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Abstract Wildland fuels, defined as the combustible biomass of live and dead vege-
tation, are foundational to fire behavior, ecological effects, and smoke modeling.
Along with weather and topography, the composition, structure and condition of
wildland fuels drive fire spread, consumption, heat release, plume production and
smoke dispersion. To refine inputs to existing and next-generation smoke modeling
tools, improved characterization of the spatial and temporal dynamics of wildland
fuels is necessary. Computational fluid dynamics (CFD) models that resolve fire–
atmosphere interactions offer a promising new approach to smoke prediction. CFD
models rely on three-dimensional (3D) characterization of wildland fuelbeds (trees,
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shrubs, herbs, downedwood and forest floor fuels). Advances in remote sensing tech-
nologies are leading to novel ways to measure wildland fuels and map them at sub-
meter to multi-kilometer scales as inputs to next-generation fire and smoke models.
In this chapter, we review traditional methods to characterize fuel, describe recent
advances in the fields of fuel and consumption science to inform smoke science, and
discuss emerging issues and challenges.

Keywords Fire behavior modeling · Fuel consumption ·Measurement · Remote
sensing · Vegetation dynamics ·Wildland fuels

2.1 Introduction

Fuels, topography, and weather comprise the classic fire behavior triangle (Chap. 3).
Fuels are the only one of the three variables that can be managed to influence fire
behavior before an ignition occurs. In their most basic form, wildland fuels are the
combustible biomass of live and dead vegetation. Because combustion of wildland
fuels generates heat and emits pollutants, fuels science is a critical foundation of fire
behavior and smoke modeling (Anderson 1976; Omi 2015; Keane 2019).

Along with weather and topography, characteristics of fuels that burn in a wild-
land fire event will drive fire spread, energy release, fuel consumption, and smoke
production (Ottmar 2014). For example, a dry grassland with continuous cover can
generate fast-moving fires with short-duration smoke production (Cook et al. 2016).
In contrast, dense mixed-conifer forests with deep organic soils can support crown
fireswith large plume development followed by inefficient smoldering combustion in
coarse wood and organic soil layers associated with long-duration smoke production
(de Groot et al. 2007).

2.1.1 Understanding How Fuels Contribute to Smoke

A detailed accounting of how wildland fuels contribute to fire behavior and combus-
tion is thus fundamental for smoke model predictions. Smoke emissions estimates
are based on type and mass of fuel consumed, which is then used to determine smoke
composition through emission factors for specific fuel categories (Urbanski 2014;
Chap. 5). Each step of the smoke modeling process relies on source characterization
of the composition and biomass of fuels and consumption in awildland fire event (see
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Fig. 5.7). Because fuels are dynamic over space and time, any effort to quantify fuels
must be informed by the ecology of live and dead vegetation (Mitchell et al. 2009;
Keane 2015). Of all variables involved in estimating smoke emissions, the amount
of available fuel and proportion that is consumed are often the highest sources of
uncertainty. Errors in estimates of available pre-burn fuels can create potentially
large errors when estimating emissions due to fuel consumption (Peterson 1987).
Reliable estimates of fuels also generally require more detailed site information than
is provided by remotely sensed imagery and classified vegetation cover and type.
For example, fuels that burn in a forest fire are often obscured by forest canopies
and are strongly dictated by past disturbances ormanagement activities (Keane 2015;
Prichard et al. 2019a). Passive remote sensing imagerymay provide operationalmaps
of forest cover but cannot quantify the amount, structure, or condition of sub-canopy
fuels that drive fire behavior and consumption (Keane et al. 2001).

Current geospatial datasets of wildland fuels, which are based on remote sensing,
generally have a high degree of uncertainty (e.g., LANDFIRE; Keane et al. 2006;
Reeves et al. 2006). The increased availability of remotely sensed datasets that enable
3Dmappingof pre- andpost-fire vegetation and fuels atmultiple scales is contributing
to a rapid evolution in the field of fuel characterization and consumption (Louder-
milk et al. 2009; Wang and Glenn 2009; Hoff et al. 2019; Hudak et al. 2020). Next-
generation fuel characterization will need to be at scales and resolutions appropriate
for physics-based computational fluid dynamics (CFD) models that are capable of
resolving fire–atmosphere interactions, heat release, and smoke production (Loud-
ermilk et al. 2009; Rowell et al. 2016). Understanding the sources of uncertainty of
aggregating fine-scale fuel characterization and consumption to the coarser scales
used in smoke modeling and planning is an important area of study. For example,
distribution of downed logs and stumps may vary at fine spatial scales (Brown 1974;
Keane 2015), but reliable estimates of their consumption across burn units may be
critical to anticipating long-term smoke impacts (Chaps. 3, 5 and 6).

Reliable fuel characterization is also needed to guide prescribed burn planning
where fire managers need to take into account and mitigate potential smoke impacts
to communities (Lavdas 1996). As timber harvest, mechanical fuel reduction, and
prescribed burningmodify fuels, fuel characterization after such treatments is critical
for assessing effectiveness and how these activities influence fire behavior and smoke
production (Reinhardt et al. 2008; Stephens et al. 2012).

Site-specific inventories of fuels and their predicted contribution to flaming and
smoldering phases of fire inform forecasts used by fire managers during wildland
fire events. If prescribed fire managers are aware of deep organic soil layers and
large amounts of coarse wood that could contribute to long-term smoldering and
low-buoyancy smoke production, they can model potential impacts and adjust burn
prescriptions andmop-upprocedures tomitigate associated impacts to air quality. The
amount of consumption by combustion phase and duration of combustion (Ottmar
2014) directly influences smoke production, plume dynamics (Chap. 4), emissions
(Chap. 5), carbon fluxes, tree mortality, soil heating, and other vegetation dynamics
(Keane 2015). Furthermore, the amount and types of fuel consumed in flaming, smol-
dering and long-term smoldering (or glowing) phases of combustion are necessary
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for predicting emissions of specific pollutants (e.g., CO, PM2.5) (Chaps. 5and 6) and
for anticipating smoke intrusions into communities (Peterson et al. 2018).

This chapter presents the current state of science for estimating the amount of
wildland fuel and consumption as related to smoke management and future research
needs. Topics covered include (1) an introduction to wildland fuels, (2) the current
state of science on fuel characterization and consumption, (3) a vision for fuel and
consumption science to inform smoke prediction, and (4) emerging issues and chal-
lenges in the field of fuel characterization and consumption research. Because source
characterization of wildland fuels is critical to predicting smoke impacts, reviewing
how to measure and map wildland fuel biomass and consumption provides useful
context for fire and fuels managers, smoke scientists, and policy makers. We also
review advances that are necessary for next-generation models of wildland fire
behavior and smoke.

2.2 Wildland Fuels

Wildland fuels are often characterized as fuelbeds that are stratified by structure,
continuity, and composition of biomass including tree canopies, snags, shrub stems
and leaves, grass and herbaceous vegetation, sound and rotten wood, needle and leaf
litter, and organic ground fuels (Ottmar et al. 2007). Numerous ecological processes
influence wildland fuel dynamics, but four are particularly important in governing
spatial and temporal distributions of wildland fuels (Keane 2015):

• Wildland fuels accumulate from the establishment, growth, phenology, and
mortality of vegetation (development). The rate of biomass accumulation, or
productivity of vegetation, is dictated by interactions of the plant species available
to occupy a site and the physical environment (climate, soils, and topography).

• Over time, portions of living biomass shed or die and are deposited on the ground
to become dead surface fuels, termed necromass.

• Below- and above-ground necromass is eventually decomposed by microbes and
soil macrofauna.

• Disturbances, such as fire, insects, and disease, act on living and dead biomass
to change the magnitude, trend, and direction of fuel accumulation in space and
time.

These four processes interact to influence fuel development where the interactions
depend on the ecosystem and corresponding climate and disturbance regimes. For
example, live and dead vegetation characteristics often correlate to development and
deposition, whereas climate drives decomposition and disturbance (Keane 2008).
Vegetation is sometimes used as a surrogate for fuels (Keane et al. 1998;Menakis et al.
2000), but this assumption ignores the pivotal role of decomposition and disturbance
on fuelbed development.
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Wildland fuel properties and their distributions are a cumulative result of inter-
actions of the four above processes across multiple spatial and temporal scales that
create shifting mosaics of fuel conditions on fire-prone landscapes (Keane et al.
2012). The processes can also create heterogeneity in fuel loading and structure. For
example, loading (biomass per unit area; kg m−2) of fine woody debris can vary by
2–3 times its mean over a small (<10 ha) prescribed burn unit (Keane et al. 2012).

The spatial and temporal variability of wildland fuels can influence how fuel
consumption influences smoke emissions (Anderson 1976) and, in turn, how fuel
management influences fuel properties (Stephens et al. 2012). Because fuel dynamics
are so heterogeneous, robust fuel classifications, sampling methods, and geospatial
datasets are needed to improve predictions of fuel consumption and smokeproduction
(Parsons et al. 2010; Keane 2015). Spatial configuration of fuel characteristics is
needed for next-generation fire effects and behavior models that rely on 3D fuel
inputs and represent fire with CFD modeling (Linn et al. 2002; Mell et al. 2007;
King et al. 2008; Parsons et al. 2010). This variability, combined with uncertainty
of fuel sampling techniques, makes estimating accurate fuel loadings for smoke
prediction challenging.

2.2.1 Fuel Characteristics

The wildland fuelbed is generally divided into three vertical fuel layers including
canopy, surface, and ground fuels (Keane 2015).Canopy fuels are the biomass above
the surface fuel layer (>2 m high). Surface fuels generally include biomass within
2 m above the ground surface. Ground fuels are all organic matter below the ground
line, where the ground line is usually just below the litter (Oi soil horizon, slightly
decomposed) and include the Oe (moderately decomposed), and Oa (highly decom-
posed) soil horizons (collectively, “duff”) (Soil Science Division Staff 2017).1 Each
fuelbed layer is composed of finer-scale elements called fuel strata and categories
(Fig. 2.1).

Fuel strata describe the vertical profile of the wildland fuelbed, whereas fuel
categories describe fuel types that are qualitatively and quantitatively defined for
specific purposes or objectives, such as fire behavior prediction (Table 2.1). For
example, the downed wood stratum often contains fuel categories including fine
wood (<8 cm diameter), coarse wood (>8 cm diameter), stumps, and piles (Riccardi
et al. 2007b). Fuels in the fine wood category are generally consumed during the
flaming phase and drive fire spread, whereas coarse wood burns during the flaming
phase of combustion but the majority of consumption is in smoldering combustion

1 Ground fuels are defined as partially or fully decomposed soil organicmatter. Organic soil horizons
often consist of three vertical layers: the newly fallen leaf litter (Oi), partially decomposed material
(Oe), and highly decomposed material (Oa). In the context of fuels, the Oi remains distinct from
the Oe and the Oa, which are often combined into what is commonly called “duff” or ground fuels
by fire and fuel managers. For this chapter, the Oi is referred to as leaf litter or litter, while the Oa
and Oe horizons are combined and referred to as ground fuels.
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Fig. 2.1 Vertical fuel strata in a wildland fuelbed [Drawing by Ben Wilson, from Keane (2015)]

that occurs long after the passage of the flaming front, contributing to long-duration
heat release and smoke (Albini 1976; Hyde et al. 2011).

Fuel strata and categories have specific physical and chemical properties, such as
bulk density, loading (mass per area, kg m−2), surface area (m2), and heat content
(J kg−1), all of which are important inputs to fire behavior and effects models and
descriptors of fuel characteristics (Chap. 3). The finest scale of fuel description is the
fuel particle, which is a general term for a specific piece of fuel that is part of a fuel
category. A fuel particle can be an intact or fragmented woody stick, grass blade,
shrub leaf, or pine needle. Fuel particles have the widest diversity of properties,
such as specific gravity (kg m−3), heat content (J kg−1), volume (m3), and shape
(unit or quality here). The properties of fuel categories, strata and fuelbeds, are often
quantified from statistical summaries of properties of the particles that comprise
them, thereby a source of uncertainty. For example, the means of quadratic mean
diameter and surface area-to-volume ratio (m−1) of all particles are often applied to
size classes of wood particles (e.g., Brown 1974).

Within any given fuel strata, component or particle, wildland fuels are also defined
as dead or live. Dead fuel is suspended or downed dead biomass (necromass), and
live fuel is the biomass of living organisms including vascular plants (trees, shrubs,
and herbs) and nonvascular plants such as mosses and ground lichens. The principal
reason for distinguishing between live and dead fuels is the difference in fuelmoisture
dynamics that dictates the availability to burn, often called fuel condition. Both live
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Table 2.1 Common canopy, surface fuel, and ground fuel categories used for fire and smoke
modeling

Fuel stratum Fuel category Size Description

Canopy fuels

Canopy Tree crowns Fine branches (<6 mm
diameter) and dead
and live aerial foliage

Snags All burnable portions
of dead trees including
branches and stem
wood

Ladder fuels including
vines, branches, tree
regeneration

Any fuel that serves as
a ladder between
surface and canopy
fuels

Surface fuels

Shrub Shrub crowns and
stems

All shrubby material
less than 5 cm
diameter

All burnable shrubby
biomass with branch
diameters less than
5 cm

Herb Grasses and forbs
(non-woody
vegetation)

All sizes All live and dead grass,
forb, and fern biomass

Downed wood 1-h wood
(fine wood, twigs)

<0.6 cm diameter Detached small wood
fuel particles within
2 m of the ground

10-h wood
(fine wood, branches)

0.6–2.5 cm diameter Detached small wood
fuel particles within
2 m of the ground

100-h wood
(fine wood, branches)

2.5–8 cm diameter Detached small wood
fuel particles within
2 m of the ground

1000-h wood
(logs, coarse woody
debris)

8 + cm diameter Detached woody fuel
particles within 2 m of
the ground

Litter-lichen-moss Litter All Freshly fallen
non-woody material
including leaves,
cones, pollen cones

Lichen All Lichen that grows on
the ground surface
(common in boreal
forests)

(continued)
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Table 2.1 (continued)

Fuel stratum Fuel category Size Description

Moss (bryophyte) All Moss that grows on
the ground surface
(common in boreal
forests)

Ground fuels

Organic soil horizons Oe horizon
Oa horizon

All Partially decomposed
and fully decomposed
biomass, including
decomposed litter and
peat

Basal accumulations All Accumulated organic
soil, bark slough, and
litter around older
trees

Fine woody debris (FWD) is a term often used for wood fuel particles <8 cm in diameter, and coarse
woody debris (CWD) refers to woody fuel particles > 8 cm in diameter

and dead fuel properties are governed by antecedent weather, but live fuel moistures
are primarily controlled by phenology, transpiration, evaporation, and soil water,
which differ among taxa and across regional climate (Jolly et al. 2014). In contrast,
dead fuel moisture is dictated by the physical properties of the fuel (e.g., size, density,
surface area) and their interaction with local climate, short-term weather dynamics
(wind, solar radiation andvapor pressure deficit), and available soilmoisture (Fosberg
et al. 1970; Viney 1991).

The 3D configuration of wildland fuels characterizes where fuels are and where
they are not. Gaps in fuel structure influence fire spread, including whether a forest
can support transitions from surface to crown fires (i.e., individual or group torching)
and how readily fires can spread from tree crown to tree crown (crowning that is
independent of surface fire dynamics) (Parsons et al. 2017; Ziegler et al. 2017). The
spatial continuity of surface fuels also affects fire behavior. For example, although
deserts and xeric rangelands may support vegetation that is dry enough to ignite, fire
spread is unlikely due to sparse fuels and lack of continuity (Gill and Allan 2008;
Swetnam et al. 2016).

2.2.2 Traditional Methods to Estimate Wildland Fuel
Loadings

Numerous methods have been developed to estimate fuel loading (i.e., combustible
biomass) to allow for flexibility in matching available resources with sampling
objectives and constraints (Catchpole and Wheeler 1992). Keane (2015) reviewed
traditional fuel sampling methods and the inherent challenges in measuring spatial
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and temporal variability of wildland fuels. Here, we summarize the main methods
and review practical sampling limitations that are prompting evaluation of new
technologies and methods.

Many traditional approaches to wildland fuel characterization rely on a variety
of indirect methods to estimate loading and structure of wildland fuels. Methods
such as photo series or mapping fuels based on major vegetation types rely on visual
or associative techniques to relate fuel characteristics to available observations or
datasets (Keane 2015). Associating fuel characteristics with remotely sensed prod-
ucts, such as Landsat Thematic Mapper, has limitations due to imagery resolution
and forest and shrub canopies that obscure surface and ground fuels. In addition,
high variability of fuel characteristics within a site or pixel may overwhelm unique
fuelbed identification across sites (Keane et al. 2013; Prichard et al. 2019a). Another
common method is to simplify fuel descriptions into fire behavior fuel models or
broad vegetation types for fire simulations (Scott and Burgan 2005). Fuel models
generally are too simplistic to represent the complexity of wildland fuels and ignore
categories important to smoke and other fire effects such as coarse wood and organic
soils (Sikkink and Keane 2008; Keane 2015).

Direct methods involve field sampling or measuring characteristics of fuel parti-
cles in situ or in the lab to calculate loading and usually involve direct contact with
the fuel (e.g., measuring dimensions and weight of particles). Within fixed-area
plots, mass is often measured using destructive sampling, which involves physically
clipping and collecting the fuel, then drying the material and weighing it (Mueller-
Dombois and Ellenberg 1974; Sokal and Rohlf 1981). Methods for sampling litter
and ground fuel loading have remained virtually unchanged over the last four decades
(Brown et al. 1985; DeBano et al. 1998) and include destructive sampling and
estimations based on depth measurements.

Some ecosystems may have patchy soil organic matter coverage (e.g., deserts,
woodlands, sagebrush, grasslands), making sampling difficult and often requiring a
field measurement of ground fuel and litter cover. Several factors affect the accuracy
and precision of estimates for monitoring and calculations of ground fuel consump-
tion. First, the spatial variability of litter often requires a high number of measure-
ments. Depth measurements are challenging because the interface between the duff
and litter layers can be diffuse. Sampling also disrupts the ground fuel layer and
can compromise pre- and post-fire measurements. Discontinuities in some litter and
ground fuels are also challenging to quantify, including animal scat, mineral content,
tree cones, and basal accumulations (Ottmar et al. 2007). Finally, reliable bulk density
values are lacking formany fuelbeds inNorthAmerica, and accurate characterization
of litter and ground fuel loading require destructive sampling to include depth and
bulk density measurements.

Due to the high spatial variability ofwildland fuels and lack of correlation between
fuel strata and categories, estimations based on traditional fuel measurement tech-
niques often result in high variance and lack of precision (Keane 2013). For example,
planar intersect sampling of woody fuel loadings incorporates only one dimension
(Brown 1971). Given that fine and coarse wood can vary differently across space,
linear sampling may not capture spatial variability of fine and coarse wood (Keane
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and Gray 2013). Other conventional fuel inventory techniques, such as photo series,
may also be inappropriate because fuels vary at spatial scales that might be different
from the scales represented by the photo (Keane and Gray 2013).

Many fuel assessments involve sampling fuels before and after treatment, espe-
cially when estimating fuel consumption. Making consistent measurements is chal-
lenging because accurate fuel sampling involves direct manipulation of the fuelbed.
For example, destructive sampling removes fuel from a fixed-area plot, rendering
the plot unusable for post-fire monitoring. High variability of fuels may preclude
paired sampling (i.e., plots outside the treatment area used to quantify pre-treatment
conditions) or quantifying pre-burn conditions using classification, mapping, and
modeling. Accurate and consistent sampling methods are needed to sample fuels
for the same sampling frame throughout the monitoring period. Some have used the
photoload method (Keane and Dickinson 2007) as a way to sample fuels within a
sample frame without disturbance with mixed results (Tinkham et al. 2016).

2.2.3 Emerging Technologies and Methods

Advances in remote sensing offer a number of promising methods to characterize
wildland fuels including airborne and ground-based light detection and ranging
(Lidar) and structure-from-motion photogrammetry (SfM) (Loudermilk et al. 2009;
Hudak et al. 2016; Cooper et al. 2017) that allow for synoptic, 3D characterization
of many wildland fuels.

Ground-based Lidar, also known as a terrestrial laser scanning (TLS), is used
to estimate the loading and structure of surface and sub-canopy fuels (Loudermilk
et al. 2009; Seielstad et al. 2011). Mounted on a tripod or vehicle, TLS units obtain
scan distances at sub-cm scales from the instrument location to vegetation, surface
fuel, and other object surfaces and can penetrate through foliage layers. The Lidar
signal, which amounts to a 3D cloud of X, Y, and Z points, can then be related to
fuel loading by constructing statistical models where destructively sampled loadings
for various categories are correlated to statistical metrics derived from the Lidar
point cloud data (Fig. 2.2). It can be difficult to differentiate between fuel categories
using TLS in heterogeneous fuelbeds, and integration with multispectral imagery
is sometimes necessary for image interpretation. The cost of TLS instruments and
image processing generally relegates their use to research.

Airborne Lidar scanning (ALS) is used operationally for precision forest inven-
tory of tree stems and crowns. Its coarser resolution (9–12 returns per m2) as well
as the influence of overstory objects and noise limits its ability to adequately char-
acterize understory and surface fuels, especially through an overstory forest canopy
(Hudak et al. 2016a, b). Active Lidar remote sensing adds a vertical dimension to
other remotely sensed datasets, because it can penetrate vegetation biomass and
characterize pre- and post-burn vegetation structure, biomass, and fuel consumption
(Lefsky et al. 2001; Hyde et al. 2007; Sexton et al. 2009). Lidar offers advances in
forest biomass mapping, because physical measures of canopy height and density
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a b kg m-2L2FH3

Fig. 2.2 Example of pre-fire TLS-derived fuel mass for (a) managed forest plots (Rowell 2017) and
b post-fire residual fuels for the same site. This dataset demonstrates variability of fuels consumption
for prescribed fire, where 3D structure, ignition pattern, fuel moisture and fluid flow of air affect
how fire consumes fuels

can be extracted from point cloud data and reduce the uncertainties in biomass (i.e.,
fuel load) estimation. Neither Lidar nor other remote sensing systems can penetrate
the forest floor tomeasure litter and ground fuel depth, although recent work suggests
that robust estimates of the litter-layer fuel mass are possible (Rowell et al. 2020).

SfM technology uses photogrammetry of high-resolution images, often collected
from cameras mounted on an unmanned aerial system (UAS) to create 3D multi-
spectral images of vegetation and fuels (Zarco-Tejada et al. 2014). Although
photogrammetric points have inferior vegetation penetration compared to Lidar, the
multi-spectral capabilities of digital cameras make assignment of plant functional
type or live/dead status more feasible than from the single near-infrared or green
channel data in most Lidar sensors (Bright et al. 2016; Hudak et al. 2020). Inte-
grating short-range SfM using digital cameras, mobile phones, or high definition
(4K) digital video allows for fine-scale, 3D representations of wildland fuels in true
color or multispectral images (Wallace et al. 2019). Once calibrated with field-based
measurements, these datasets can provide 3D mapping of live and dead canopy
and surface fuel loading and structure with applications for biomass mapping, fire
behavior modeling, and fuel consumption measurements (Figs. 2.3 and 2.4).

Highly resolved spatial data from TLS and SfM expand sampling beyond the
domains of traditional destructive plots and planar intersect fuel surveys. As data
from TLS and SfM images can be sampled at high resolution, they can be merged
into 3Dpoint clouds for fine-scalemapping andquantification of live anddead surface
and canopy fuels. TLS excels at capturing detailed pre- and post-fire 3D data that
represent continuous changes in estimates of bulk density at fine scales (Rowell et al.
2016; Hudak et al. 2020). Such spatially explicit fuels consumption data provide
linkages between fire behavior and smoke production by describing interactions that
produce smoke from a range of fire types and behavior (Moran et al. 2019).
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Fig. 2.3 Structure from motion point cloud generated for a mixed conifer site (roughly 500 m by
500 m in size) at the Lubrecht Experimental Forest, Montana

2.3 Fuel Consumption

Fuels are consumed in a complex set of combustion phases that differ with each
wildland fire (Ottmar 2014). Because different fuel categories (i.e., tree crowns,
shrubs, herbs, downed wood, litter, and ground fuels) have different propensities
to burn, consumption varies across time and space (Weise and Wright 2014). Fuel
type and condition, moisture content, arrangement, and ignition patterns affect the
amount of biomass consumed.

Fuel consumption is the amount of fuel that is consumed during all combus-
tion phases. During combustion, vegetative matter is decomposed through a
thermal/chemical reactionwhere plant organicmaterial is rapidly oxidized producing
carbon dioxide, water, and heat (Byram 1959; Johnson andMiyanishi 2001). During
the pre-ignition phase, pyrolysis occurs first and is the heat-absorbing reaction that
removes moisture and converts fuel elements such as cellulose into char, carbon
dioxide, carbon monoxide, water vapor, combustible vapors and gases, and particu-
late matter (Kilzer and Broido 1965). Flaming combustion follows as the escaping
organic hydrocarbon vapors released from the surface of the fuels burn (Williams
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Fig. 2.4 Multi-spectral orthophoto mosaic, approximately 100 × 100 m in size, generated from
unmanned aerial system imagery collected at the Lubrecht Experimental Forest, Montana, demon-
strating potential discrimination between live fuels (shown as red tree crowns and surface vegetation)
and downed dead wood (linear blue objects)

2018) (Fig. 2.5). Combustion efficiency is usually high if volatile emissions remain
near the flames.

During the smoldering phase, emissions of combustible gases and vapors above
the fuel are insufficient to support a flame (Ohlemiller 1986; Johnson and Miyanishi
2001) (Fig. 2.5). Gases and vapors condense, appearing as visible smoke as they
escape into the atmosphere; smoke consists mostly of particles <1.0 µm diameter.
The amount of particulate emissions generated per mass of fuel consumed during
the smoldering phase, generally expressed as an emission factor (Chap. 5), is more
than double that of the flaming phase. Smoldering combustion is more common in
densely packed and highly lignified fuel types (e.g., organic soils and decayed logs)
due to the lack of oxygen necessary to support flaming combustion. For example,
deep ground fuel, such as peatland soils, can smolder for weeks, contributing greatly
to smoke emissions (Rappold et al. 2011). In boreal ecosystems, approximately
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Fig. 2.5 Representative photos of a flaming and smoldering of surface fuels (flaming dominates),
b flaming and smoldering of large log and surrounding grass and litter (smoldering dominates)
and c short- and long-term smoldering (glowing) phases of combustion in a large log (long-term
smoldering dominates) (Photos by Roger Ottmar)

90% of emissions can be attributed to burning of deep ground fuel characterizing
peatland soils. Given these impacts, methods of quantifying depth of burn and its
spatial variability are critical (van der Werf et al. 2010; Thompson and Waddington
2014).

Because heat generated from smoldering is seldom sufficient to sustain an active
convection column, smokeoften concentrates in nearbydrainages andvalleybottoms,
compounding the effect of the fire on local air quality (Chap. 5). Smoldering combus-
tion is less prevalent in fuels with high surface-area-to-volume ratios (e.g., grasses,
shrubs, small-diameter woody fuels) (Sandberg and Dost 1990). Near the end of the
smoldering phase, pyrolysis nearly ceases, leaving unconsumed fuel as black char.
This is often referred to as the glowing or residual smoldering phase (DeBano et al.
1998).

Combustion phases occur both sequentially and simultaneously as a fire front
moves across the landscape. Combustion efficiency is rarely constant, resulting in a
different set of chemical compounds being released at different rates into the atmo-
sphere during each combustion phase (Fig. 2.6) (Ferguson and Hardy 1994). The
flaming stage has a high combustion efficiency and generally emits the least amount
of PM2.5 emissions relative to fuel mass consumed. The smoldering phase has a
lower combustion efficiency, producing more PM2.5 relative to fuel mass consumed.
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Fig. 2.6 Conceptual diagram of combustion efficiency over time and combustion phase. The red
dotted line represents a fire event with a large burned area; the orange dotted line represents a small
fire that is constrained by local inversions and has minimal combustion efficiency; the gray dotted
line represents a low-intensity prescribed fire

The surface-area-to-volume ratio of fuels also influences the amount of fuel
consumed. Smaller particles (e.g., grass and small twigs) require less heat to ignite
and combust compared to larger fuel particles (e.g., large logs). Small particles
generally burn during the flaming stage, and larger fuels often burn during the
smoldering stage. Fuel geometry also determines moisture uptake and release from
individual particles. For example, particles with high surface-area-to-volume ratios
such as grass can absorb and release moisture quickly compared to fuels with low
surface-to-volume ratios.

The compactness of fuel particles in fuelbeds can enhance or diminish fuel
consumption and affect smoke emissions. Packing ratio—the fraction of the fuelbed
volume occupied by organic material—is a measure of fuelbed compactness. A
loosely packed fuelbed (low packing ratio), such as a sparse grassland or shrubland,
has ample oxygen for combustion butmay inefficiently transfer heat between burning
and adjacent unburned fuel particles. Alternatively, a dense fuelbed (high packing
ratio), such as decayed soil organic matter, can efficiently transfer heat between
the particles, but low availability of oxygen reduces consumption and combustion
efficiency.

Fuel continuity also affects fuel consumption. Sustained ignition and combustion
continue only if fuel particles are close enough that heat can be transferred between
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particles, allowing combustion to occur. For example, piles of branches and leaves
are often optimally packed with particles close enough for adequate heat transfer
with large enough spaces between particles for oxygen availability. As a result, pile
burning, when appropriately executed, often results in nearly complete combustion
(Hardy 1996).

Canopy fuels exemplify the importance of particle size and surface-to-volume
ratio in determining fuel consumption. Severe crown fires burn tree crowns and
generally leave boles and large branches behind. Even under extreme fire conditions,
live tree boles and large branches are not generally available to burn due to their
low surface area and high moisture. In fire behavior modeling, canopy bulk density
is used to quantify available canopy fuel. The diffuse distribution of canopy bulk
density makes it difficult to measure with traditional methods. However, Lidar and
other 3D point-cloud data offer promising approaches for characterizing pre- and
post-burn canopy fuel (Skowronski et al. 2011, 2020).

2.3.1 Indirect Estimates of Fuel Consumption

Consumption of wildland fuels can be measured directly by measuring pre and post-
fire loadings (Ottmar 2014), but because of time and labor constraints, it is typically
estimated from indirect, or non destructive, measurements that use remote sensing to
map consumption in 2D or 3D. To reduce uncertainties in estimated consumption for
smoke modeling, pre- and post-fire fuel measurements ideally would be co-located
rather than selecting proxy sites to represent pre-burn fuels.

Predictive models are commonly used to estimate fuel consumption based on
pre-burn fuel loadings. CONSUME (Prichard et al. 2007) and the First Order Fire
Effects Model (FOFEM; Reinhardt et al. 1997) are used operationally for prescribed
burn planning to predict fuel consumption, heat release, and emissions. They can
also estimate fuel consumption based on remotely sensed maps of area burned and
pre-burn fuel loadings. For example, the Fuel Characteristic Classification System
(FCCS) (Ottmar et al. 2007; Riccardi et al. 2007a, 2017b) supports fuelbed datasets
that are available as a map layer within LANDFIRE, based on crosswalks to existing
vegetation type (https://www.landfire.gov/evt.php). Fuelbed data from FCCS can
be used as inputs to CONSUME or FOFEM to estimate fuel consumption for a
burned area or planning unit. Model predictions can be improved with field-based
observations to refine fuelbed assignments or pre-burn fuel loading values.

Consumption can also be estimated using a satellite-derived estimate of biomass
burned (M, g) from pre- and post-burn imagery in the classic equation (Seiler and
Crutzen 1980; Kaufman et al. 1989; Wooster et al. 2005):

M = A× B× β (2.1)

https://www.landfire.gov/evt.php
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where A is burned area (m2) measured from imagery, B is biomass (fuel load) per
unit area (g m−2) estimated from pre- and post-burn imagery, and ß is the burning
efficiency or combustion factor (fraction of fuel burned) (Vermote et al. 2009).

Burning efficiency, the amount of fuel that burns, is coupled to intrinsic fuel condi-
tions (type, physical arrangement, chemical composition, and fuel moisture) and
extrinsic abiotic factors, such as weather conditions (temperature, relative humidity,
andwind), that vary at daily and seasonal time-scales. These factorsmust bemeasured
or modeled on site close to the time of burning, then inputted into consumption
models to constrain the efficiency of simulated combustion to conditions at the time
of burning (Ottmar 2014).

Burned area (A) can be estimated from airborne or satellite imagery, although
estimations will differ depending on the scene, the type of imagery used (van der
Werf et al. 2006), and the algorithms applied (Roy et al. 2005). Multispectral satellite
imagery is commonly used for burned area mapping (Lentile et al. 2006; Hudak et al.
2007). With the many satellites in orbit today, errors in burn area estimation can be
reduced by using post-fire imagery with higher spatial resolution (250 m or better)
and shorter latency (daily or sub-daily) after fire.

Biomass (B) can also be estimated from optical imagery but with less certainty
(Tucker 1977; Sellers 1985; Gitelson andMerzlyak 1997; Thenkabail et al. 2000). In
multilayered forest canopieswith high leaf area index (leaf area per unit ground area),
passive optical sensors saturate and lose sensitivity, reducing the utility of spectral
indices such as normalized difference vegetation index (NDVI) or normalized burn
ratio (NBR) (Goel and Qin 1994; Haboudane et al. 2004; Hudak et al. 2007).

Because canopy biomass is often correlated to canopy height, statistical metrics
calculated from the distribution of height measures provided by airborne Lidar can
be used to estimate biomass and other forest structure attributes such as stem density,
basal area, and volume (Lefsky et al. 1999, 2002; Hudak et al. 2008; Dubayah et al.
2010; Silva et al. 2016, 2017).

Canopy height and density information based on Lidar-based 3D point cloud
data can be converted to 2D raster maps (with height and density attributes) that
are more easily manipulated and processed with geospatial analysis. Fuel biomass
density can be estimated from airborne Lidar resampled to 30-m resolution bins,
commensurate with LANDFIRE fuel maps (Hudak et al. 2016b), or as fine as 5-m
resolution (Hudak et al. 2016a). Ground-based TLS can be used at scales down to
10 cm. At this fine grain size, it is feasible to differentiate fuel components that are a
heterogeneous mixture of materials (or species), each with their own emission factor
(EF) (Chap. 5). For finer scales, Eq. 2.1, which predicts the amount of consumed
biomass (M, g) at the level of individual fuel components (or species) x (Seiler and
Crutzen 1980; Brönnimann et al. 2009), can be revised to

Mx = A× B× β × EFx (2.2)

In the fine-scale 3D domain, fuel volume (V, m−3) can be substituted for area A
(m−2), and fuel bulk density (BD, g m−3) can be substituted for biomass (B) density
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(g m−2), traditionally characterized in 2D, to estimate M (g), the mass of emissions
due to consumption of fuel component (or species) x.

Terrestrial Lidar has also been used to estimate shrub consumption. Hudak et al.
(2020) demonstrated that 3D estimates of shrub volume, combined with co-located
field measures of bulk density, can provide spatially explicit estimates of vegetation
bulk density. Comparison of pre- and post-fire 3D fuel maps can provide 3Dmaps of
consumption, although at slightly coarser resolution, given errors in co-registration
between pre- and post-fire maps.

2.3.2 Direct Measures of Fuel Consumption

Direct measurements of heat flux using thermal imagery can be calibrated to esti-
mate consumption rates and to map consumption which are important for smoke
prediction. The rate of biomass loss (i.e., consumption) is linearly related to the rate
of heat flux from an active fire (Wooster et al. 2005; Freeborn et al. 2008; Smith
et al. 2013). Heat flux can be measured remotely from the thermal infrared radiation
emitted by the fire, which amounts to 10–20% of the total heat flux (Byram 1959).
Temperatures of heat sources, as measured by calibrated thermal infrared sensors,
can be converted to fire radiative power (FRP,W), which equates to Joules per second
(J s−1). Continuous measurements of FRP over the duration of the fire can be inte-
grated with respect to time(s) to estimate total heat flux, also known as fire radiative
energy (FRE) in J (Fig. 2.7). The integral of the FRP time series can be approximated
(Boschetti and Roy 2009) as

FRE =
n∑

i

0.5(FRPi + FRPi−1)(ti − ti−1) (2.3)

where time t is the time in seconds (s) for each FRP observation i in the time series
(Wooster et al. 2013). This integration can be applied to every pixel in a multi-
temporal stack of FRP observations to produce an FRE image that estimates total
consumption (Hudak et al. 2016a; Klauberg et al. 2018).

Comparisons between the (direct) FRE approach to estimating fuel consumption
and the (indirect) approach to consumption estimates derived from remotely sensed
burn area (A) and pre-fire fuel biomass (B) measurements by Eqs. 2.1 and 2.2 are
reasonably linear (Roberts et al. 2009; Wooster et al. 2013). The relationship scales
because it is linear, permitting a simplification of Eq. 2.2:

Mx = FRE× C × EFx (2.4)

where C is a “combustion factor” (g kJ−1) for a given vegetation fuel type (x).
Accuracy of FRE-derived estimates of consumption depends on the frequency of

FRP observations and whether they span the full duration of the fire, including the
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Fig. 2.7 Using digital thermography from an unmanned aerial system platform, high fidelity FRE
and rate of spread can be extracted from these data. Moran et al. (2019) demonstrate the utility of
these platforms, describing the points of head, flanking and backing fire (Image usedwith permission
from the author)

flaming and smoldering phases of combustion. Thermal sensors mounted on fixed-
wing aircraft can image a given site for only a few seconds, separated by several
minutes needed to turn the aircraft around and re-image the same location on the fire
(Hudak et al. 2016a; Klauberg et al. 2018). Visible and near-infrared (NIR) sensors
can capture flame location and geometry and distinguish flaming combustion from
residual smoldering combustion. The dual-band technique, using both mid-wave
infrared (MWIR) and longwave infrared (LWIR) wavelengths, provides for more
robust FRP estimation than using MWIR or LWIR alone (Dozier 1981).

Current measurement technologies are unable to partition the FRP signal between
different fuel components burning simultaneously within the same pixel space. For
surface fires beneath forest canopies, the FRP signal may be attenuated from over-
story canopy occlusion, which may differ with canopy cover (Mathews et al. 2016).
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Correcting for canopy occlusion may be possible through Lidar-derived canopy
structure (Hudak et al. 2016a).

2.4 Gaps in Wildland Fuels Characterization

Until recently, a major gap in our understanding of wildland fuels has been a lack of
spatial dimensionality in fuel characterization, which is necessary to reduce uncer-
tainty and increase precision of inputs to fire behavior, fuel consumption and smoke
models (Chaps. 3 and 4). Advances in remote sensing techniques offer promising
approaches to 3D fuel characterization for fine-scale inputs of CFD models of fire
behavior to landscape fire spread, fuel consumption, and smoke models. These
methods are currently under development (Rowell et al. 2020), employing a hier-
archical sampling method from fine-scale characterization to coarse-scale mapping
applications (Fig. 2.8).

Broad-scale mapping and modeling applications present an additional challenge
to quantifying fuel characteristics and represent them hierarchically across spatial
scales. Field and remote sensing measurements may be taken at similar scales, but
they are inherently difficult to integrate due to the complexity of fuels and challenges
in co-locating and coordinating field and remote sensingmeasurements. For example,
a new approach to 3D field sampling (Hawley et al. 2018) was designed specifically
to link 3D fuel types and fuel mass, collected within 1000-cm3 cubes to the same
resolution of volume TLS point clouds of vegetation structure, with 1 cm3 precision
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Fig. 2.8 Conceptual diagram of multi-scaled estimates of 3D fuels characterized using a hierar-
chical sampling method from individual fuel particles or objects to patch and landscape extents and
corresponding sampling resolutions (grain size)
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Fig. 2.9 Voxel sampling frame, vertical view showing the 10 × 10 × 10 cm sample voxel grid of
a mixed shrub, herb, grass, ad litter fuelbed (Photo by Susan Prichard)

(Fig. 2.9). In 3D imagery, volumetric pixels are termed voxels, and the 1000-cm3

cubes are also referred to as voxels within the field sampling frame.
Calibrated with voxel field datasets, TLS is a novel and scalable advancement in

fuel characterization with highly resolved bulk density estimates for known volumes
(Rowell et al. 2020). Robust coupling involves co-locating techniques between indi-
vidual 3D field plots and TLS point clouds. However, this approach has limitations.
First, voxel sampling provides explicit representation of fuel types and fuel mass,
but the 1000 cm3 space of each voxel is assumed fully occupied due to lack of
measurements at finer spatial scales. Second, the TLS is limited by occlusion near to
the ground where most fine and consumable fuels occur. Additional work is needed
to create machine-learning algorithms to classify 3D point cloud datasets generated
from TLS and/or photogrammetry into objects and apply rule-based assignments of
metrics such as bulk density, surface-area-to-volume ratios, and fuelmoisture content
to each classified object or volume.
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2.4.1 Scaling from Fine-Scale to Coarse-Scale Fuel
Characterization

The structure and condition of fuels influence their availability to burn and howmuch
exogenous work must be applied to release their energy. For example, coarse-scale
grid cells (e.g., 5× 5× 5m)maybe sufficient to represent crown fuels during extreme
fire spread events, where fire weather and topography dominate fire behavior and
smoke production patterns. In contrast, fine-scale fuel heterogeneity measurements
are often critical for accurate fire behavior predictions in a low-intensity surface fire
such as a prescribed burn. A forest that has been recently thinned and burned contains
combustible fuels but in a structure that is less available to burn in a subsequent fire.
However, column-driven fire spread combined with strong winds could exceed the
burning threshold for that site. Similarly, siteswith high live fuelmoisture in grass and
shrub fuels may present barriers to fire spread under normal fire weather conditions,
but burning thresholds can be exceeded by exceptional fire weather.

At present, no established method exists to scale 3D fuels data from fine-scale
field measurements to the larger spatial scales (e.g., burn units or watersheds) useful
for decision making. Before such mapping applications can be developed, modelers
need to identify how fuel metrics (e.g., loading, bulk density, heat content) and
characteristics (e.g., fuel type and live/dead) can be assigned from sampled values
to large spatial scales and across fire types (e.g., prescribed fire, wildfire, surface fire
versus canopy fire).

Fire atmosphere interactions that contribute to fire behavior, plume dynamics,
and smoke production are beginning to be resolved in models such as WRF-SFIRE
(Mandel et al. 2011), FIRETEC (Linn et al. 2002), and Wildland-Urban-Interface
Fire Dynamics Simulator (WFDS; Mell et al. 2007). However, evaluation datasets
are needed to determine how the scale and precision of fuel inputs influence model
predictions of fire behavior, heat release, and smoke production.

Large-scale studies such as the Fire and Smoke Model Evaluation Experiment
(FASMEE; Prichard et al. 2019b) and the FIREX-AQ Western wildfires campaign
(Werneke et al. 2018) include synchronized and coordinatedmeasurements of source
characterization, fire behavior, plume dynamics, and smoke production. Investments
in these coordinated measurement campaigns are necessary to improve our under-
standing of fire atmosphere interactions and inform future model evaluation and
development (Liu et al. 2019, Chap. 4).

2.4.2 Challenges in Forest Floor Characterization

Organic soil layers, including litter and ground fuels, can be a substantial portion
of total fuel loading and contribute disproportionately to smoke emissions including
long-term smoldering events. However, methods for characterizing peatland and
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forest floor layers have not advanced much in recent decades. Remote sensing tech-
niques, such as TLS, can be used for litter characterization but are unable to pene-
trate organic soils and cannot resolve their density or depth. Models of organic soil
accumulation, decomposition, and changing moisture characteristics are needed to
complement 3D fuel measurement techniques.

Nomodels exist that provide accurate representations of ground fuel consumption
as it relates to forest structure, climate, weather, leaf chemistry, and time since last
fire, all of which are dynamic through space and time. For example, depending
on fire intensity and soil moisture, wildland fires rarely consume entire organic
soil layers. Variability in ground fuel consumption and smoldering patterns adds
further complexity to smoke production. Recent research on spatial distributions of
ground fuel depth, biomass, and other characteristics in long-unburned forests of the
southeastern USA emphasizes fine-scale spatial and temporal variability in ground
fuels and the potential challenges of sampling across forest stands or burn units
(Kreye et al. 2014). In boreal ecosystems, where the majority of biomass is stored
in peatland soils, Chasmer et al. (2017) showed that variations in forest floor depth
could be quantified by comparing ground surface elevation models derived from
separate pre- and post-fire Lidar collections. However, in most fuelbeds, ground fuel
layers are too shallow relative to the vertical precision of airborne Lidar to detect
changes in depth as a result of consumption.

2.4.3 Modeling Spatial and Temporal Dynamics of Wildland
Fuels

The biggest gap in our knowledge of wildland fuels is creating up-to-date and accu-
rate models of fuel dynamics to inform smoke modeling. This challenge has been
termed the “ecology of fuels” (Mitchell et al. 2009), requiring an understanding of
the entire life cycle of wildland fuels, including vegetative reproduction, growth,
senescence, deposition of fine and coarse debris, decay, mortality and connections
to weather, climate, soils, and nutrient cycling (Agee and Huff 1987; Harmon et al.
2000). The 3D spatial complexity of fuels and their dynamics over time, translate
to similar complexity and variability in the availability of fuels to burn and their
contribution to fire behavior and effects. However, the life cycle of fuels as it relates
to vegetation dynamics and feedbacks with fire has not been fully defined. Further-
more, the temporal dynamics of fuels can be distinct between fine-scale changes in
fine-fuel moisture and coarse-scale changes (e.g., vegetation structure, productivity
and climate).

Limited understanding of live and dead fuelmoisture dynamics also constrains our
ability to model fire behavior, fuel consumption, and smoke production. Fuel mois-
ture varies across ecosystems, seasons, and fuel components, and moisture dynamics
often exhibit large sub-daily changes on local scales (Viney 1991;Banwell et al. 2013;
Kreye et al. 2018). Fuel moisture often dictates the availability of fuels for ignition
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and consumption, with pronounced differences across arid, semi-arid, and humid
climates. Summer climate in western North America is generally characterized by
a long period of drying, making coarse wood and organic soils generally available
to burn during the peak of wildfire season (Estes et al. 2012). In contrast, the south-
eastern USA has a humid, subtropical climate; downed wood decays quickly, and
where coarse wood exists it can act as a fuel break during low-intensity fire spread.
Live and dead fine-fuel dynamics determine if fuels are available to burn, either
promoting or inhibiting fire spread. For example, across ecosystems with grass-
dominated fuelbeds, spring green-up is generally considered a barrier to fire spread.
Differences in fuel moisture and the corresponding availability of fuels to burn over
hours to months are well known among practitioners, but these fundamentals are
not explicitly represented in predictive fire behavior, fuel consumption, and smoke
models.

2.5 Vision for Improving Fuel Science in Support of Smoke
Science

Fuel characterization and mapping to support smoke science will need to rely on
a range of methods. Because some fuels, including forest floor and peatland soils,
cannot be remotely sensed, future approaches to fuel characterization will involve a
combination of traditionalmethods andnew technologies.Rather than describing fuel
characteristics as modeled estimates across raster maps, the ranges and variations of
fuel distributions will be required, particularly for CFD models that rely on gridded,
3D inputs of fuels, terrain, and atmospheric turbulence. Fuel inventory and modeling
methods also need to be developed to capture the nested spatial variability ofwildland
fuels and dynamics of wildland fuelbeds over time (Keane 2015).

Asmore work is devoted to 3D fuel characterization for CFDmodels, we envision
a library of 3D fuels, mapping tools, and parameters for customization of fuelbeds for
specific applications and fine- to coarse-scale mapping of pre- and post-burn canopy
and surface fuels (Fig. 2.10). To date, CFDmodels such as FIRETEC andWFDS are
used only for research due to their complex input and computational requirements.
However, progress is being made to advance real-time models of fire spread and
smoke production that can be used operationally for prescribed burn planning and
wildfire monitoring (e.g., QUIC-Fire; Linn et al. 2020).

ForCFDmodels tomove into operational use, applicationswill be needed to trans-
late 3D fuel characteristics intomodel inputs at appropriate scales for smokemanage-
ment applications (e.g., prescribed burn planning, wildfire smoke modeling). CFD
modeling requirements mean that next-generation fuel mapping will need synthetic,
gridded fuelbeds from remotely sensed data, machine-learning algorithms to iden-
tify objects within 3D point clouds, and assigned fuel properties for each identified
object or fuel complex (based on statistical models and known probability distri-
butions) (Fig. 2.11). User-friendly technology and analytical tools will be required
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Fig. 2.10 Remotely sensed datasets can be used to characterize and quantify patterns of bulk
density, consumption and fire effects. For example, Plots a and b represent pre-fire and post-fire
short-range, photogrammetry-based 3D point clouds for an individual plot that can be calibrated
with field data to estimate fuel consumption. Estimated consumption can then be scaled to prescribed
burn units using synoptic pre- and post-burn TLS imagery (c) where bright yellow on the ground
is burned and blue hues are unburned

to guide smoke managers in novel but practical approaches to improve 3D fuel
characterization and mapping.

Better characterization of sources of smoldering consumption can also improve
estimates of the severity and duration of smoke impacts to communities, especially
from prescribed burning (Hyde et al. 2011). Advances with SfM from both UAS
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Fig. 2.11 Synthetic 3D broadleaf and long-needled pine litter fuelbeds developed from object-
based scanning and statistical models of leaf litter composition and depth [From Rowell et al.
(2016)]

platforms and short-range photogrammetry offer access to fine grain data that can be
used to map fuels that contribute most to smoldering combustion and long-duration
smoke production (Wallace et al. 2012;Cooper et al. 2017). SfMphotogrammetry can
complement ALS imagery by providing true color or multispectral images that allow
for delineation of live and dead fuels and fuel classification refinement (Fig. 2.10).
For example, integration of SfM imagery can assist in object-based classification
of large coarse woody debris, and these objects can then be attributed with mass
estimates to improve modeling of flaming and smoldering emissions (Fig. 2.4).

TLS-based estimates can be used to refine coarser-scale estimates of surface and
canopy fuels (García et al. 2011; Seielstad et al. 2011; Rowell et al. 2016, 2017).
Fuel libraries from TLS tied empirically or probabilistically to large-scale ALS or
passive remote sensing datasets will be a significant step toward broad-scale 3D
mapping applications. A limitation of ALS and TLS has been cost, efficiency, and
time since acquisition. There are a growing number of ALS datasets nationally, but
these snapshots in time do not encompass disturbances that could alter fuel loading
and distribution or expected fire behavior. Forest growth models, such as the Forest
Vegetation Simulator, can use ALS data and their derivatives to calculate estimates
of growth and biomass accumulation in forest canopies.

Maintaining reliable, up-to-date maps of wildland fuels will require linkages
between remotely sensed datasets and ecological process models. High deposition
of vegetation, coupled with severe disturbance effects, may alter fuelbed charac-
teristics and render fuel maps outdated (Keane et al. 2001). It may be especially
important to capture fuel dynamics in frequently burned or actively managed ecosys-
tems. Ecosystemmodels typically fall short in simulating realistic fuel characteristics
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needed by existing fire models (Thornton et al. 2002). Ecological models that simu-
late development, deposition, decomposition, and disturbance (Sect. 2.2) can capture
multi-scale fuel dynamics and translate them to fire behavior and smoke modeling at
relevant spatial scales (Hatten and Zabowski 2009; Dunn and Bailey 2015). Linking
fuel characteristics with ecological processes can inform fire behavior and smoke
dynamics. Improved representation of fuel dynamics within ecological models will
also refine how they simulate wildfires, insects, disease, fuel treatment and ecological
restoration activities, and climate change.

2.6 Science Delivery to Managers

Over the past two decades, several fire effects and smoke models have been used by
managers to characterize fuels and inform fire and smoke management decisions.
Table 2.2 presents examples of models used to predict smoke production and, in
some cases, dispersion. To appropriately apply their products to smoke manage-
ment decisions or ensemble predictions, it is important to understand the error, bias,
assumptions and limitations of the models. The BlueSky Smoke Modeling Frame-
work (Larkin et al. 2010) is an operational smoke prediction tool that uses ensemble
modeling to estimate available fuel, consumption, emissions, and smoke dispersion.
BlueSky estimates fuel loadings from a 1-km fuelbed map of the USA or user inputs
and models fuel consumption with CONSUME as a first step to smoke production
and dispersion modeling (Larkin et al. 2010).

The Interagency Fuel Treatment Decision Support System (IFTDSS, https://ift
dss.firenet.gov) was designed to provide a Web-based system to assist managers in
fire, fuel, and smoke planning; reduce the number of tools for which access is needed;
and reduce error propagation caused by using multiple, ensemble models. IFTDSS
is working to incorporate CONSUME and FOFEM modules that use mapped fuel
loadings values from LANDFIRE (Rollins 2009) or user inputs. CONSUME and
FOFEM rely on a combination of empirical, semi-empirical, and physical process-
basedmodels of consumption. Command-line versions of calculators for bothmodels
are available for smoke modeling applications.

Every approach tomodeling smoke emissions has limitations. Point-basedmodels
such as CONSUME and FOFEM use many empirical equations for estimating fuel
consumption and smoke emissions. However, most equations were developed with
data collected from a limited number of ecosystems and fuelbeds, and under a limited
range of fire and fuel conditions. The physics-based processmodel in FOFEMsimpli-
fies many complex processes and was calibrated using relatively few lab and field
burns (Albini et al. 1995;Albini andReinhardt 1995). Although pointmodels provide
smoke estimates based on published research and expert opinion, model precision
is limited by the high variability inherent in the production of smoke (Larkin et al.
2012). For example, Prichard et al. (2014) used CONSUME and FOFEM to compare
predicted and actual fuel consumption in the southeasternUSA, finding that predicted

https://iftdss.firenet.gov
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Table 2.2 Selected smoke models, ranging from relatively simple to complex, including general
benefits and drawbacks

Model scale Example Simulation area Benefits Drawbacks

Point CONSUMEa Project Relatively easy
to install and
use. Fast
execution time

Limitations of simple
empirical equations.
Unstudied fire, fuel, and
consumption
relationships

Point FOFEMb Project Relatively easy
to install and
use. Fast
execution time

Generalizations in
woody consumption
model. Limitations of
empirical equations.
Unstudied fire, fuel, and
consumption
relationships. Poor
correlation of default and
actual fuel loadings

Landscape Emissions
Estimation
System (EES)c

State Provides
statewide smoke
estimates

Drawbacks of the
FOFEM module.
Untested fuel moisture
assumptions. Uses daily
fire perimeters; no
predictive capability

Landscape BlueSkyd Regional, state,
national

Provides
variable-scale
smoke forecasts

Drawbacks of the
CONSUME module.
Poor correlation of fuel
maps and actual fuels

Landscape Weather
Research and
Forecasting
(WRF)-Sfire
WRF-Cheme

Regional, state,
national

Provides
variable-scale
smoke forecasts.
Real-time
atmospheric
boundary layer
and weather
forecast
component.
Coupled
weather-fire
modeling

Errors associated with
fire spread model and
unburned areas inside the
estimated fire perimeter.
Limited number of
fuelbeds. Fuelbeds
developed for fire
behavior estimation, not
smoke. Computationally
intensive

Landscape High-Resolution
Rapid
Refresh—Smoke
(HRRR-Smoke)f

Regional, state,
national

Provides
variable-scale
smoke forecasts.
Based on WRF
and WRF-Chem.
Radiative power
is remotely
sensed; no fuel
inputs required

Fire detection is at a
relatively coarse spatial
resolution (~3 km) and
variable temporal
resolution. Interpolation
of fire spread rate
between satellite passes.
In development

(continued)
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Table 2.2 (continued)

Model scale Example Simulation area Benefits Drawbacks

Landscape HIGRAD
FIRETECg

Up to large
projects

Coupled 3D,
physics-based
models of
combustion and
atmospheric
processes

Very computationally
intensive. Not real time.
Currently for research
only

a Prichard et al. (2007)
b Reinhardt and Crookston (2003)
c Clinton et al. (2003)
d Larkin et al. (2010)
e Mandel et al. (2011), Grell et al. (2005)
f Ahmadov et al. (2019)
g Linn et al. (2002)

fuel consumption had high uncertainty in some cases, particularly with high pre-burn
fuel loading.

For smoke model applications to be useful for managers, models must be updated
to include recent research. A formal process is needed to provide periodic version
updates to ensure that smoke modeling applications include the “best available
science” for estimating smoke emissions. This is of particular concern as existing
point models are integrated or merged into spatial modeling frameworks.

There are relatively few training options for the wide variety of available smoke
models and products. The Introduction to Fire Effects (RX-310) and SmokeManage-
ment Techniques (RX-410) classes developed by the National Wildfire Coordinating
Group provide limited training using CONSUME and FOFEM and an introduction
to BlueSky. The annual Air Resource Advisor training class (administered by the US
Forest Service) focuses on large-scale (wildfire) smoke impacts and primarily uses
BlueSky for simulations. Students in this class are members of fire Incident Manage-
ment Teams and use air quality modeling to assess smoke risks to fire personnel and
local communities. The limited options for smokemodel training can lead tomisinter-
pretation of model results or overreliance on model estimates without understanding
underlying limitations and assumptions.

2.7 Research Needs

For fuel and consumption research related to smoke management, scientific chal-
lenges can be summarized in six categories as follows:

• Consistent methodologies to address sampling of wildland fuels—Although field
sampling is needed to represent a fuelbed from ground to canopy, the required
sampling methods do not easily overlap (e.g., planar intersect for downed wood,
depths and bulk density for litter, ground fuels), andmost traditional fuel sampling
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methods have low repeatability and high uncertainty. Because fuel categories are
not necessarily well correlated, predicting one component based on available
sampling of another is unrealistic. Hierarchical sampling methods that employ a
range of remotely sensed and field-based datasets (Fig. 2.5) are needed to integrate
fuels data and support characterization at the scale of prescribed burn units and
wildland fire events.

• Better understanding of the role of sampling scale in error propagation in fuel
characterization and mapping—The appropriate sampling area and intensity may
differ by fuel component (e.g., bulk density and biomass of litter and ground fuels).
Scale considerations are important for coordinated sampling design and to inform
applications that apply fine-scale fuel characterization to coarser-scale mapping
applications. CFD models can be integrated with smoke simulations to evaluate
sensitivity of smoke prediction to fuelbed heterogeneity and spatial scales of fuel
inputs. More work is needed to evaluate the sensitivity of current CFD models
(e.g., FIRETEC, WFDS) to spatial scales of fuel characterization across different
vegetation types.

• Improved methods for characterizing fuels that are major sources of smoke,
including coarse wood, peatland soils, and other ground fuels—Although TLS
and SfM offer promising advances in characterizing wildland fuels, these tech-
niques cannot quantify deep organic soil layers. Intensive field sampling is needed
to characterize variability in peatland soils and other ground fuels and to contribute
to predictivemodels of ground fuels, potentially pairedwith innovations in remote
sensing techniques or soil mapping. In contrast, TLS and photogrammetry may
aid in more accurate surveys and characterization of coarse wood. However, more
work is needed to understand and characterize fuel moisture, decay class, and
contribution of coarse wood to fuel consumption and emissions.

• Improvements to 3D fuel characterization using ALS, TLS, and SfM photogram-
metry—Remote sensing techniques, including integrated ALS, TLS, and SfM
datasets, have advanced fuel characterization, but research is needed to inform
image interpretation and quantification of wildland fuel loadings and structure.
Some of the remaining challenges with these methods include:

– Resolutions of available remotely sensed imagerymay notmatch (e.g., Landsat
TM vs. Lidar vs. photogrammetry) and may not fit the spatial scale or match
the temporal dynamics of the component of interest (i.e., downed wood vs.
stand structure).

– Wildland fuels are inherently variable in 3D space, and correlations are often
weak between canopy fuels and surface or ground fuels, which are obscured
by forest canopies.

– Fuel moisture dynamics are critical for fire behavior and smoke production but
are difficult to measure with remote sensing.

• Useof 3D fuelsmapping for improved estimates of fuel consumption—Asmethods
to map fuels in 3D become more widely available, improved maps of fuel
consumption based on pre- and post-burn imagery will be possible. Field vali-
dation will be required to inform fuel consumption mapping that can improve
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emission estimates for flaming front fires and post-flaming front smoldering
combustion.

• Improved models of fuel dynamics—More research is needed on modeling vege-
tation and fuel dynamics over time and space, with emphasis on climate change
effects on vegetation and consequences for fuel properties. Live fuel moisture
is particularly dynamic and a critical aspect of fire behavior and effects (e.g.,
Jolly et al. 2014). Spatiotemporal dynamics of fuels has implications for fire,
climate, and carbon modeling at local to regional scales. Research is needed to
refine existing ecological process models and potentially develop new ones to
project vegetation and fuel dynamics, tailoring projections to next-generation fire
behavior and smoke models.

2.8 Conclusions

Fuels are foundational to smoke prediction, often being the largest source of potential
uncertainty and error in the chain of biophysical components involved in combus-
tion and smoke production from ground to atmosphere. Until recently, fuels and
fuel consumption have been studied using traditional methods to estimate the cover,
height, and biomass of wildland fuels across dominant ecosystems ofNorthAmerica,
providing a good knowledge base in both the scientific and management communi-
ties. Over the past decade, significant progress has beenmade in describing and quan-
tifying fuels more accurately; new technologies have improved 3D characterization
and quantification across large spatial scales.

Despite this progress, improved smoke modeling will require coordinated
advances in fuel characterization, consumption by combustion phase and fire atmo-
sphere interactions associated with fire behavior, and plume dynamics modeling.
One of the biggest challenges in characterizing fuels is the high spatial and temporal
variability that is present in wildland fuels in nearly all types of ecosystems. Quan-
tifying fuel loadings across large landscapes continues to be a major issue, for both
technical and practical reasons. In addition, up-to-date fuel inventories are relatively
rare, with measurement scale and mapping applications often being a barrier for
agencies that manage vegetation and fuels.

Although most fire and fuel managers are generally well informed about tradi-
tional methods for characterizing fuels, greater emphasis is often placed on fire
behavior than smoke production. Potential smoke impacts on human health and
other activities (Chap. 7) provide an important context for smoke science and for
applications of scientific tools and concepts in managing both prescribed fire and
wildfire (Engel 2013; Ryan et al. 2013; Long et al. 2018). Improved linkages, both
technically and logistically, are needed to inform estimates of smoke production that
may exceed National Ambient Air Quality Standards, as well as phenomena such
as long-term smoldering events and nighttime inversions. Although some targeted
work has been conducted on coarse wood and ground fuel consumption (Brown
et al. 1985; Varner et al. 2007; Prichard et al. 2017), the sample size and range of fire
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weather and fuel moisture conditions are currently inadequate to improve existing
fuel consumption models.

Most fuels managers do not have routine access to high-tech tools or high-
resolution data to estimate smoke production (e.g., 3D characterization of fuels).
Therefore, practical approaches are needed to improve field-based fuel characteriza-
tion, fire behavior modeling, and consumptionmodeling, which will in turn elucidate
the potential contribution of specific fuels (coarse wood, rotten stumps, basal accu-
mulations, and deep organic soil layers) to fire emissions and smoke. Given the
spatial and temporal complexity of wildland fuel dynamics, a better understanding is
needed on the ecology of vegetation and fuels—concurrently, not as separate topics.
In future decades, we anticipate that climate change will drive substantial changes
in vegetation and fire dynamics, with concomitant changes in fuelbeds and their
contribution to fuel consumption and emissions. Developing or revising ecological
process models to ensure compatibility with next-generation fire behavior and smoke
models will improve characterization of wildland fuel dynamics as well as smoke
predictions.
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