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Abstract

Forested watersheds provide many ecosystem services, such as the filtration of sedi-

ment, pollutants, and nutrients, which are increasingly threatened by wildfire. For

example, stream nutrient concentrations often increase following wildfire and can

remain elevated for decades, making downstream waters susceptible to eutrophica-

tion. We investigated the drivers of persistent elevated stream nutrients, specifically

nitrate (NO3
�), in nine watersheds that were burned 16 years prior by the Hayman

fire, Colorado, USA. We evaluated the ability of multiple linear regression and spatial

stream network modeling approaches to predict observed concentrations of the bio-

logically active solute NO3
� and the conservative solute sodium (Na+) which serves

as a partial control. Specifically, we quantified the degree to which landscape and

stream network characteristics predict stream solute concentrations. Stream Na+

exhibited strong spatial autocorrelation that was primarily controlled by topography

and hydrology. In contrast, stream NO3
� had higher spatial variability and was

inversely correlated to vegetation cover, measured as mean normalized differenced

moisture index (NDMI). Spatially heterogeneous wildfire behaviour left intact forest

patches interspersed with high burn severity patches dominated by shrubs and

grasses which contributes to the spatial variability in stream NO3
� concentrations.

Post-fire vegetation also interacts with watershed structure to influence stream

NO3
� patterns. For example, severely burned convergent hillslopes in headwaters

positions were associated with the highest stream NO3
� concentrations due to the

high proportional influence of hillslope water in these locations. Our findings suggest

that targeted reforestation in severely burned convergent hillslopes in headwater

positions may enhance the recovery of stream NO3
� concentrations to pre-fire

levels.
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1 | INTRODUCTION

Wildfires are a natural part of many forested ecosystems, but the fre-

quency and severity of wildfires has been increasing across the West-

ern US (Abatzoglou et al., 2017; Westerling, 2016). Elevated wildfire

activity can threaten the function of critical forested watersheds that

supply fresh water to much of the Western US (Brown et al., 2008).

One such example is an increase in nitrogen (N) export post-fire. N

typically limits plant growth so N export often indicates ecosystem

disturbance and shifts in nutrient supply and demand (Chapin

et al., 2011). This net change may increase the potential for eutrophi-

cation and harmful algal blooms (Dodds & Smith, 2016; Smith

et al., 2011), degrade water treatability (Emelko et al., 2011), and limit

terrestrial ecosystem productivity (DeBano, 1991). Short-term

(<5 years) increases in stream nitrate (NO3
�) concentrations have

been documented following wildfires across the Western US (Rust

et al., 2018; Smith et al., 2011) due to elevated soil N mineralization

and leaching (Smithwick et al., 2009; Turner et al., 2007; Wan

et al., 2001). In some cases, stream NO3
� concentrations can remain

elevated for decades, particularly in watersheds with a high burn

extent and low post-fire vegetation cover (Rhoades et al., 2019; Rust

et al., 2019). These results suggest that a lack of vegetation recovery

is likely a dominant driver of persistent post-fire NO3
� export, but this

relationship remains poorly understood because vegetation cover,

watershed structure, and stream network geometry interact to regu-

late watershed solute export (Abbott et al., 2021; Covino et al., 2021;

Creed & Beall, 2009; Likens & Bormann, 1974; Lovett et al., 2002;

Shogren et al., 2021; Zarnetske et al., 2018). Watershed structure is

the spatial arrangement of divergent and convergent hillslopes across

the landscape (Baiamonte & Singh, 2016; Jencso et al., 2010). Diver-

gent hillslopes are convex and contribute little flow to the stream,

whereas convergent hillslopes concentrate hydrologic flowpaths and

contribute large inputs to channel networks (Detty & McGuire, 2010).

In headwater positions, water and solutes are primarily derived from

shallow groundwater contributions from adjacent hillslopes (Covino

et al., 2021; Gomi et al., 2002; Likens & Bormann, 1974) whereas

upstream sources increasingly dominate water composition in lower

network positions (Vannote et al., 1980). Therefore, headwaters are

particularly sensitive to disturbance in the surrounding uplands

(Lowe & Likens, 2005) and contributions to the stream in these loca-

tions have the potential to exert strong control on downstream solute

concentrations (Abbott et al., 2018; Alexander et al., 2007;

Wohl, 2017).

To better understand the spatial patterns in post-fire water chem-

istry, we consider both conservative and reactive solutes across a gra-

dient of burn severities and extents. Conservative solutes, such as

sodium (Na+), have low biological demand (Dingman, 2015; Stream

Solute Workshop, 1990) and thus concentrations across stream net-

works are primarily driven by physical transport processes (Webster &

Valett, 2006) and watershed geophysical properties (Brennan

et al., 2016; French et al., 2020; McGuire et al., 2014). Thus, we can

use this conservative solute to represent watershed hydrology. Fur-

thermore, Na+ is generally not a water quality concern and did not

increase after the Hayman Fire (Rhoades et al., 2011). In contrast,

concentration patterns of biologically active solutes such as NO3
� are

controlled by interactions between hydrologic transport and biological

uptake (Bernhardt et al., 2003, 2005; Gardner & McGlynn, 2009). In

particular, forest cover can be a primary control on NO3
� export at

the watershed scale (Bormann & Likens, 1967; Likens et al., 1970).

Furthermore, our spatially distributed sampling design characterizes

current conditions across watersheds with a gradient of burn sever-

ities and extents rather than restricted comparisons of burned and

unburned end members that are common in post-fire literature. This

allows us to investigate how heterogeneous fire behaviour and water-

shed structure interact to drive spatial patterns water chemistry.

Statistical models can be used to partition the spatial variance in

stream Na+ and NO3
� concentrations among landscape

(i.e., topographic, vegetation, and fire predictors) and stream network

(i.e., flow-connected distance) characteristics. Multiple linear regres-

sion (MLR) modeling can be used to determine the relative influence

of specific landscape characteristics on spatially distributed solute

concentrations (Cho & Lee, 2018; McManus et al., 2020), but this

approach assumes independence of sampling locations. Geostatistical

modeling approaches, such as spatial stream network (SSN) models,

are better suited to differentiate landscape from stream network attri-

butes since they account for spatial autocorrelation of flow-connected

samples and the dendritic and unidirectional nature of stream net-

works (Isaak et al., 2014; Peterson & Ver Hoef, 2010; Ver Hoef

et al., 2014). Furthermore, this geostatistical approach facilitates the

prediction of water chemistry at unsampled locations through entire

stream networks. We paired spatially distributed water chemistry

sampling with terrain analysis and vegetation and fire mapping to

address the following objectives: (1) examine the degree to which

topographic, vegetation, and fire variables predict stream Na+ and

NO3
� across spatial scales within small headwater networks and

(2) evaluate the performance of MLR and SSN models in predicting

stream solute concentrations. To our knowledge, this study is the first

to use stream geostatistical models to investigate the drivers of ele-

vated post-fire stream NO3
� concentrations and therefore serves as a

useful framework for future work on other fires and water chemistry

concerns.

2 | MATERIALS AND METHODS

2.1 | Site description

In 2002, the Hayman Fire burned more than 554 km2 of ponderosa

pine (Pinus ponderosa) and Douglas-Fir (Pseudotsuga menziesii) forest

in the mountainous terrain of the Pike San Isabel National Forest

(Graham, 2003) (Figure 1). This was one of the largest wildfires in Col-

orado's recorded history and 35% of the fire burned at high severity

(Robichaud et al., 2003). The fire burned the area contributing to

Cheesman Reservoir, a primary drinking water supply to the city of

Denver (Graham, 2003). In combination, the 2002 Hayman and 1996

Buffalo Creek fires cost Denver's public water utility tens of millions
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of dollars on water treatment, sediment and debris removal, and recla-

mation (Hall, 2017). Watersheds within the Hayman Fire burn perime-

ter receive an annual average of 40 cm of precipitation (WRCC, 2021)

and 60%–75% of that comes from summer monsoonal rains (Wilson

et al., 2018). Mean elevation within the fire perimeter is 2462 m

which is within the intermittent snow zone that does not maintain

snow cover throughout the winter (Richer et al., 2013). The parent

material underlying our study area is dominated by Pike's Peak Forma-

tion granite (Ruleman et al., 2011) which weathers to form coarse,

sandy loam soils (Cipra et al., 2003). Ambient Na+ concentrations are

relatively low in granitic basins in our study area. There were no

reported post-fire increases in stream Na+ and measured post-fire

increases in other geochemical ions (i.e., calcium, acid neutralizing

capacity, and conductivity) recovered to pre-fire levels 2 years after

the Hayman Fire (Rhoades et al., 2011).

2.2 | Stream sampling

To quantify the spatial variability of post-fire stream Na+ and NO3
�

concentrations across a range of burn patterns and severity, we sam-

pled stream water roughly every 800 meters along the mainstems of

our study watersheds (Figure 1). This distance was selected to ensure

a consistent sampling interval that maximized the number of samples

collected per watershed but would allow us to complete watershed

sampling within one day. Low-flow conditions were stable and there

were no precipitation events during our sampling period (6/1/2018–

6/7/2018). Previous research at the Hayman Fire demonstrated that

patterns of elevated stream NO3
� in severely burned watersheds per-

sist across flow conditions (Rhoades et al., 2019) so our June sampling

period should be broadly representative. All stream samples from a

given watershed were collected within a single day in pre-washed 1 L

high-density polyethylene bottles moving in the upstream direction.

Samples were immediately filtered with 0.45 μm polyvinyl diethylene

filters (MilliporeSigma, Burlington, MA) and analysed for concentra-

tions of stream Na+ and NO3
� using ion chromatography (Dionex

ICS-3000, Waltham, MA and Waters 580, Sunnyvale, CA). Detection

limits for both Na+ and NO3
� were 0.01 mg/L and any concentrations

below that were replaced with ½ the detection limit.

2.3 | Geospatial analysis

We conducted a terrain analysis to characterize the underlying water-

shed structure. First, flow direction was derived from a 10-m digital

elevation model (DEM) (U.S. Geological Survey, 2018) using the

F IGURE 1 Sampling locations within the study watersheds affected by the 2002 Hayman Fire, Colorado, USA. The Hayman fire perimeter is
outlined in red in the bottom right with individual watersheds outlined in black and labeled with the associated panel letter. Water chemistry
samples (n = 71) were collected in June 2018 and the symbol size of each sampling point increases with observed stream NO3

� concentration
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multiple triangular flow direction algorithm (Seibert &

McGlynn, 2007). Watershed contributing areas were delineated and

calculated for all sampling points (0.32–35.4 km2) using the open-

STARS package (Peterson & Ver Hoef, 2014) in R Studio. We summa-

rized topographic, vegetation, and fire variables as means and

proportional extents within the contributing areas for each sampling

location (Table 2) using the SSN package (Ver Hoef et al., 2014).

Topographic metrics included contributing area, mean slope,

mean elevation, riparian extent, and mean topographic wetness index

(TWI) (Table 1). Slope, elevation, and TWI were derived from the

10-m DEM using Whitebox tools (Lindsay, 2020; Wu, 2021) and sum-

marized as watershed means (Table). TWI serves as a static measure

of wetness (i.e., soil and shallow sub-surface moisture) throughout a

watershed based on topographic features such as local upslope accu-

mulated area and slope angle (Beven & Kirkby, 1979) (Formula (1)).

TWI¼ ln
α

tan βð Þ , ð1Þ

where α is the incremental increase in contributing area per unit con-

tour length and β is the local slope. We used a physical definition of

the riparian corridor that included pixels <2 m above the stream sur-

face elevation (sensu Jencso et al., 2010) and calculated riparian extent

as the total riparian corridor area divided by contributing area of each

sampling point. This approach differs from an earlier estimate of the

extent of riparian vegetation in these watersheds (Rhoades

et al., 2019).

We characterized vegetation condition using three spectral

indices—normalized differenced vegetation index (NDVI), enhanced

vegetation index (EVI), and normalized differenced moisture index

(NDMI)—which utilize different wavelengths and therefore have dis-

tinct sensitivities to the structural conditions of forests (Pickell

et al., 2016). NDVI is the most common index that uses near-infrared

(NIR) and Red bands which are sensitive to changes in foliar condition

(i.e., green leaf area and biomass) (Formula (2)).

NDVI¼ NIR� Redð Þ
NIRþ Redð Þ : ð2Þ

EVI is a derivative of NDVI that has improved sensitivity in high bio-

mass regions through the integration of the blue band (Formula (3)).

EVI¼2:5� NIR� Redð Þ
NIRþ6� Red�7:5�Blueþ1ð Þ : ð3Þ

NDVI and EVI characterize foliage, rather than vegetation structure so

they recover to pre-fire levels relatively quickly as grasses and forbs

quickly colonize disturbed sites (Buma, 2012; Schroeder et al., 2011).

However, spectral indices with longer wavelengths, such as short

wave infrared (SWIR), can be more sensitive to forest change and

recovery (Schroeder et al., 2011). NDMI utilizes both NIR and

SWIR, allowing it to characterize canopy cover and vegetation water

stress (Formula (4)).

NDMI¼ NIR�SWIRð Þ
NIRþSWIRð Þ : ð4Þ

Accordingly, NDMI is more sensitive to forest loss and recovery than

NDVI which is broadly sensitive to the amount of photosynthetically

active vegetation and post-disturbance NDMI recovery is generally

TABLE 1 Summary of watershed predictor variables and their correlation with observed water chemistry

Variable Summary statistic Data source

Correlation coefficient

Na+ NO3
�

Topographic Contributing area Value at sampling point Whitebox flow accumulation tool 0.12 �0.03

Slope Watershed mean Whitebox slope tool 0.27 �0.32

Elevation Watershed mean 10-m digital elevation model �0.23 �0.27

Riparian extent % of contributing area Whitebox elevation above stream tool 0.24 �0.01

TWI Watershed mean Whitebox twi tool �0.33 0.14

Vegetation Tree cover Watershed mean Rangeland analysis platform 0.15 �0.5

Shrub cover Watershed mean Rangeland analysis platform �0.24 0.15

Bare coverˣ Watershed mean Rangeland analysis platform �0.12 0.44

NDMI Watershed mean Climate engine 0.09 �0.67

NDVIˣ Watershed mean Climate engine 0.05 �0.64

EVIˣ Watershed mean Climate engine �0.02 �0.62

Fire Burn extent % of contributing area MTBS �0.24 0.43

dNBRˣ Watershed mean MTBS �0.26 0.37

Note: Pearson correlation coefficients were calculated between each predictor variable and Na+ or NO3
�. Vegetation metrics represent current conditions

(i.e., June 2018) whereas fire metrics represent immediate post-fire condition (i.e., August 2003). Variables marked with a ˣ were removed prior to linear

mixed model selection due to strong correlation (>0.90) with another predictor variable.

Abbreviations: dNBR, differenced normalized burn ratio; EVI, enhanced vegetation index; MTBS, monitoring trends in burn severity database; NDMI,

normalized differenced moisture index; NDVI, normalized differenced vegetation index; TWI, topographic wetness index.
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slower than NDVI (Cuevas-González et al., 2009; Morresi et al., 2019;

Pickell et al., 2016; Schroeder et al., 2011). We obtained mean June

2018 vegetation indices from Landsat using Climate Engine

(Huntington et al., 2017) to match the vegetation characterization

with the timing of our stream sampling. We also included fractional

land cover estimates derived from 2018 satellite imagery that was

extensively calibrated across the Western US and estimated the pro-

portion of each Landsat pixel covered by trees, shrubs, and bare

ground (Allred et al., 2021).

Mean differenced normalized burn ratio (dNBR, a measure of

burn severity) and burn extent were calculated for the area contribut-

ing to each sampling point. These fire metrics represent immediate

post-fire impacts by differencing one pre-fire (8/24/2001) and one

post-fire (8/14/2003) Landsat image. dNBR was then classified into

categorical burn severity as follows: �150–140 unburned; 140–211

low severity; 211–350 moderate severity, 350–953 high severity

(Eidenshink et al., 2009). Low severity fire tends to leave tree cano-

pies largely unaltered whereas high severity fire typically causes com-

plete consumption of surface organic matter and canopy foliage

(Parsons et al., 2010). Wildfire severity varies spatially across topo-

graphic, vegetation (i.e., fuel composition, arrangement, condition),

and weather gradients (Taylor et al., 2021) which creates mosaics of

post-fire vegetation structure and composition that vary at scales

finer than mapped severity patches (Lentile et al., 2007). To character-

ize the spatial burn patterning of each watershed, we calculated burn

extent, patch size, patch radius, and patch density by severity

(Table 3). Burn extent reflects the proportion of contributing area that

was burned by each severity class. All patch metrics were calculated

with the landscape metrics package (Hesselbarth et al., 2019) in R Stu-

dio which defines contiguous cells belonging to the same burn sever-

ity class. For each watershed, we determined patch area and

calculated patch radius as the mean distance from each cell in a patch

to its centroid, and patch density as the number of patches divided by

contributing area.

2.4 | Statistical modeling

We used statistical models to evaluate the degree to which topo-

graphic, vegetation, and fire variables and flow-connected distance

control post-fire stream water chemistry – specifically, concentrations

of Na+ and NO3
�. Concentration data were log-transformed to

improve normality and a correlation analysis removed redundant pre-

dictor variables with a correlation >0.90 (Figure 2, Table 1). To identify

the top-performing Na+ and NO3
� models, we went through a two-

step model selection process (sensu McManus et al., 2020; Rodríguez-

González et al., 2019). First, we identified which landscape character-

istics best predicted stream Na+ and NO3
� using linear mixed model

selection which tested every linear combination of predictor variables

while including a random watershed variable to account for the

nested sampling design (Table S1). The Na+ and NO3
� models with

the lowest maximum likelihood estimate of Akaike's Information Cri-

teria (AIC) then progressed to the second phase of model selection

where we compared the effect of spatial autocorrelation on model

results. We initially ran multiple linear regression (MLR) models which

use landscape characteristics to predict observed water chemistry at

each sampling location. The predictor variables are spatially explicit

given that they characterize the area contributing to a specific sam-

pling point, but MLR models assume independence between stream

water samples. We then compared MLR models to spatial stream net-

work (SSN) models that jointly consider landscape and stream net-

work characteristics. This approach captures spatial effects beyond

those directly attributable to predictor variables by accounting for

flow-connection and using an autocovariance function to account for

spatial structure in residual errors (Isaak et al., 2014). MLR and SSN

model performance was compared through iterative leave-one-out

cross-validation. Observations at sampling points were removed one

at a time and the model was used to predict each of the removed

values along with the prediction standard error (Ver Hoef &

Peterson, 2020). The model with the lowest AIC and root mean

TABLE 2 Physical characteristics and solute concentrations of each study watershed for samples collected in June 2018

Watershed

Physical characteristics Solute concentrations

NO3
� Na+

Contributing area Mean slope Mean elev. Mean NDMI Mean (cv) Min–Max Mean (cv) Min–Max

(km2) (%) (m) ( ) (mg/L) (mg/L) (mg/L) (mg/L)

Fourmile 18.8 26 2441 �0.11 1.14 (1.28) 0.17–6.23 6.38 (0.26) 4.95–10.88

East Twin 3.2 30 2640 �0.06 0.88 (1.07) 0.005–2.21 6.46 (0.08) 5.77–6.91

West Twin 3.3 38 2694 �0.05 0.55 (0.88) 0.08–0.97 7.61 (0.15) 6.13–8.8

West Turkey 22 25 2523 �0.08 0.88 (0.22) 0.71–1.07 7.73 (0.01) 7.68–7.82

East Turkey 35.4 17 2571 �0.08 0.29 (0.23) 0.19–0.38 6.78 (0.03) 6.48–7.13

Brush 6.1 28 2277 �0.13 3.06 (0.65) 0.28–5.63 6.23 (0.42) 4.71–12.96

Pine 9.3 35 2516 �0.06 0.23 (0.80) 0.005–0.63 8.40 (0.36) 3.89–13.11

Gunbarrel 12.3 27 2361 �0.02 0.16 (0.66) 0.03–0.30 7.80 (0.07) 6.74–8.18

Kelsey 12.1 22 2284 �0.04 0.56 (1.06) 0.01–1.92 8.94 (0.11) 7.56–10.86

Note: NDMI is the average normalized differenced moisture index in June 2018, and cv is the coefficient of variation.
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square prediction error (RMSPE) was selected for use in predictive

mapping of stream solute concentrations.

We used the openSTARS (Kattwinkel & Szöcs, 2020) and SSN pack-

ages (Ver Hoef et al., 2014) to build the SSN models. First, stream sam-

pling locations were incorporated into a landscape network (LSN) to

characterize network geometry (Peterson & Ver Hoef, 2014). The addi-

tive function quantified the proportional influence of each stream seg-

ment (Ver Hoef & Peterson, 2020) and calculated distance matrices

between all sampling points. We used a tail-up autocovariance structure

to restrict our modeling to flow-connected distance, which is only mea-

sured between points with an upstream-to-downstream connection

(Isaak et al., 2014; Peterson & Ver Hoef, 2010). This distance metric is

better suited for stream network studies than straight-line Euclidean dis-

tance because it characterizes downstream transport and longitudinal

connectivity of dissolved solutes (Peterson & Ver Hoef, 2010). We then

compared empirical semivariograms with spherical and exponential fits,

selected the best-performing structure (i.e., lowest AIC), and used the

modeled distribution to derive three associated parameters—the nugget,

sill, and range. Empirical semivariograms quantify the variation between

samples (i.e., stream Na+ or NO3
� concentrations) as a function of dis-

tance between sampling points (Ganio et al., 2005). Positive autocorrela-

tion occurs when semivariance is smaller (i.e., measurements are more

similar) near the origin and increases at greater lag distances. In some

cases, the semivariogram will reach an inflection point at a given lag dis-

tance (‘range’) where semivariance begins to flatten out (‘sill’). Samples

are considered uncorrelated at distances greater than the range and the

sill represents the dissimilarity of the uncorrelated data (Isaak

et al., 2014). The nugget describes spatial variation at scales smaller than

the minimum sampling interval (i.e., ≤52 m in our study).

2.5 | Longitudinal patterns across two watersheds
with inverse spatial burn patterns

Finally, we used the SSN package in R (Ver Hoef et al., 2014) to interpo-

late stream NO3
� concentrations along the mainstems of two paired

F IGURE 2 Pearson correlation matrix between all potential predictor and response variables. The black box highlights correlations between
the predictor variables and stream Na+ and NO3

�, both of which were log-transformed. Everything beyond the black box represents correlations
among predictor variables. Area is contributing area, Slope is mean watershed slope, Elev is mean watershed elevation, Rip is riparian extent, TWI
is mean topographic wetness index, Tree is mean tree cover (%), Shrub is mean shrub cover (%), Bare is mean bare ground cover (%), NDMI is
mean normalized differenced moisture index, NDVI is mean normalized differenced vegetation index, EVI is mean enhanced vegetation index,
Burn is burn extent (%), and dNBR is mean differenced normalized burn ratio
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watersheds and compared spatial NO3
� patterns to continuous mea-

sures (i.e., every 10 m) of hydrologic inputs and the vegetation condition

of those inputs. These two watersheds had similar total contributing

areas (6.1 and 9.3 km2, Table 1) and were extensively burned (i.e., >50%

of contributing area burned). For both watersheds, patch density was

high and fire severity was mixed equally among burn severity classes

(Table 3). However, the headwaters were severely burned in Brush Creek

and unburned in Pine Creek (Figure 1). We distributed 3,000 equally

spaced prediction points along the geomorphic channel networks of each

watershed, delineated the contributing area of each prediction point, and

calculated topographic, vegetation, and fire predictor variables (see

Section 2.3). We also calculated the flow-connected distance between all

observed and prediction locations. The NO3
� SSN model then predicted

NO3
� concentration and standard error at each location based on both

landscape characteristics (i.e., contributing area, riparian extent, mean

TWI, and mean NDMI) and flow-connected distance. We then calculated

the relative lateral input (LI) as the incremental downstream increase in

contributing area relative to the total contributing area

(i.e., RelativeLI¼ areacell nð Þ – areacell n�1ð Þ
� �

=areacell nð Þ). Because stream

discharge scales with contributing area (Bergstrom et al., 2016), this

metric reflects the proportional increase in contributing area relative

to total contributing area at that point. Finally, mean NDMI was calcu-

lated for the discrete lateral input (LI) contributing to each 10-m

stream cell using the same June 2018 NDMI image described in

Section 2.3. We also resampled the paired watersheds in June of

2019 at a 300m resolution to assess the accuracy of our NO3
� SSN

predictions with observed values.

3 | RESULTS

3.1 | Watershed characteristics and stream Na+

and NO3
� concentrations

Our nine study watersheds had contributing areas ranging from 3.2 to

35.4 km2, slope of the contributing hillslopes ranged from 17–38%,

and elevation from 2284 to 2694 m (Table 2). At the time of our sam-

pling, 16 years after the fire, mean normalized differenced moisture

index (NDMI) was the lowest in Brush (�0.13) and highest in Gunbar-

rel (�0.02) where burn extents were 71 and 18% respectively

(Tables 2 and 3). Burn extent varied from 1% to 90% across the water-

sheds, but seven of them had more than half of their contributing area

burned and 36%–64% of that burned at high severity (Table 3). Patch

density was high which is consistent with a mixture of fire severity

classes. High severity fire, defined by complete canopy consumption,

generally had the largest patch size and radius (Table 3), suggesting

that post-fire pine reestablishment may be limited in high severity

areas (Chambers et al., 2016).

Observed stream Na+ concentrations ranged from 3.9–13.1 mg/L

(-Figure S1), with an average concentration of 7.3 mg/L which is simi-

lar to the pre-fire average of 6.1 mg/L reported in these granitic

basins (Rhoades et al., 2011). Kelsey had the highest and Brush had

the lowest mean stream Na+ concentration whereas Brush had the

highest and West Turkey had the lowest coefficient of variation

(Table 2). Observed stream NO3
� concentrations varied by three

orders of magnitude (0.005–6.2 mg/L) and average stream NO3
� con-

centration was 0.91 mg/L which is five times greater than pre-fire

concentrations (0.18 mg/L) (Rhoades et al., 2019). Brush watershed

had the highest (3.06 mg/L) and Gunbarrel the lowest (0.16 mg/L)

mean NO3
� concentration whereas Fourmile had the greatest and

West Turkey the lowest coefficient of variation (Table 2). The coeffi-

cient of variation was consistently higher for stream NO3
� concentra-

tions (Table 2) indicating greater within-watershed variability in

stream NO3
� compared to Na+.

Topographic variables had weak correlations (<0.32) with both

stream Na+ and NO3
� (Table 1). Vegetation predictors generally had

much stronger correlations with NO3
� compared to Na+, with the

exception of shrub cover (Table 1). Burn variables had slightly higher

correlations with NO3
� compared to Na+ (Table 1). All predictor var-

iables that were selected through linear mixed model selection were

weakly correlated with water chemistry (<0.33) (Figure S2). The one

exception was a strong inverse relationship between mean NDMI

TABLE 3 Burn metrics by severity for each study watershed. These metrics represent immediate fire impacts by differencing one pre-fire
(8/24/2001) and one post-fire (8/14/2003) Landsat image and severity is classified according to MTBS thresholds (Eidenshink et al., 2009)

Watershed

Burn extent Mean patch size / Mean patch radius

Patch densityLow Moderate High Unburned Low Moderate High

(%) (%) (%) (ha/m) (ha/m) (ha/m) (ha/m) (#/100 ha)

Fourmile 8 17 64 2/29 1/22 1/32 18 /53 42

East Twin 10 22 57 1/21 1/23 1/38 13/63 44

West Twin 12 26 51 1/39 1/27 1/42 10/73 56

West Turkey 13 20 46 3/41 0/23 1/37 11/67 59

East Turkey 12 17 45 4/37 0/23 1/34 11/72 56

Brush 11 23 38 4/40 0/23 2/41 8/49 50

Pine 7 16 36 8/43 0/20 1/40 21/98 31

Gunbarrel 6 6 6 73/130 0/20 1/28 5/79 24

Kelsey 1 0 0 597/758 0/8 1/26 1/72 6
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and stream NO3
� which had a correlation coefficient of �0.67

(Figure S2).

3.2 | Landscape and stream network controls on
Na+ and NO3

� concentrations

Vegetation and fire predictor variables were weakly correlated (0.01–

0.26) and topographic predictors were more strongly correlated

(0.12–0.33) with log[Na+] (Table 1). Linear mixed model selection

identified contributing area, slope, riparian extent, TWI, and tree and

shrub cover as the best predictors of log[Na+] (Table S1). Together,

watershed predictors explained 54.4% of the variance in log[Na+] in

the Na+ MLR model and 45% of the variance in the Na+ SSN model

(Table 4). In the Na+ SSN model, 53.1% of variation in log[Na+] was

explained by flow-connected autocorrelation (Table 4). Na+ exhibited

strong positive autocorrelation where semivariance was low at short

lag distances, but increased with distance (Figure 3). When flow-

connected autocovariance was modeled with a spherical fit, Na+ had

a nugget of 0.001, sill of 0.029, and range of 3,700 m (Figure 3). The

SSN model improved Na+ predictions relative to the MLR model, as

indicated by lower AIC, RMSPE, and unexplained variance values

(61%, 20%, and 96% lower, respectively) (Table 4). This is demon-

strated in the leave one-out-cross validation where SSN predictions

were closer to observed values (Figure 4a) and prediction standard

errors were lower (Figure 4c) in the Na+ SSN model compared to the

Na+ MLR model.

Fire and vegetation variables generally had stronger correlations

(0.15–0.67) with log[NO3
�] than topographic variables (0.03–0.32)

(Table 1). Linear mixed model selection identified contributing area,

riparian extent, TWI, and NDMI as the best predictors of log[NO3
�]

(Table S1) and mean NDMI had the strongest correlation with log

[NO3
�] (Figure 2). In the NO3

� MLR model, the selected predictor

variables, with the exception of riparian extent, were significant and

accounted for 51.4% of the variance in log[NO3
�] (Table 4). In the

NO3
� SSN model, TWI and NDMI were the only significant predictor

variables and the predictors explained 36% of variation in log[NO3
�]

while flow-connected autocorrelation explained 41.5% of variation in

log[NO3
�] (Table 4). Stream NO3

� had high semivariance across all

flow-connected distances, though semivariance peaked at intermedi-

ate lag distances (1,000–5,000 m) (Figure 3). When flow-connected

autocovariance was modeled with an exponential fit, NO3
� had a nug-

get of 0.385, sill of 0.708, and range of 8800 m which is equal to our

maximum sampling distance (Figure 3). The NO3
� SSN model also had

TABLE 4 Summary of spatial stream network (SSN) and multiple linear regression (MLR) models that predict log-transformed stream Na+ and
NO3

� concentrations. Parameter estimates represent the regression coefficient, which is the change in the response variable based on a 1-unit
change in the predictor variable while holding all other variables constant. Variance decomposition assigns variance in Na+ or NO3

� to watershed
predictor variables, flow-connected autocorrelation, and unexplained variance. MLR models do not account for flow-connected autocovariance.
Model performance metrics come from iterative leave-on-out cross-validation

Na+ models NO3
� models

SSN MLR SSN MLR

Parameter estimates Contributing area 0.008 0.012** �0.03 �0.04*

Slope 0.090*** 0.104*** - -

Elevation - - - -

Riparian extent 0.100** 0.106*** 0.32 0.29

TWI 0.651* 0.813*** 1.33* 0.91*

Tree cover �0.02*** �0.018*** - -

Shrub cover �0.115*** �0.111*** - -

NDMI - - �17.64*** �17.37***

Burn extent - - - -

Variance components (%) Predictor variables 45.0 54.4 36.0 51.4

Flow-connected distance 53.1 - 41.5 -

Total explained 98.1 54.4 77.5 51.4

Unexplained 1.9 45.6 22.5 48.6

Model performance AIC �55.35 �34.29 210 212

RMSPE 0.165 0.205 1.00 1.07

Abbreviations: AIC, Akaike's information criteria; NDMI, normalized difference moisture index; RMSPE, root mean square prediction error; TWI,

topographic wetness index.

*Statistical significance of predictor variables = 0.05.

**Statistical significance of predictor variables = 0.01.

***Statistical significance of predictor variables = 0.001.
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lower AIC, RMSPE, and unexplained variance values relative to the

NO3
� MLR model (<1%, 7%, and 54% lower, respectively) (Table 4).

Based on leave-on-out cross validation, SSN predictions were closer

to the observed values (Figure 4b) and prediction standard error was

lower (Figure 4d) in the NO3
� SSN model than the MLR model.

3.3 | Longitudinal patterns across two watersheds
with inverse spatial burn patterns

The two paired watersheds with inverse burn patterns exhibited

strong differences in stream NO3
� concentration. 72% of Brush Creek

watershed was burned and most of the burn occurred in the upper

half of the watershed (Figure 5a). Conversely, the majority of the

burned area in Pine Creek occurred in the lower half of the watershed

(Figure 5b). In Brush Creek, stream NO3
� concentrations spanned a

4.6 mg/L range. The minimum concentration (0.4 mg/L) occurred at

the upper most sampling location and the highest observed concen-

tration (5.0 mg/L) occurred nearby within the upper watershed

(Figure 5e). Nitrate generally declined in the lower half of the Brush

Creek watershed and reached 0.9 mg/L at the downstream-most sam-

pling location. On the other hand, stream NO3
� concentrations in Pine

Creek increased gradually downstream from below detection levels in

the headwaters to 0.3 mg/L at the outlet (Figure 5f). Maximum and

mean stream NO3
� concentrations were 14- and 17-times higher in

Brush than Pine Creek. Our NO3
� SSN model predictions strongly

agreed with measured stream NO3
� concentrations during our 2019

sampling (Figure S3).

4 | DISCUSSION

4.1 | Post-fire vegetation is a dominant driver of
stream NO3

� patterns

The conservative Na+ and biologically reactive NO3
� solutes included

in this study were controlled by distinct landscape predictor variables.

Stream Na+ concentrations were most strongly correlated with topog-

raphy (Table 1), which often controls watershed hydrology in moun-

tainous terrain (Bergstrom et al., 2016) whereas correlations between

Na+ and vegetation and fire predictors were relatively weak (Table 1).

These observations are consistent with our expectation of low biolog-

ical demand and strong hydrologic control of conservative Na+ tracers

(Dingman, 2015; Stream Solute Workshop, 1990). In contrast, stream

NO3
� had stronger relationships with vegetation than topographic

predictors (Table 1) which supports the understanding that reactive

solutes, such as NO3
�, are more strongly controlled by biotic demand

(Bernhardt et al., 2003, 2005; Gardner & McGlynn, 2009). More spe-

cifically, spectral vegetation indices were the strongest predictors of

stream NO3
� concentration in this and other studies. For example,

reduced post-fire plant cover, measured as NDVI, explained the per-

sistence of elevated post-fire stream N broadly across the Western

US (Rust et al., 2019) and earlier work at the Hayman fire demon-

strated that stream NO3
� concentrations were inversely related to

riparian vegetation cover (Rhoades et al., 2019). In this study, the

strongest predictor of stream NO3
� concentration was mean NDMI

(Figure 2), a vegetation index that considers both canopy cover and

the water stress of that vegetation and is particularly sensitive to burn

F IGURE 3 Empirical semivariograms
of log-transformed stream Na+ (blue) and
NO3

� (red) based on the flow-connected
distance between sampling points.
Symbol sizes are proportional to the
number of data pairs included in each bin.
The grey shaded region represents the
95% confidence interval from a local
polynomial regression of each

semivariogram. Semivariograms show
evidence of strong positive
autocorrelation in Na+ (blue) and weak
spatial autocorrelation in NO3

� (red)
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severity, forest type, and forest loss and recovery (Morresi

et al., 2019). The strong inverse relationship between NDMI and

stream NO3
� demonstrates that water-stressed areas with low can-

opy cover were associated with elevated stream NO3
�

concentrations.

Large high severity fire has the potential to shift ecosystems from

forest to grass and shrubland which can reduce vegetation N reten-

tion. Even a decade after the Hayman and other nearby fires, 75% of

high burn severity plots had no conifer regeneration and it is possible

that forest density will never return to pre-fire levels in these areas

(Chambers et al., 2016). This pattern is due, in part, to the spatial

extent of high severity fire which had largest patch size of any sever-

ity class in our burned watersheds with a mean radius >50 m (Table 3)

indicating that the distance to live seed sources will likely constrain

conifer regeneration in these areas (Chambers et al., 2016). Beyond

our field sites, there is broad evidence of declining post-fire tree

regeneration due to increasing climate aridity and fire activity which

can shift previously forested systems into alternative stable states

dominated by grassland and weedy, herbaceous vegetation types

(Coop et al., 2020; Stevens-Rumann et al., 2018; Tepley et al., 2017;

Walker et al., 2018). Because forest cover is often a primary

mechanism for terrestrial N retention (Dunnette et al., 2014; Vitousek

et al., 1979), changes from forest to grass and shrub cover can impact

ecosystem N losses (Lovett et al., 2002). For example, conifers will

more strongly regulate N cycling than grasses and forbs given their

underlying nutrient use efficiencies (Chapman et al., 2006) so patches

with little post-fire tree regeneration will likely be leakier with

respect to N.

Stream NO3
� concentrations exhibited higher spatial variability

than conservative Na+ concentrations. Semivariance was greater for

stream NO3
� than Na+ across all flow-connected distances (Figure 3)

which suggests higher variability in stream NO3
� concentrations

across all measured scales (Isaak et al., 2014). Stream NO3
� also

exhibits patchiness at smaller spatial scales than Na+ as seen by NO3
�

having a larger nugget value and steeper increase in semivariance with

lag distance (Figure 3) (Isaak et al., 2014; Zimmerman & Ver

Hoef, 2017). Finally, SSN model improvements tend to be smaller

where spatial autocorrelation is lower (Isaak et al., 2014) so the rela-

tively small SSN improvements for stream NO3
� relative to Na+ indi-

cate weaker spatial structuring in NO3
� concentrations. Other studies

have attributed stream NO3
� variability to rapid in-stream uptake and

processing (McGuire et al., 2014). Nitrate uptake lengths in nearby

F IGURE 4 Leave-one-out cross validation to assess (a, c) Na+ and (b, d) NO3
� model performance. (a–b) Model predictions are plotted

against observed values for both MLR (open triangles) and SSN (black circles) models. (c–d) Prediction standard error is plotted against relative
upslope accumulated area, with headwater positions on the left side of the plot and lower watershed positions on the right side
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Wyoming streams ranged from hundreds to thousands of meters (Hall

et al., 2009), so uptake is likely to influence NO3
� patterns across the

range of scales in our study (<9,000 m). However, headwater streams

with elevated ambient inorganic N concentrations have a limited abil-

ity to moderate downstream transport of inorganic N (Covino

et al., 2021) because nutrient delivery to streams is often orders of

magnitude greater than in-stream production or removal (Brookshire

et al., 2009). Our previous work at the Hayman Fire demonstrated

that in-stream biotic N demand increased after the fire, but N supply

from burned uplands exceeded the increase in stream N demand

(Rhea et al., 2021). While in-stream uptake likely contributed to spatial

variability in stream NO3
�, our work demonstrates strong post-fire

vegetation controls on the spatial patterns of stream NO3
� concentra-

tions. Burn severity patch density was high within our study water-

sheds (Table 3) which is consistent with a mixture of fire severity

classes. This results in intact forest patches with high N demand that

are interspersed with high burn severity patches that are dominated

by shrubs and grasses and have lower N demand. Therefore, spatially

variable vegetation N demand likely contributes to the high observed

spatial variability in stream NO3
� concentrations.

4.2 | Burned headwaters are susceptible to
elevated stream NO3

�

Patterns of vegetation cover interact with watershed structure to

drive spatial distributions of stream NO3
� concentrations. In headwa-

ter positions, most water and dissolved solutes originate from the sur-

rounding terrestrial landscape, making these areas particularly

sensitive to disturbance in the surrounding uplands (Gomi et al., 2002;

Likens & Bormann, 1974; Lowe & Likens, 2005). Thus, the vegetation

cover of large convergent hillslopes should have stronger proportional

influence on stream NO3
� concentration in headwater positions rela-

tive to locations lower in the network. We found that convergent hill-

slopes in the headwaters of Brush Creek were associated with low

NDMI (Figure 5e) and aligned with locations of high stream NO3
�

F IGURE 5 Spatial arrangement of burn severity in (a) Brush Creek which was 71% burned with most high severity fire occurring in the upper
half of the watershed and (b) Pine Creek which was 59% burned with most high severity fire occurring in the lower half of the watershed.
Distribution of cumulative contributing area (black solid lines), cumulative burned area (red dashed lines), and mean catchment NDMI (blue dotted
lines) for (c) Brush Creek and (d) Pine Creek. Upstream distance was relativized between 0 and 1 in all plots, with headwaters on the left and
outlet on the right, to allow for comparisons between watersheds. The vertical grey line denotes the mid-point of the watershed. Distribution of
proportional inputs with upstream distance for (e) Brush Creek and (f) Pine Creek where bars are colored according the mean NDMI of each
discrete lateral input. Stream NO3

� concentrations predicted from the NO3
� SSN model (black circles) are compared for both (e) Brush Creek and

(f) Pine Creek

RHEA ET AL. 11 of 16



(Figure 5e). Additionally, proportional inflows in Brush Creek declined

downstream and were associated with higher NDMI. Stream NO3
�

concentrations also declined downstream in Brush Creek, likely due to

a combination of reduced proportional influence of hillslope inputs,

streamflow dilution, and in-stream N uptake. In the unburned head-

waters of Pine Creek, convergent hillslopes were associated with high

NDMI (Figure 5f) and likely high terrestrial N demand. Stream NO3
�

concentrations remained low throughout the headwaters of Pine

Creek with only slight downstream increases where bur hillslopes

were sparsely vegetated (Figure 5f).

This investigation demonstrates that convergent hillslopes in

headwater positions are particularly sensitive to wildfire-induced veg-

etation mortality and can impact both local and downstream water

chemistry. Headwater attributes have been shown to predict down-

stream water chemistry (i.e., NO3
�, PO4

3�, Ca2+, and Sr2+) at dis-

tances exceeding 500 km (French et al., 2020). Our sampled stream

networks were 5,520–8,289 m, so headwater attributes could feasibly

influence downstream chemistry throughout the entire stream net-

works. Indeed, the watershed with burned headwaters (i.e., Brush

Creek), sustained higher stream NO3
� concentrations throughout its

stream network compared to the watershed with unburned headwa-

ters (i.e., Pine Creek, Figure 5e–f). These findings may help prioritize

post-fire watershed rehabilitation efforts aimed at increasing plant

cover and nutrient demand to reduce stream NO3
� concentrations.

More specifically, our findings highlight the potential value for post-

fire reforestation in convergent headwater locations to enhance N

retention and reduce downstream NO3
� export. This is a first step

towards understanding what post-fire restoration strategies are most

effective at mitigating lingering post-fire NO3
� concerns (Rhoades

et al., 2019) and should be considered within the context of existing

ecological frameworks for post-fire tplanting (Stevens-Rumann &

Morgan, 2019).

4.3 | Applications and future research

Our findings help characterize the potential magnitude, duration,

and location of water chemistry alteration following fire. Based on

kriging from the NO3
� SSN model, 81% of the predicted stream

NO3
� concentrations that fell within the fire perimeter (Figure S4)

exceeded the pre-fire mean concentration of 0.18 mg/L (Rhoades

et al., 2011). While the kriging demonstrates that elevated post-fire

stream NO3
� is pervasive throughout the burned landscape

16 years post-fire, it also highlights specific watersheds (e.g., Brush,

Fourmile, and West Turkey) and sensitive watershed positions

(e.g., tributaries and headwaters) that are experiencing the highest

stream NO3
� concentrations (Figure S4). However, these kriged

predictions tend to have the highest standard error in headwaters

and tributaries where predictions rely more on watershed attri-

butes than upstream samples (Figure 4c–d). Moving downstream,

SSN models are informed by an increasing number of upstream

data points and prediction accuracy improves (Figure 4c–d). There-

fore, it is critical that post-fire water chemistry sampling extends to

headwaters and tributaries where and when possible, in order to

maximize kriging accuracy.

The approach presented here could be extended to other wild-

fires to further investigate the main drivers of post-fire water chemis-

try, predict water chemistry in unsampled locations, and identify key

locations for targeted reforestation. The requisite spatially distributed

water sampling can be rapid (i.e., within 1 week in the case of this

study), predictor variables are derived from geospatial data sources

with extensive temporal and spatial coverage, and the statistical code

is publicly available. In particular, this framework would benefit from

being applied to a higher order stream network in order to character-

ize downstream propagation of disturbance signals beyond the small

headwater streams captured in our study. However, it is also critical

that we move from statistical correlations to field-based experimenta-

tion. Future research should monitor natural post-fire vegetation

recovery in sensitive watershed positions and assess the capacity for

targeted reforestation to retain N and reduce stream NO3
� concen-

trations. As slow post-fire regeneration becomes increasingly preva-

lent in response to higher fire severity and climate aridity (Coop

et al., 2020; Stevens-Rumann et al., 2018; Tepley et al., 2017; Walker

et al., 2018), such targeted reforestation activities may be critical for

the recovery of stream NO3
� concentrations to pre-fire levels.

5 | CONCLUSIONS

This study utilized spatially distributed water chemistry sampling to

identify the controls on stream Na+ and NO3
� concentrations across

nine post-fire watersheds with varying patterns of burn severity and

extent. Statistical modeling was used to partition the variance in

stream Na+ and NO3
� among landscape (i.e., topographic, vegetation,

and fire predictors) and stream network (i.e., flow-connected distance)

characteristics. Topographic variables were the strongest predictors

of stream Na+ concentrations and Na+ exhibited strong positive flow-

connected autocorrelation. Together, these results indicate that the

spatial distribution of conservative Na+ concentrations was largely

driven by watershed topography and hydrology. In contrast, stream

NO3
� was most strongly correlated with mean NDMI, a metric that

characterizes canopy cover and vegetation water stress. Additionally,

stream NO3
� concentrations exhibited high spatial variability across

the stream networks. These results suggest that complex patterns of

burn severity and extent create a mosaic of unburned forest inter-

spersed with patches of shrubs and grasses that can contribute to

high variability in stream NO3
� concentrations. We also found that

sparse forest cover in severely burned convergent hillslopes in head-

water positions had a strong impact on local stream NO3
� concentra-

tions, suggesting that targeted reforestation in these locations may

help limit stream NO3
� concentrations and downstream export.
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