scale 
assessments of fire severity. Landsat Thematic Map-
per/Enhanced Thematic Mapper Plus (TM/ETM+) 
images are an important data source to derive fire 
severity data due to several reasons, such as free 
images dating back to 1984, and the spatio-temporal 
resolution (30 m and 16 days). The differenced nor-
malized burn ratio (dNBR) and its relative version 
(RdNBR) are common Landsat-based indices to 
quantify fire severity (Key 2006; Key and Benson 
2006; Miller and Thode 2007; Parks et  al. 2014). 
Remote sensing indices of fire severity help char-
acterize fire effects when they are calibrated and 



2151Landsc Ecol (2022) 37:2149–2164 

1 3
Vol.: (0123456789)

validated with field measures of fire effects (Wim-
berly and Reilly 2007; Miller et al. 2009; Cansler and 
McKenzie 2012; Kolden et  al. 2015). Furthermore, 
remote sensing data can be classified into fire severity 
classes to derive maps of patches of distinct severity 
and landscape metrics that help explain the patterns 
and drivers of fire severity (Miller et al. 2009; Cansler 
and McKenzie 2012; Harvey et al. 2016a; Reilly et al. 
2017). Advances in both remote sensing and trait 
databases (e.g., FRS) offer the opportunity to study 
the link between fire-resistant traits and fire severity 
at broad spatial scales.

In this study, we apply remote sensing data to 
test the following hypotheses: (1) forests dominated 
by fire-resistant species experience lower fire sever-
ity than forests of species with a lower degree of fire 
resistance; and (2) wildfires affecting forest com-
munities with a higher degree of fire resistance have 
smaller patches of high-severity fire. To do so, we 
selected 611 wildfires from the MTBS database that 
occurred in the Inland Northwest USA for a period 
of 30  years (1985–2014). Using predictive maps of 
existing forest species composition and fire resist-
ance, we examined Landsat-derived metrics of fire 
severity and burned landscape patterns to verify 
whether fire-resistant traits can explain fire severity at 
large spatial scales.

Materials and methods

Study area and species

We tested the research hypotheses in forests of the 
northwestern USA. To delineate the study area, we 
used a species distribution model of western larch 
(Larix occidentalis; Rehfeldt et  al. 2006; Rehfeldt 
and Jaquish 2010), one of the most fire-resistant 
tree species in the region (Table  1; Hood et  al. 
2018b). The distribution of western larch encom-
passes 12,980,388 ha (Fig. 1) and covers much of the 
mountain areas of the Inland Northwest USA region 
defined by Hessburg and Agee (2003). This area 
includes a great deal of variability in climate, topog-
raphy, land use history, and historical fire regimes. 
According to the Fire Regime Groups (FRG) from 
Barrett et  al. (2010), 34% of this area was histori-
cally characterized by low-severity (FRG I), 44% by 
mixed-severity (FRG III), and 18% by high-severity 

(FRG IV) fire regimes. Refer to Hessburg and Agee 
(2003) for a more detailed description of the Inland 
Northwest USA.

Forests in the study area are dominated by a num-
ber of conifer species and forest types in which west-
ern larch occurs (Table S2). Dry forests types include 
those dominated by Douglas-fir (Pseudotsuga men‑
ziesii), ponderosa pine (Pinus ponderosa), and grand 
fir (Abies grandis). Cold forests types include those 
dominated by logdepole pine (Pinus contorta), sub-
alpine fir (Abies lasiocarpa), and Engelmann spruce 
(Picea engelmannii). Other less common forest types 
include those dominated by Pacific silver fir (Abies 
amabilis), mountain hemlock (Tsuga mertensiana), 
western hemlock (Tsuga heterophylla), western red-
cedar (Thuja plicata), and whitebark pine (Pinus 
albicaulis).

A fire strategy (see Table S1) was assigned to each 
species (Table 1). Western larch, ponderosa pine and 
Douglas-fir were classified as resisters; lodgepole 
pine as embracer; Engelmann spruce, subalpine fir, 
grand fir, Pacific silver fir, western hemlock, moun-
tain hemlock and western redcedar as avoiders; and 
whitebark pine as colonizer. Some fire-related traits 
of these species are summarized in Table  1. Other 
relevant traits (not included in Table 1) that increase 
survival from fire, especially after crown fires, are 
protected buds and epicormic resprouting (Pausas 
and Keeley 2017; Hood et  al. 2018a). For instance, 
buds of ponderosa pine are protected by thick, long 
needles (Hood et al. 2018b), and western larch is able 
to resprout from epicormic buds (Arno and Fischer 
1995).

Existing forest type map

We used a national map of existing forest types to 
characterize the forest species composition of the 
area affected by wildfires (Fig.  2B). This dataset 
is a 250-m resolution map of the USA forest types 
generated from MODIS imagery and Forest Inven-
tory and Analysis (FIA) plot data (Ruefenacht et al. 
2008). Forest types are assigned to FIA plots using 
a decision tree based on the relative stocking val-
ues of tree species in the plot, which are primarily 
a function of basal area (Arner et  al. 2003; Cos-
tanza et al. 2018). To provide additional validation 
for this map, we selected the most abundant forest 
types within the study area (Table 1), and used two 
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field plot datasets: 6068 FIA plots from Montana 
and Idaho, and 39,852 Gradient Nearest Neighbor 
(GNN) plots from Washington and Oregon. The 
overall accuracy was 49.2% for Montana and Idaho 
and 66.2% for Washington and Oregon. See Appen-
dix S2 for more details on the accuracy assessment 
of the forest type map.

Forest types are a discrete classification of forest 
stand composition based on dominant tree species, 
which simplify the species composition on the ground 
where heterogeneous mixtures of species occur. To 
account for this, we used raster maps of estimated 
tree basal area for each of the study species at 250 m 
resolution (Wilson et al. 2013) derived from MODIS 
imagery and FIA field plot data (Wilson et al. 2012). 
Table  S6 includes a summary of the estimated 

species composition of the main forest types within 
the burned areas.

Map of forest community fire resistance

In order to quantify fire resistance at large scales, we 
used a 250-m resolution raster map of forest com-
munity fire resistance (Stevens et al. 2020; Fig. 2A). 
This map was created by multiplying the trait-based 
FRS of 29 individual tree species by its relative abun-
dance (based on estimated relative basal area frac-
tion) to derive a mean community FRS at 250-m 
resolution across the western USA. Community 
FRS ranged from 0.20 to 0.79 in the burned areas of 
this study. Pixels with high community FRS values 
are indicative of forest stands dominated by species 

Table 1  Fire-related characteristics of twelve conifers from the Inland Northwest USA

WL western larch (Larix occidentalis); PP ponderosa pine (Pinus ponderosa); DF Douglas-fir (Pseudotsuga menziesii); LP lodge-
pole pine (Pinus contorta); ES Engelmann spruce (Picea engelmannii); SF subalpine fir (Abies lasiocarpa); GF grand fir (Abies 
grandis); PF Pacific silver fir (Abies amabilis); WH western hemlock (Tsuga heterophylla); MH mountain hemlock (Tsuga mertensi‑
ana); WR western redcedar (Thuja plicata); WP whitebark pine (Pinus albicaulis). A few values not given by the cited sources were 
obtained from the Woody Plant Seed Manual (https:// www. nsl. fs. fed. us/ nsl_ wpsm. html) and the Fire Effects Information System 
(https:// www. feis- crs. org/ feis/)
a Based on: Baker (2009)
b Based on: Flint (1925); Starker (1934); Minore (1979)
c From: Stevens et al. (2020). Fire resistance score (FRS) ranges from 0 to 1
d Based on: Agee (1993)
e Shade tolerance and bark thickness increase from 1 to 5
f Self-pruning height, crown bulk density and rooting depth increase from 1 to 3
g Foliage flammability increases from 1 to 5; these values are indicative given that flammability has three major dimensions related to 
ignitability, flame spread rate, and heat released, which are not necessarily correlated, and thus it is difficult to measure flammability 
as a single fire trait (Pausas et al. 2017)
h R: resister; E: embracer; A: avoider; C: colonizer
i Whitebark pine seeds are dispersed mainly by animals

Characteristic WL PP DF LP ES SF GF PF WH MH WR WP

Serotinya No No No Yes No No No No No No No No
Basal  resproutinga No No No No No No No No No No No No
Seed mass (mg)a 3.2 37.9 19.6 4.8 3.3 13.2 20.0 41.2 1.8 4.0 1.1 175.4i

Shade  tolerancea,e 1 1 2 1 2 5 4 5 5 5 5 1
Mature height (m)a 55 71 40 46 30 34 62 62 77 46 62 33
Bark  thicknessa,e 5 5 5 1 2 1 4 1 3 3 2 1
Self-pruningb,f 3 3 3 2 1 1 1 1 1 1 1 1
Crown  densityb,f 1 2 3 2 3 3 3 3 3 3 3 3
Foliage  flammabilitya,g 3 1 4 2 5 4 3 4 5 3 4 –
Rooting  depthb,f 3 3 3 3 1 1 1 1 1 2 1 3
Fire resistance  scorec 0.61 0.77 0.49 0.39 0.26 0.31 0.42 0.49 0.42 0.32 0.43 0.21
Fire  strategyd,h R R R E A A A A A A A C

https://www.nsl.fs.fed.us/nsl_wpsm.html
https://www.feis-crs.org/feis/
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with fire-resistant traits that increase tree survival 
probability.

Fire severity atlas

We derived fire severity maps from Landsat imagery. 
First, we acquired perimeters (i.e., fire polygons) from 

the Monitoring Trends in Burn Severity (MTBS) 
database for all the fires (> 400  ha) that occurred 
between 1985 and 2014. We selected fires that met 
the following criteria: (1) the fire perimeter was com-
pletely within or intersected partially the boundaries 
of the range of western larch; (2) > 10% of the area 
within the fire perimeter was forest (according to the 

Fig. 1  Distribution of fires 
that fell within the range of 
western larch (Larix occi‑
dentalis) from 1985 to 2014 
(3,553,296 ha distributed 
across 611 fires)

Fig. 2  Example of data 
used and derived in this 
study. A perimeters of 
wildfires and community 
fire resistance score map. 
B existing forest type map: 
WL western larch; DF 
Douglas-fir; LP lodge-
pole pine; ES Engelmann 
spruce; ES-SF Engelmann 
spruce-subalpine fir. C fire 
strategy map and fire sever-
ity patches: low (basal area 
mortality < 20%), moderate 
(20–80%) and high (> 80%)
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forest type map); (3) the fire was not a prescribed fire. 
We retained 611 fires that burned 3,553,296  ha in 
total (Fig. 1).

Through pre-processing, we derived a Landsat 
time series stack. Briefly, all available L1T LEDAPS 
surface reflectance images from June to Septem-
ber for each year between 1984 and 2015 were used 
to derive annual composite images on Google Earth 
Engine. The annual composite images covered the 
area affected by the 611 wildfires and were created 
by selecting clear observations as close to day of 
year 215 as possible. Clouds and cloud shadows were 
identified with CFMask (Foga et al. 2017).

The Landsat data stack was the base to calculate 
the normalized burn ratio (NBR) annually from 1984 
to 2015. NBR is a spectral index that contrasts Land-
sat TM/ETM+ bands four (near infrared [NIR]) and 
seven (shortwave infrared [SWIR]), which respond 
in opposite ways to fire (Key and Benson 2006). For 
each year, we used NBR images from the previous 
year (pre-fire) and images from the year after (post-
fire) to calculate the relative differenced normalized 
burn ratio (RdNBR), a remote sensing index of fire 
severity that quantifies spectral change due to fire 
(Miller and Thode 2007). Formulae of remote sensing 
indices used in this study are included in Appendix 
S3. In short, we derived a Landsat NBR-based stack 
made up of annual RdNBR images from 1985 to 
2014, with a 30-m resolution and an extent that cov-
ered the 611 fires selected. The NBR-based stack was 
clipped to fire polygons according to fire years to cre-
ate the fire severity atlas.

Additionally, we reclassified the RdNBR data 
from the fire severity atlas into fire severity classes 
based on the proportion of basal area killed by fire 
(i.e., RdBA) as follows: low (RdBA < 20%), moder-
ate (RdBA = 20–80%), and high (RdBA > 80%). We 
applied the model of Reilly et  al. (2017; i.e., RdNB
R = 134.87 + 259.38*RdBA + 567.68*RdBA2) to 
define the remote sensing classes of fire severity: 
low (RdNBR < 209), moderate (RdNBR = 209–706), 
and high (RdNBR > 706). We acquired four field 
datasets to perform the accuracy assessment of these 
fire severity classes. These datasets come from stud-
ies published in Harvey (2015), Belote et al. (2015), 
Whittier and Gray (2016), and Reilly et  al. (2017). 
In total, we had 401 field plots with information on 
RdBA, and all plots burned within the period and 
area studied here. RdNBR values were sampled at 

plot locations from the fire severity atlas. The overall 
accuracy of this fire severity classification was 72.6% 
(Appendix S4).

Data analyses

Assessment of fire severity at forest type level

An overview of the methodology is presented in 
Fig. 3. To test the first research hypothesis, we used 
forest types as the unit of analysis. Only data corre-
sponding to the first wildfire within reburned areas 
in the 30-year period were added to the analyses to 
avoid potential effects of successive wildfires on 
severity (Harvey et al. 2016b) and species subsequent 
changes (Shaw et al. 2017). Only forest types with a 
minimum burned area of 5000  ha were included in 
the analyses. We overlaid the forest type map with the 
fire severity atlas and the community FRS map to cal-
culate the following metrics for each forest type: (1) 
mean RdNBR value; (2) proportions of pixels in the 
low (RdNBR < 209), moderate (RdNBR = 209–706) 
and high (RdNBR > 706) severity classes; and (3) 
mean community FRS value. Lastly, we correlated 
mean RdNBR values against both species- and mean 
community-level FRS values (Stevens et al. 2020).

Landscape patterns of high‑severity fire in individual 
fires

Individual fires were used as the unit of analysis to 
test the second research hypothesis. We removed 
some of the initial 611 wildfires from the analyses 
due to different reasons. One fire burned partially in 
Canada and was excluded because we had no forest 
type information in the Canadian side of the border. 
Through manual inspection of individual fires, we 
detected issues associated with the Landsat 7 scan 
line corrector failure in 30 fires. While this affects a 
small amount of the area in the analyses, we excluded 
these fires because the spatial configuration of fire 
severity patches were likely affected. In addition, we 
restricted the analyses to fires with forest cover > 50%. 
In total, we included 545 fires in these analyses.

For each fire, the mean value of the com-
munity FRS was calculated. We reclassified the 
RdNBR images into fire severity classes: low 
(RdNBR < 209), moderate (RdNBR = 209–706) and 
high (RdNBR > 706). A 3 × 3 majority filter was 
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applied to smooth patches by reducing the influence 
of single pixels on severity patches delineation (Har-
vey et  al. 2016a). After reclassification and filter-
ing, a map of fire severity patches was obtained for 
each fire (Fig.  2C). We calculated three metrics for 
each fire: (1) fire size (i.e., total fire extent); (2) pro-
portion of high severity (i.e., proportion of pixels in 
the high severity class); and (3) area-weighted mean 
patch size of high severity using an 8-pixel rule to 
define patches in Fragstats (McGarigal et  al. 2012). 
Area-weighted means weight each patch by its size 
and provide a more landscape-centric representa-
tion than simple means of patch size because a ran-
dom location in a landscape has a greater probability 
to be found at a large patch (McGarigal et  al. 2012; 
Cansler and McKenzie 2014; Harvey et  al. 2016a). 
Fire size and area-weighted mean patch size were 
log10-transformed.

We used structural equation modeling (SEM) 
to investigate multiple relationships between the 
three landscape metrics (fire size, proportion of 
high severity, and area-weighted mean patch size of 
high severity) and fire resistance (mean community 

FRS). We began with the full model proposed by 
Harvey et al. (2016a; Fig. 6 left). We removed sta-
tistically non-significant paths (i.e., linear relation-
ships between variables with p > 0.05) and final 
model selection was based on the Akaike (AIC) 
and Bayesian information criterion (BIC). Model 
parameters were estimated with the maximum like-
lihood method and bootstrapped standard errors 
were used to deal with multivariate non-normal 
distribution (Gana and Broc 2019). SEM was car-
ried out using the function sem from the R package 
lavaan (Rosseel 2012).

To graphically represent non-linear relation-
ships, we conducted beta regressions and gener-
alized additive modeling (GAM) on the predic-
tors and response variables utilized in the SEM. 
Beta regression was used to model the proportion 
of high-severity fire as a function of fire size and 
mean community FRS. A logit link was applied in 
the betareg function from the R package betareg 
(Cribari-Neto and Zeileis 2010). GAM was used to 
model area-weighted mean patch size of high sever-
ity as a function of fire size and proportion of high 

Fig. 3  Workflow to 
derive the results of 
this study. Rectangles 
represent data and ellipses 
represent processes
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severity. A Gaussian error distribution was applied 
in the gam function from the R package mgcv 
(Wood 2011). We check model assumptions (i.e., 
normality, homogeneity and independence) graphi-
cally with Pearson residuals (Zuur et al. 2009). We 
performed all the statistical analyses within the R 
framework (R Core Team 2018). All sources of data 
used in this study are listed in Appendix S5.

Results

Fire severity of forest types

Mean fire severity in forest types dominated by 
resister species (i.e., western larch, ponderosa pine 
and Douglas-fir) was lower than in forest types domi-
nated by other species, including embracers (lodge-
pole pine), colonizers (whitebark pine) and avoiders 
(e.g., Engelmann spruce and subalpine fir), with the 
exception of grand fir (Table  2). Despite classifying 
grand fir as an avoider, severity values in the grand 
fir forest type were at the same level of forest types 

dominated by resister species. The mean community 
FRS of the grand fir forest type was the second high-
est among the forest types, only behind ponderosa 
pine (Table 2). In fact, resister species were estimated 
to be abundant in the grand fir forest type (Table S6).

There were differences in the proportions of fire 
severity classes between forest types of fire-resister 
and non-resister species. “Moderate” was the most 
abundant severity class in forest types of resister spe-
cies and grand fir, whereas in the rest of forest types 
“high” was the dominant severity class (Table  2). 
In forest types of resister species, low- and moder-
ate-severity fire accounted for approximately 75% 
of the burned area. Forest types of resister species 
had less high-severity fire (about 25% of the burned 
area) than the other forest types (except grand fir), in 
which high-severity fire reached more than 40% of 
the burned area. Distributions of RdNBR values of 
the major forest types also show the difference in fire 
severity between these two groups, fire-resisters and 
non-resisters. Forest types of resister species had uni-
modal distributions and peaked between the low and 
moderate classes, while distributions in forest types 

Table 2  Summary of remote sensing measures of fire severity for the main burned forest types and fire strategies

WL western larch; PP ponderosa pine; DF Douglas-fir; LP lodgepole pine; ES Engelmann spruce; ES-SF Engelmann spruce-sub-
alpine fir; SF subalpine fir; GF grand fir; PF Pacific silver fir; MH mountain hemlock; WP whitebark pine. Resisters: WL, PP, DF; 
Embracer: LP; Avoiders: ES, ES-SF, SF, GF, PF, MH; Colonizer: WP
a Proportion of pixels in the low (RdNBR < 209), moderate (RdNBR = 209–706) and high (RdNBR > 709) classes
b Mean FRS are calculated from the forest community FRS map and should not be confused with the FRS values assigned to each 
species in Table 1

Fire Forest Burned Mean Fire severity  classa Meanb

Strategy Type Area (ha) RdNBR Low Moderate High FRS

Resister WL 21,971 491 0.23 0.51 0.27 0.46
PP 382,360 339 0.37 0.46 0.17 0.59
DF 1,056,881 463 0.29 0.45 0.26 0.48
All 1,461,212 431 0.31 0.45 0.24 0.50

Embracer LP 447,873 627 0.21 0.37 0.42 0.40
Avoider ES 27,707 704 0.18 0.32 0.50 0.39

ES-SF 477,868 610 0.23 0.36 0.41 0.36
SF 38,011 640 0.20 0.34 0.45 0.37
GF 144,053 430 0.36 0.40 0.24 0.49
PF 5742 648 0.18 0.36 0.46 0.43
MH 25,272 671 0.17 0.30 0.53 0.39
All 718,653 582 0.25 0.36 0.39 0.41

Colonizer WP 17,048 691 0.19 0.30 0.50 0.32
Non-forest 441,320 180 0.55 0.35 0.10
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of non-resister species were bimodal with one of the 
peaks located in the high severity class or flat-topped 
(Fig. 4).

Species-level FRS and mean RdNBR values of 
forest types were negatively and highly correlated 
(Fig. 5 left). The negative correlation between mean 
community-level FRS and mean RdNBR was even 
higher (Fig. 5 right), and shows how the top-ranking 
forest types in community fire resistance (ponderosa 
pine, grand fir, Douglas-fir and western larch) had the 
lowest fire severity values.

Landscape drivers of high-severity fire

At fire level, we did not find a direct significant rela-
tionship between community FRS and mean patch 
size of high severity, although there was an indirect 
link between both variables through the effect on 
proportion of high-severity fire (Fig.  6 right). Mean 
community FRS was a significant predictor of the 
proportion of high severity (Fig. 6 right). Proportion 
of high-severity fire clearly decreased with increasing 
FRS (Fig. 7b). On the other side, proportion of high-
severity fire was a strong predictor of mean patch 
size of high severity (Fig. 6 right). Figure 7d shows 

Fig. 4  Distributions of RdNBR values of the main burned forest types. Colors indicate fire severity classes: blue (low: 
RdNBR < 209), yellow (moderate: RdNBR = 209–706), red (high: RdNBR > 706)
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that the mean size of high-severity patches tended to 
grow non-linearly with proportion of high severity. 
Finally, the proportion of high-severity fire increased 
with fire size (Fig. 7a), and mean patch size of high 
severity was positively and directly related to fire size 
(Fig. 7c).

Discussion

The results confirm the two hypotheses. First, forest 
types dominated by fire-resistant species experienced 
lower fire severity than non-resister forest types. We 
found a strong negative correlation between the fire 
resistance index developed by Stevens et  al. (2020) 
and Landsat-based average values of the RdNBR. 
Second, burned landscapes with higher degree of 
fire resistance tended to have less high-severity fire, 

Fig. 5  Correlations between FRS and mean RdNBR for the 
main burned forest types. Left: single-species FRS values from 
Stevens et al. (2020) assigned to the reference species of each 
forest type; right: mean FRS values calculated from the map 
of community FRS (Stevens et al. 2020). r: Pearson’s correla-

tion coefficient (in both cases p < 0.01). WL western larch; PP 
ponderosa pine; DF Douglas-fir; LP lodgepole pine; ES Engel-
mann spruce; SF subalpine fir; GF grand fir; PF Pacific silver 
fir; MH mountain hemlock; WP whitebark pine

Fig. 6  Initial conceptual model (left) and final model built 
with SEM (right). Observed variables are represented by rec-
tangles. Single-headed arrows indicate relationships between 
predictors (arrow tail) and response variables (arrow head) 

and are labeled with standardized path coefficients.  R2 refers 
to the proportion of variance in response variables explained 
by predictors. Additional results and measures of model fit are 
reported in Tables S8-S9
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and we detected an indirect relationship between 
high-severity patch size and fire resistance mediated 
by the abundance of area burned at high severity. 
These results suggest that plant traits may be useful 
for anticipating fire effects at regional scales, even 
though the effects of individual fires may be variable 
and difficult to predict by using exclusively species 
composition data.

Hypothesis 1 Fire severity of forest types at regional 
scale

The Landsat-derived metrics showed that fire sever-
ity in forest types dominated by fire-resister species 
(ponderosa pine, western larch and Douglas-fir) was 
lower than in forest types dominated by fire-embracer 
and fire-avoider species (Table 2). These findings sup-
port the hypothesis that forests dominated by species 
with fire-resistant traits undergo less fire-caused mor-
tality. These results are consistent with the patterns 
described by Rogers et  al. (2015) in boreal forests, 
who found that species-level traits explained differ-
ences in fire severity between North American forests 
with a high-severity crown fire regime and Eurasian 
forests with a lower-severity, surface fire regime. Our 
results suggest that a trait-based approach may be 

broadly applicable across a wide range of forest types 
and fire regimes.

Taking into consideration mixed-species com-
position in forest communities, rather than only the 
dominant species of the forest type, improved the 
prediction of regional-scale values of fire severity in 
temperate coniferous forests of the Inland Northwest 
USA (Fig. 5). The grand fir forest type had severity 
values at the same level of forest types dominated by 
fire-resister species despite grand fir was classified as 
a fire-avoider species. To a lesser extent, the western 
larch forest type had severity vales slightly higher 
than anticipated from the high resistance degree of 
western larch at species level. These results may be 
due a mismatch between the level of traits (assigned 
to species) and the level of forest data (assigned to for-
est types). While in some forest types (e.g., ponderosa 
pine, Douglas-fir, lodgepole pine, mountain hemlock) 
the species representing these types are the dominant 
component in terms of basal area, other species, such 
as western larch and grand fir, are less dominant in 
their corresponding forest types (Table  S6), which 
are often collectively referred to as mixed conifer. For 
example, lodgepole pine, Engelmann spruce and sub-
alpine fir are a substantial component of the burned 
western larch forest type, reducing its overall fire 

Fig. 7  Scatterplots and 
regression curves fitted with 
beta regressions (proportion 
of high-severity fire) and 
GAM (area-weighted mean 
patch size of high severity). 
Red dots represent high-
severity fires (i.e., wildfires 
in which high-severity fire 
is the dominant severity 
class), yellow triangles 
moderate-severity fires, and 
blue squares low-severity 
fires. Summaries of the 
models are reported in 
Table S10
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resistance, while Douglas-fir and ponderosa pine are 
abundant species in the grand fir forest type, increas-
ing the overall fire resistance. The estimated relative 
abundance of species at 250-m resolution within for-
est types explains why overall community FRS match 
fire severity better than single-species FRS attributed 
to each forest type. In other words, relative abundance 
of tree species with different fire-related traits largely 
explains the regional-scale differences in fire severity 
among forest types.

The patterns of fire severity found in the grand fir 
forest type are also likely associated to structural and 
composition changes caused by a strong deficit of 
fire. Land use changes in the nineteenth and twenti-
eth centuries, including fire exclusion, livestock graz-
ing and timber harvesting, favored the expansion of 
grand fir in the study area (Hessburg and Agee 2003; 
Merschel et al. 2014; Johnston et al. 2018). In many 
ponderosa pine forests maintained historically by a 
high frequency, low-severity fire regime, the transi-
tion towards denser forests dominated by Douglas-
fir and grand fir would explain why ponderosa pine 
and Douglas-fir still compose a significant proportion 
of basal area in the grand fir forest type, and many 
maintain large, old, fire-resistant ponderosa pine trees 
(Johnston et  al. 2021; Merschel et  al. 2021). There-
fore, the particular structure and composition of these 
“recent” grand fir forests (e.g., Merschel et al. 2014), 
with an important presence of large-diameter trees of 
fire-resistant species, may provide latent fire resist-
ance (Larson et al. 2013).

Species with traits that fall under multiple fire 
strategies are likely beneficial under mixed-severity 
fire regimes (Poulos et  al. 2018). Consequently, fire 
resistance indices and fire severity estimates may 
mismatch for regions and forest types characterized 
by mixed-severity fire regimes (Halofsky et al. 2011; 
Perry et  al. 2011). Western larch is an example of 
how variability in fire-related traits may be beneficial 
under a mixed-severity fire regime. Low- to moder-
ate-severity fire favors western larch, a shade-intoler-
ant species, by thinning out competition, while high-
severity fire creates suitable conditions (i.e., canopy 
gaps and mineral seedbed) for larch regeneration 
(Arno and Fischer 1995; Schmidt and Shearer 1995). 
As in fire-colonizer species, western larch has long-
distance dispersal capacity due to its light, wind-dis-
persed seeds, and generally stand-replacing fire favors 
post-fire regeneration of western larch over other tree 

species (Scher 2002; Harvey et  al. 2016c; Urza and 
Sibold 2017; Hood et al. 2018b).

Hypothesis 2 Spatial patterns of high-severity fire at 
landscape scale

The relationship between fire resistance and severity 
was weaker at the scale of individual fires than at the 
regional scale. Wildfires affecting forest communities 
with higher fire resistance tended to have lower pro-
portions of high-severity fire and smaller high-sever-
ity patches. Nevertheless, the relationship between 
fire resistance and high-severity patch size was not 
direct but mediated by the abundance of stand-replac-
ing fire within the wildfires (Fig. 6).

The strong, positive, non-linear relationship found 
between proportion of high-severity fire and high-
severity patch size supports the understanding that 
high-severity wildfires (i.e., wildfires in which high-
severity fire is the dominant severity class) tend to 
have larger stand-replacing patches by a few orders 
of magnitude than moderate- and low-severity wild-
fires (Agee 1998). To a lesser extent, the size of 
high-severity patches also increased with fire size. 
All these results are consistent with findings of other 
studies in the Inland Northwest USA (Cansler and 
McKenzie 2014; Harvey et  al. 2016c; Reilly et  al. 
2017).

The great variability in both proportion of high-
severity fire and high-severity patch size along the 
gradient of mean community FRS, (1) shows the 
limitations of the fire resistance score when averaged 
over the whole wildfire extent (i.e., burned landscape) 
to predict the spatial configuration of high-severity 
fire, and (2) highlights that large stand-replacing 
patches (> 100  ha) are part of all the contemporary 
fire regimes in the region. Other top-down (e.g., 
weather, climate) and bottom-up factors (e.g., topog-
raphy, fuel) must play an important role driving high-
severity fire (Cansler and McKenzie 2014; Harvey 
et al. 2016a; Reilly et al. 2017; Parks et al. 2018). In 
brief, we should expect a lower predictive capacity of 
fire resistance indices at relatively small scales (e.g., 
forest stand, severity patch, single fire).
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Implications for linking plant traits and large-scale 
fire effects

The FRS index was meant to quantify fire resistance 
of forests to surface fires (Stevens et  al. (2020), but 
may be more broadly applied to other fire regimes. 
However, some aspects may hinder the association 
between trait-based resistance and fire severity. First, 
the community FRS map does not take into consid-
eration tree size or forest structure, but only relative 
species composition. Fire resistance increases with 
age due to increased bark thickness and crown base 
height (Schmidt et  al. 1976), and thus there may be 
differences in fire severity between young (less resist-
ant to fire) and mature stands of fire-resistant species. 
For instance, large grand fir trees can have a relatively 
thick bark (Howard and Aleksoff 2000; Hood et  al. 
2018b). In fact, Flint (1925) highlighted that grand 
fir can have a degree of fire resistance nearly equal 
to Douglas-fir. Similarly, open and heterogeneous 
forest structures of fire-resistant species are likely to 
experience lower fire severity (Johnston et  al. 2021; 
Merschel et  al. 2021; North et  al. 2021). Apply-
ing forest structure spatial data (e.g., based on basal 
area and tree size classes) across broad scales could 
complement the FRS concept (Reilly et  al. 2018). 
Second, it is common to find large variability in fire-
related traits within and among populations of the 
same species (Pausas 2015a, b). Third, some species 
occur across a broad range of environments, and low-
severity fires may be more relevant in warm-dry sites 
than in cool or moist sites (Arno and Fischer 1995; 
Naficy et  al. 2016). Despite the inherent limitations 
of the FRS to predict tree mortality, we found that 
mean community-level FRS was highly correlated 
with mean fire severity at forest type level. This indi-
cates that trait-based indices seem a suitable tool to 
link forest resistance to fire severity at large spatial 
and temporal scales (e.g., from thousands to millions 
of hectares, and from several fire seasons to decades).

Conclusions

This study provides further evidence that fire-
related traits are useful for up-scaling attributes of 

fire regimes such as spatial patterns of fire severity 
(Rogers et  al. 2015; Pellegrini et  al. 2017; Stevens 
et  al. 2020). The correlations found between trait-
based fire resistance and fire severity at regional 
and landscape scales confirm our two hypothesis, 
but also reveals that the strength of the relationship 
is scale-dependent. Satellite-based, large-scale dif-
ferences in fire severity among forest types match 
the degree of fire resistance that fire-related traits 
provide to individual tree species. We interpret this 
finding as an evidence that tree species composi-
tion, as proxy of fire resistance due to the influence 
of plant traits on tree survival from fire, is an impor-
tant driver of fire severity at large spatial scales. 
Therefore, the concept of fire resistance score of 
Stevens et al. (2020) allows models to include data 
on organ- and plant-level traits to predict fire effects 
at broad scales. This is a significant step forward 
in comparison with broad vegetation classes that 
simplify species composition and mask the poten-
tial response to fire. Trait-based fire resistance indi-
ces are a new tool quantifying the relative capacity 
of forest ecosystem to deal with fire disturbances, 
which can potentially help researchers and manag-
ers up-scale pyrosilviculture (North et  al. 2021). 
The same or similar approaches can be used in other 
regions around the globe to study the relationships 
between plant traits and fire regimes at large scales.
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