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ABSTRACT

Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in
the hundreds of billions of U.S. dollars annually. Proactive or predictive approaches guided by scientific knowledge are
essential to keeping pace with growing impacts of invasions under climate change. Although the rapid development of
diverse technologies and approaches has produced tools with the potential to greatly accelerate invasion research and
management, innovation has far outpaced implementation and coordination. Technological and methodological syn-
theses are urgently needed to close the growing implementation gap and facilitate interdisciplinary collaboration and
synergy among evolving disciplines. A broad review is necessary to demonstrate the utility and relevance of work in
diverse fields to generate actionable science for the ongoing invasion crisis. Here, we review such advances in relevant
fields including remote sensing, epidemiology, big data analytics, environmental DNA (eDNA) sampling, genomics,
and others, and present a generalized framework for distilling existing and emerging data into products for proactive
IAS research and management. This integrated workflow provides a pathway for scientists and practitioners in diverse
disciplines to contribute to applied invasion biology in a coordinated, synergistic, and scalable manner.
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I INTRODUCTION

Invasive alien species (IAS) are both a major driver and con-
sequence of anthropogenic global change with serious
impacts on biodiversity, ecosystem functioning, human
health, and economic sustainability (Bellard, Cassey &
Blackburn, 2016; Mollot, Pantel & Romanuk, 2017;
IPBES, 2019). IAS management and environmental dam-
ages cost tens to hundreds of billions of U.S. dollars in indi-
vidual countries per year (Bradshaw et al., 2016; Diagne
et al., 2021). The ecological–economic crisis of biological
invasions has been recognised as a priority in international
environmental initiatives including the United Nations Sus-
tainable Development Goals (SDGs; target 14.8), previously
the Aichi Biodiversity Targets, (Targets 9 and 13) and now
the post-2020 Global Biodiversity Framework (Target 6; Essl
et al., 2020; van Rees et al., 2021).

Biological invasions show no sign of slowing across time
(Seebens et al., 2017), and the severity and spatial footprint
of IAS impacts will increase where ongoing landscape and
climate change favour invasive over native taxa (Jourdan
et al., 2018). IAS management is highly time sensitive; once
a population becomes established in a locale, the costs and
feasibility of eradication or management often become pro-
hibitive. This understanding has led to the prevailing para-
digm of Early Detection and Rapid Response (EDRR;
Reaser et al., 2020a) which calls for widespread and

coordinated monitoring and collaboration among institu-
tions. Since widespread and frequent monitoring can be dif-
ficult to achieve with limited resources, the EDRR paradigm
has resulted in an emphasis on proactive approaches in the
research and management of IAS. Spatial prioritization or
predictive modelling are considered an extremely helpful
workflow for operationalizing this paradigm (Ricciardi
et al., 2017). Specifically, ecological modelling and forecast-
ing of the environmental niches and potential spread of IAS
can facilitate risk assessment, spatial prioritization at early
stages of invasion, and management triage (i.e. ranking sites
for management) (Carlson et al., 2019; Robinson et al., 2020).

An idealized research and management workflow for
generating spatially explicit, actionable predictions can be
concisely summarized in six parts (Fig. 1). First, at the
decision-maker level, (1) problem IAS are identified and
research and management practices are delineated. Next,
(2) researchers and practitioners at multiple organizational
levels collect and collate spatially explicit information on
focal taxa occurrences and (3) relevant environmental char-
acteristics. These data are ideally (4) shared and managed
broadly for accessibility and use at multiple jurisdictional
scales, and (5) analysed using various forms of ecological
modelling and simulation. (6) Researchers and practitioners
collaborate with stakeholders and decision-makers to co-
produce management and implementation actions from
these data, or use these to identify new problems or project
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priorities, starting the workflow again (Fig. 1). Importantly,
this is not the only way that invasion science is or should be
carried out, but one example of an especially efficient and
powerful approach that makes use of rapidly growing
methods and technologies that are becoming more widely
available (Ricciardi et al., 2017; Martinez et al., 2020; Robin-
son et al., 2020).

This workflow integrates several fast-moving fields
(e.g. ecological and evolutionary modelling, invasion biology,
structured decision-making) punctuated by frequent
advances in theory, applications, analytical techniques, and
computing applications. In the last decade, the simultaneous
and rapid maturation of diverse technologies and practical
approaches has generated a surfeit of potentially

revolutionary tools that could – in synergy – improve predic-
tive modelling and proactive management of IAS. However,
this rapid innovation has outpaced implementation and
coordination (Iacona et al., 2019; Lahoz-Monfort
et al., 2019; Martinez et al., 2020). Substantial advances have
been made in conceptual tools and technologies that have
great promise for predicting and reducing spread risk,
including approaches to horizon scanning (Roy, Peyton &
Booy, 2020), novel methods for occurrence data acquisition
(Larson et al., 2020), spatially explicit environmental data
(Dauwalter et al., 2017; Randin et al., 2020), and facilitating
knowledge transfer and co-production (Shackleton
et al., 2019a; see Section VI), but these tools are rarely applied
in concert.

Fig. 1. A framework for conducting actionable, spatially explicit research on invasive alien species (IAS) occurrences and spread to
guide management and decision-making. The framework consists of an initial problem identification and project planning step (I),
which will be unique to each management scenario, and a generalized workflow (II–VI) which is used as the organizational basis
for this review. The workflow can be applied wherever occurrence and spatial environmental data (Steps II and III) are available.
Such data can be drawn from existing databases, or added to them to contribute to future or larger-scale research and
management (Step IV), and analysed according to project needs to generate relevant inferences of IAS spread or occurrence
across space and time (Step V). In the final step (VI), study findings are made accessible and relevant to stakeholders, managers,
and decision-makers. Interactions with these data users should ideally feed back into the entire workflow (II–VI), as well as the first
stage of the framework. eDNA, environmental DNA; iSDM, IAS spatial distribution model; SinAS, standardising and integrating
alien species data; UAV, unmanned aerial vehicle.
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There have been repeated calls in the biological invasion
literature for integrated frameworks that outline and orga-
nize the roles of new technologies in invasion research and
management (Dehnen-Schmutz et al., 2018; Martinez
et al., 2020;Wilson et al., 2020). Clarification on how different
technologies and forms of knowledge can be applied to
improve invasion forecasting and spatial risk assessment for
IAS spread would be especially valuable for guiding resource
investment for biosurveillance and management interven-
tions (Latombe et al., 2017; Robinson et al., 2020). Although
several publications have highlighted the utility of individual
technologies to invasion biology, none has demonstrated the
potential synergies between important, relevant disciplines or
technologies in an actionable workflow. Such a framework
should clarify the relationships between new technologies,
insights from the field of human–computer interactions
(Preece, 2016), and on-the-ground conservation applica-
tions, and illustrate where the work of natural resources man-
agers and researchers from diverse fields fit into an idealized
workflow.

In this review, we survey technological and methodologi-
cal innovations across diverse fields (including remote sens-
ing, genomics, and big data analytics) and highlight their
applications and contributions to an idealized workflow for
predictive IAS management. This applied analytical pipeline
focuses on supporting decision-making through spatial risk
analyses, based on similar frameworks in the epidemiology
of emerging pathogens (Fig. 1; Chown et al., 2015; Machado
et al., 2019; Hamelin & Roe, 2020; Kress, Mazet &
Hebert, 2020). Ideally, it represents a generalizable workflow
for collecting and integrating diverse environmental and
organismal data on IAS occurrences, analysing these to gen-
erate estimates of spatiotemporal spread risk, and informing
management decisions and conservation interventions. It
also highlights how diverse disciplines can be brought to bear
on pressing issues in IAS research and clarifies their relevance
to managers and decision-makers. Our overarching goal is to
provide a broad introduction to the newest practices and
concepts in invasion science and provide a pathway for their
synthesis for a proactive, applied approach to research and
management to address the biological invasion crisis.
Throughout this review, we will highlight examples that rep-
resent the successful implementation of various steps in this
workflow for context and clarity, making special reference
to which step is represented.

We organize our review around a workflow for proactive
IAS research and management through spatial prioritization:
(1) Problem identification and project planning; (2) Occur-
rence data; (3) Spatial environmental data; (4) Data manage-
ment and sharing; (5) Data analysis; and (6) Knowledge
transfer and decision support. Notably, our review does not
cover the first decision-making step in this framework in which
IAS problems are identified and initial projects are planned.
Although our section on decision support emphasizes how
information can be made actionable to inform this process,
this review focuses on steps 2–6, and is especially directed
towards scientists, practitioners, and decision-makers engaged

in step 1. We focus on those steps in the workflow that are
closely tied to recent innovations in the science and technology
of invasion science in the hope of highlighting how these new
developments can be leveraged in project planning and
implementation.

In the first section, we introduce the importance of IAS
occurrence data for surveillance andmonitoring, then review
state-of-the-art and emerging detection methods. Section II
focuses on the utility of spatial environmental data to contex-
tualize IAS occurrences and covers exciting developments in
remote sensing and earth systems modelling for invasion
research. In the following section on databases and data
management, we explain the necessity for large-scale data-
bases of these foundational data types, concerns for their col-
lation and management, and current initiatives for
centralization and sharing. Next, we cover the range of ana-
lytical approaches by which such data can be used to gener-
ate spatial estimates of risk, highlighting the particular
difficulties and considerations involved with modelling IAS
distributions and strategies to address them. Finally, we
explore how such analyses can be converted into useful and
informative products for stakeholders, decision-makers, and
managers, and how to enhance IAS research through knowl-
edge co-production.

Our aim is to encourage the coordinated use and uptake of
helpful technologies and approaches in proactive IAS man-
agement and research, and to highlight fruitful areas for
interdisciplinary collaboration and the application of recent
methodological innovations. This work also serves to bridge
the gap between advances in multiple fields of ecology and
evolutionary biology and their application to IAS, and
methods used in an invasion context that may be helpful
for research in other ecological sciences.

II IAS OCCURRENCE DATA

(1) Background

Information on biological invasions is needed to inform three
major processes in management: designing surveillance and
field surveys, prioritizing locations for management interven-
tions, and supporting regulatory decision-making (Sofaer
et al., 2019). The workflow around which this review is orga-
nized focuses primarily on the latter process (see Section VI),
but the same data are useful across all three. This common
data currency consists of spatiotemporally explicit occur-
rences of focal IAS (Latombe et al., 2017). Here we review
the diverse sources of IAS occurrence data with special
emphasis on emerging or increasingly popular technologies.
Before surveying these diverse data sources, it is worth
describing two products that are commonly derived from
these data to support proactive management of IAS. The
analytical methods involved in these two products (Essential
Biodiversity Variables, and Species Distribution Models,
see below) and their use in a proactive research and manage-
ment context are discussed in depth in Section V.
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Essential Biodiversity Variables (EBVs), i.e. global infor-
mation products and indicators for assessing biodiversity
change, are designed to set unifying standards for monitoring
and modelling important biodiversity parameters. Species
populations EBVs (Jetz et al., 2019) describe the abundance
and occurrence of species across space and time, providing
a conceptual nexus and methodological framework for guid-
ing data collection, integration, and modelling to deliver the
predictions needed for invasion research, policy, and man-
agement (McGeoch & Jetz, 2019; Myers et al., 2021). EBVs
are used to overcome data gaps and biases, and deliver pre-
dictions of species’ spatial dynamics at appropriate resolu-
tions, and consequently are strongly aligned with the needs
of proactive IAS management and invasion forecasting
(Battini et al., 2019).

Species distribution models (SDMs; also known as ecolog-
ical niche models and environmental envelope models) are a
key analytical approach to modelling and forecasting the
dynamics of IAS across space and time and form the primary
scientific basis for monitoring and management (Rodríguez-
Rey et al., 2019; Seebens et al., 2020). For example, the
U.S. Forest Service used an SDM to guide herbicide treat-
ment activities for highly invasive cheatgrass (Bromus tectorum;
West et al., 2017; workflow Step V).

Species occurrence data serve multiple purposes in inva-
sion management from IAS introduction and establishment
to spread and impact (Cheney et al., 2021) and are the pri-
mary targets of surveillance and monitoring efforts. Occur-
rence records encompass both presences (detections) and
probable absences (or non-detections) of an invasive organ-
ism collected in either its invasive or native range. Surveil-
lance, in which the absence of IAS propagules is tested
across time to enable rapid response, is a major management
activity that can produce large amounts of absence data for
modelling and risk assessment. Multiple technologies and
approaches are now available to prioritize monitoring for
local EDRR or SDMs at large geographic scales for forecast-
ing range dynamics (see Section V). The need for rapid, cost-
effective surveillance over large areas has driven substantial
innovation in methods for collecting IAS occurrence data
for monitoring and modelling across diverse disciplines
(Larson et al., 2020). In this section, we review current and
emerging methods for collecting the necessary data to sup-
port monitoring, early detection, and fundamental analyses
like these in an invasion science context.

(2) Legacy data and data re-use

Although this review section centres around innovations in
occurrence data collection, it is worth acknowledging the
importance and utility of IAS occurrence data that have
already been collected, and that can be used or repurposed
for guiding proactive management. Useful data may be
collected by local agencies at varying spatial scales, which
can mean that information may be widely scattered in differ-
ent repositories. Although it can involve significant invest-
ments to digitise or centralise these legacy data into usable

databases, this can be more cost-efficient than re-collecting
data and can offer valuable information about trends over
time. Legacy data can also be used to guide the use of other
detection methods (see sections below) for quantifying and
predicting the range and spread of IAS (e.g. Rubenson &
Olden, 2020).
Increasingly sophisticated and comprehensive repositories

of legacy information are becoming available, for example
the BISON program (Table 1) in North America. Young
et al. (2020) demonstrated a modelling workflow for guiding
IAS management by collating occurrence data from BISON
and mobile apps (workflow Step II; see Section II.(6)) to pre-
dict the habitat suitability of invasive grasses in the USA
(fountain grass Pennisetum setaceum and goutweed Aegopodium

podagraria). We focus in greater depth on IAS data reposito-
ries and data centralization efforts in Section IV.

(3) IAS detection via remote sensing

Remote sensors on satellite or airborne platforms can detect
some IAS through direct and indirect observations, allowing
for repeated detection without the need for in situ searchers or
monitoring devices. Such applications are primarily useful
for plants (especially trees and grasses) and species that affect
them (Vaz et al., 2019; Reeves et al., 2021), although fishes
have been detected using airborne LiDAR (light detection
and ranging; e.g. Roddewig et al., 2018). Indirect detection
of IAS is achieved by identifying physical changes in the land-
scape that suggest species presence, such as phenology of
plant greening that differs from native species (Tian
et al., 2020). Indirect detection can also use multiple sensors
in concert; for example, Pontius et al. (2017) combined hyper-
spectral data, LiDAR, and thermal infrared observations to
monitor emerald ash borer (Agrilus planipennis) through detec-
tion of their impacts on tree colour, canopy density, and
water uptake.
Hyperspectral imagery, which can describe hundreds of

unique spectral ‘bands’ within the electromagnetic spec-
trum, is opening the door for more direct species detection
using species-specific colour signatures, allowing the detec-
tion of IAS that are small, cryptic, or visually similar to native
species (Tesfamichael et al., 2018). The rapid advance in
hyperspectral libraries opens the possibility for widespread
IAS detection (Meerdink et al., 2019); NASA’s HyspIRI
(Hyperspectral Infrared Imager) and other next-generation
satellite hyperspectral imagers offer potential global coverage
and frequent sampling of unique spectral signatures in both
aquatic and terrestrial ecosystems pertaining to IAS; includ-
ing, distribution, habitat suitability, and individual health
(Reeves et al., 2021). A key enabling technology for hyper-
spectral data is the development of flexible and efficient
machine-learning algorithms and readily accessible comput-
ing and storage capacity on the cloud that enable efficient
information extraction from massive hyperspectral data vol-
umes (e.g. Abeysinghe et al., 2019).
Unmanned aerial vehicles (UAVs; drones) are an emerg-

ing remote sensing platform that provides an increasingly
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viable alternative to satellite remote sensing for detecting IAS
(Dash et al., 2019). UAVs allow greater control over the timing
of image capture, are less error prone than observer-based

methods, can easily survey challenging or dangerous terrain,
and offer control over spatial resolution by adjusting flight alti-
tude. Their use is expanding rapidly for IAS research, and has
included deployment of multi- and hyperspectral sensors, as
well as LiDAR sensors for relatively high-resolution mapping
(Juanes, 2018; Dash et al., 2019). Recent applications for IAS
detection have primarily centred on the use of multispectral
and LiDAR sensors in conjunction with machine-learning
algorithms like artificial neural networks to recognize invasive
trees, forbs, and marsh plants (Martin et al., 2018; Abeysinghe
et al., 2019; Zhu et al., 2019). Thermal imaging has proven fea-
sible for the detection of animal IAS, but has seen limited use
to date (Lioy et al., 2021). Camera traps (also known as trail
cameras) and other remote stationary cameras have also been
used to great effect in detecting and monitoring the abun-
dance of mammals [e.g. in New Zealand (Anton, Hartley &
Wittmer, 2018; Nottingham,Glen & Stanley, 2021)]. Imagery
collected by UAVs, camera traps, and other remote auto-
mated photographic technology can be combined with
machine-learning and artificial intelligence algorithms to
automate monitoring across broad areas (e.g. Aota
et al., 2021).

(4) Molecular genetic methods for IAS detection and
monitoring – eDNA

Environmental DNA (eDNA) sampling infers taxa presence
from the detection of genetic material in the environment
(e.g. water, sediment, soil, snow, or air samples; Taberlet
et al., 2018; Fig. 2). This approach can be used to detect
eDNA of specific (targeted) taxa, or multiple taxa from a sin-
gle environmental sample when combined with DNA ampli-
fication technologies [i.e. quantitative polymerase chain
reaction (PCR), digital PCR, loop-mediated isothermal
amplification, etc.] or high-throughput sequencing. eDNA
sampling is widely used in aquatic environments where the
use of traditional visual observation methods or conventional
capture tools is challenging (Taberlet et al., 2018). eDNA
sampling has often proved more sensitive and cost-effective
than traditional detection techniques, particularly for cryptic
and low-density IAS (Hunter et al., 2015). eDNA detection
data help to inform and prioritize sites for traditional surveys.
For example, detection of Asian carp (Cyprinidae) eDNA in
the Great Lakes region (USA and Canada) prompted calls
for intensive (non-molecular) monitoring to locate fish popu-
lations (Woldt et al., 2019). In this way, eDNA surveys can
improve EDRR programs by triggering focused, non-
molecular sampling (Sepulveda et al., 2020a). Further, eDNA
sampling is amenable to citizen science (Larson et al., 2020)
and has been used to evaluate the success of invasive fish
eradication efforts (Carim et al., 2020).

An important caveat of the high sensitivity of eDNA
methods is they can also detect genetic material from DNA
sources other than immediately local, live individuals, such
as upstream populations or carcasses (Merkes et al., 2014).
However, confidence in the potential presence of target taxa
is increased with study designs that include sufficient sample

Table 1. Web addresses (URLs) for data sets, projects, and
documents mentioned in this review

Entity Web address

Aquatic eDNAtlas https://www.fs.fed.us/rm/boise/
AWAE/projects/the-aquatic-
eDNAtlas-project.html

Atlas of Living Australia https://www.ala.org.au
Biodiversity Information
Serving Our Nation
(BISON)

https://bison.usgs.gov/#home

CABI Horizon Scanning
Tool

https://www.cabi.org/publishing-
products/horizon-scanning-tool/

CaleDNA https://ucedna.com/
Corn Disease Working
Group

https://corn.ipmpipe.org/tarspot/

Darwin Core https://dwc.tdwg.org/
Ecological Metadata
Language (EML)

https://eml.ecoinformatics.org

EDDMapS database https://www.eddmaps.org
FAIR data principles https://www.go-fair.org/fair-

principles/
Global Biodiversity
Information Facility
(GBIF)

https://www.gbif.org

iMapInvasives Mobile https://www.imapinvasives.org/
mobile-tools

iNaturalist https://www.inaturalist.org/
INSPIRE directive
framework (Infrastructure
for Spatial Information in
Europe)

http://inspire.ec.europa.eu/

Invasive Alien Species
Europe

https://easin.jrc.ec.europa.eu/
easin/CitizenScience/
BecomeACitizen

International Standards
Organization’s (ISO)
191**

https://www.iso.org/committee/
54904/x/catalogue/p/1/u/0/
w/0/d/0

Midwest Invasive Species
Information Network
(MISIN)

https://www.misin.msu.edu/

Non-native Aquatic Species
(NAS) database

http://nas.er.usgs.gov

North American Invasive
Species Management
Association’s (NAISMA)
mapping standards

https://naisma.org/programs/
standards-and-technology/

Reporting IAS sightings
with EDDMapS

https://bugwoodcloud.org/CDN/
eddmaps/tools/
EDDMapS_App_WalkThrough.
pdf

Sighting identification with
iNaturalist

https://www.inaturalist.org/
pages/getting+started#identify

U.S. Federal Geographic
Data Committee’s
Content Standards for
Digital Geospatial
Metadata

https://www.fgdc.gov/metadata/
csdgm-standard
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collection and replication (over time and space), appropriate
quality controls, and operational best practices (e.g. Goldberg
et al., 2016). This is further addressed by the inclusion of statisti-
cal modelling of the false negative or positive rate (e.g. Griffin
et al., 2020) and incorporation of eDNA sampling data into for-
mal decisionmodels for natural resourcemanagers that account
for uncertainty of inference (e.g. Sepulveda et al., 2020a).

Another potential approach to verifying the local presence
and the living status of target taxa is the new field of environ-
mental RNA (eRNA). In concept, the identification of target
eRNA in an environmental sample provides the researcher
with greater confidence that the target organism is both present
and living –RNA can only be shed from a live organism – and
provides higher temporal resolution for monitoring efforts
because RNA degrades faster than DNA (Cristescu, 2019;
Tsuri et al., 2021. Environmental RNA from multiple species
can be detected simultaneously using metatranscriptomics,
which could improve real-time surveillance of known and
unknown IAS (Yates, Derry & Cristescu, 2021). Importantly,
most work to date has been proof-of-concept and additional
empirical data are needed to demonstrate the efficacy of these
developing methods in practice.

Emerging applications for rapid or in-situ eDNA detection
for IAS, which forego the need for most or all laboratory-
based work, have benefited from advances in ecogenomic
sensors (e.g. Scholin et al., 2017) and low-cost point-of-care
molecular diagnostic tools in biomedicine including hand-
held quantitative PCR (Thomas et al., 2020), clusters of regu-
larly interspaced short palindromic repeats (CRISPR; Wil-
liams et al., 2019), loop-mediated isothermal amplification
(LAMP; Li et al., 2011), and microfluidic instrumentation
(Carvalho et al., 2021). Although not yet widely implemented,
these techniques provide rapid, remote, and (when combined
with robotics) autonomous eDNA detections (Scholin
et al., 2017; Yamahara et al., 2019). For example, Sepulveda
et al. (2020b) placed robotic autosamplers into
U.S. Geological Survey stream-gauges to conduct high-
frequency eDNA sampling for fish pathogen and non-native
fish DNA in the Yellowstone River (Montana, USA) and
Snake River (Idaho, USA) for up to 50 days. They then
merged these eDNA sample results with publicly available
environmental data (e.g. weather, water quality, water quan-
tity) captured by other automated sensor networks to
enhance biosurveillance and forecasting capacity.

Fig. 2. Visualization of different genetic applications in proactive invasive alien species (IAS) research and management, including
associated sampling methods and data types. Population genetics data analysis includes taking DNA samples from individual
organisms and allows for a wider understanding of a population’s size, genetic diversity, connectivity, origin/source of immigrants,
and information on local adaptation (e.g. functional/adaptive genes identified using genome-wide marker scans). Population genetic
approaches are being conducted on eDNA samples (Holman et al., 2022). Target eDNA refers to approaches that collect DNA from
the environment to identify a target species by using species-specific markers [e.g. Polymerase Chain Reaction (PCR) primers or a
quantitative PCR (qPCR) assay] to detect if a species is present, its relative abundance, and distribution across environments or
niches [e.g. using species distribution models (SDMs)]. Community eDNA refers to multi-species detection approaches including
metabarcoding or metagenomics to test for the presence of several species to understand community diversity and species
interactions. Metabarcoding uses next-generation sequencing of an environmental sample to sequence a single locus from each of
multiple species (simultaneously) using ‘universal’ PCR primers for an entire taxonomic group (e.g. salmonids, all fish, or all
mussels). Metagenomics approaches use next-generation sequencing of all DNA (all genes/genomes) in an environmental sample
including all species present. Metagenomics, unlike metabarcoding, detects the presence (and abundance) of all genes (and species)
and thus provides functional information regarding kinds of genes and gene functions, like nitrogen-fixing genes in bacteria in the
local environment. Metagenomics allows discovery of new invasive species including parasite/pathogen taxa and simultaneous
detection of vector species such as insects or introduced fish that spread pathogens (e.g. Piper et al., 2019). NA, not applicable.
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(5) Population/landscape genetics and genomics for
IAS detection, and monitoring

Population genomic analyses generally rely on direct sam-
pling (e.g. tissue or blood) or non-invasive forms of sampling
(e.g. hair, feathers, skin, urine, or faecal matter) to provide
suitable genetic material for powerful molecular approaches
that illuminate population demographic histories, identify
potentially adaptive genes, and discern landscape connectiv-
ity to monitor and predict the direction and rate of IAS
spread (Chown et al., 2015; Grummer et al., 2019;
Hamelin & Roe, 2020; Allendorf et al., 2022; Fig. 2). Addi-
tionally, population genomic analyses of IAS can help to
identify introduction source(s), the number of individuals
and the spatiotemporal patterns of introductions, and path-
ways of spread, as well as the role of adaptation in coloniza-
tion. For example, Roe et al. (2019) highlight how genomic
tools provided a high-resolution look into the invasion history
and routes of spread of the mountain pine beetle (Dendroctonus
ponderosae) and its origins of introduction, informing efforts to
prevent future spread. Although D. ponderosae is native to
northern boreal forests in North America, it has spread
beyond its range and is considered a harmful forestry pest,
making it effectively invasive from a management
perspective.

Landscape genomics studies identify environmental fea-
tures associated with connectivity, dispersal, genetic varia-
tion, and local abundance, which can facilitate proactive
analyses of spread risk and mapping hotspots of current
and predicted future invasions (Sacks, Brazeal &
Lewis, 2016). Recent works have detected changes in popula-
tion connectivity and abundance in interacting species, sug-
gesting climate and landscape impacts on dispersal rates
(e.g. De Kort et al., 2018); similarly community landscape
genomic studies (using neutral and adaptive loci) could help
explain and control IAS spread, for example in plant–patho-
gen, host–parasite, or native–invasive systems (Hand
et al., 2015). Finally, studies that employ a range of tools
(e.g. population genomics, landscape genomics, and simula-
tion modelling) could also help identify mechanisms underly-
ing adaptive capacity while testing for environmental,
demographic, and human-mediated drivers of IAS establish-
ment and spread (Smith et al., 2020).

(6) Community or citizen science

Community science (i.e. citizen science, participatory sci-
ence) has been defined in various ways across disciplines
and cultural contexts (Haklay et al., 2021). Herein, we define
it as the collection of IAS occurrence data by non-
professional volunteers. It is a rapidly growing approach for
meeting the in-situ data needs for surveillance and modelling
that has great potential for expanded application (Larson
et al., 2020; Encarnação, Teod�osio & Morais, 2021). While
traditional field-based monitoring approaches consisting of
ground surveys by teams of professional researchers or staff
may seem time-consuming and costly, especially where high

visitation rates are needed over large geographical areas,
community science may meet such needs at comparably
low cost (Johnson et al., 2020; Larson et al., 2020).

Community science, as well as other participatory
approaches to enable contribution of information from
diverse sources including indigenous or local ecological
knowledge, have demonstrably improved the performance
of SDMs for various taxa (Zhang et al., 2020; Skroblin
et al., 2021). Roy-Dufresne et al. (2019) found that predictive
SDMs for invasive rabbits in Australia performed better
when parameterized with community science data in addi-
tion to expert opinion compared to those trained on expert
data alone. Community science efforts can also significantly
reduce the time until first detection during monitoring;
recent examples include the first-ever detection of an inva-
sive, disease-vector mosquito species in Spain (Eritja
et al., 2019) and five introduced gastropod species in southern
California (Vendetti, Lee & LaFollette, 2018).

The primary limitations of community science are inher-
ent spatiotemporal sampling biases (e.g. people sampling
more often on weekends, or in areas that are more accessible
or attractive), data quality control, and technology access for
volunteers (Callaghan et al., 2019; Encarnação et al., 2021).
These issues can be addressed by providing training opportu-
nities and standardized protocols for sampling, employing
statistically robust analytical methods (e.g. Bayesian Hierar-
chical Models, Section V), and prioritizing volunteer sam-
pling in areas that would contribute most to modelling
(Callaghan et al., 2019). Mobile apps and open online data-
bases (see Section IV) are also an important part of facilitat-
ing and enhancing the role of community science in IAS
monitoring (Johnson et al., 2020; Howard et al., 2022).

Historically, community science mainly involved volun-
teers assisting professional technicians to collect data in the
field, but websites and smartphone applications have opened
new avenues for participation (Mazumdar et al., 2018; How-
ard et al., 2022). Digital crowdsourcing allows people to par-
ticipate virtually in a variety of roles, including as volunteer
naturalists, identifying species based on observations
(e.g. images, audio) on apps like EDDMapS, and iNaturalist
(Table 1). Additionally, smartphone/tablet apps and mobile-
friendly websites allow people to document IAS occurrences
as they see them and ensure standardized data recording.
Recent IAS reporting apps include EDDMapS, MISIN
(Midwest Invasive Species Information Network;), Invasive
Alien Species Europe, and iMapInvasives Mobile. For most
of these apps, generated data are publicly available, in
demand, and have been used effectively to study the spread
of IAS (Table 1; Pawson, Sullivan & Grant, 2020). There is
increasing potential to capture information on the interac-
tions amongst species using such applications (Groom
et al., 2021).

The emerging fields of conservation culturomics and
iEcology involve the repurposing and utilization of public
data uploaded to social media for environmental research
(Toivonen et al., 2019; Jari�c et al., 2020). This includes a diver-
sity of applications for species occurrences (Ghermandi &
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Sinclair, 2019; Edwards et al., 2021). Machine-learning and
web-scraping algorithms now make it possible to identify
and collect information on IAS sightings from platforms like
Instagram, Flickr, or Twitter, which are applicable for mon-
itoring spread (Daume, 2016; Laudy et al., 2020; Jari�c
et al., 2021).

(7) Conservation detection dogs

Domestic dogs trained for chemical detection are increas-
ingly employed for ecological and conservation applications
(Grimm-Seyfarth, Harms & Berger, 2021). These wildlife
or conservation detection dogs (hereafter CDDs) can detect
organic compounds associated with a variety of organisms
and possible physiological states (Bennett, Hauser &
Moore, 2020), sometimes at concentrations on the order of
hundreds of parts per trillion (Johnston, 1999). Conservation
applications of CDDs began with the detection of cryptic
endangered species, especially by scat (covered in greater
depth in Martinez et al., 2020), but have broadened
considerably as training techniques and awareness of these
methods has advanced (Whitehouse-Tedd, Richards &
Parker, 2021). The performance of CDDs across a variety
of applications is remarkably high; a recent meta-analysis
showed CDDs outperforming other conventional methods
of species detection in nearly 90% of >600 research studies
(Grimm-Seyfarth et al., 2021).

The application of CDDs for invasion research and man-
agement has risen rapidly in the last decade, although with
a significant geographical bias around North America and
Oceania (Martinez et al., 2020; Grimm-Seyfarth
et al., 2021). CDDs are considered especially valuable in the
context of biosurveillance, monitoring and early detection,
since organisms are harder to detect at low concentrations
and abundances (Hoyer-Tomiczek & Hoch, 2020). Dogs
are already an integral part of monitoring for invasive dreis-
senid mussels in North America (Sawchuk, 2018), acting as a
valuable complement to eDNA detection methods, and have
demonstrated efficacy for early detection of invasive and pest
species of the beetle family Cerambycidae, including the
emerald ash borer (Hoyer-Tomiczek & Hoch, 2020).

Relative to their clear efficacy and applicability to a variety
of IAS systems, the use of CDDs for IAS research and man-
agement is still limited. As with other innovations discussed
in this review, their greater integration into ongoing research
and management pipelines will reduce barriers for their
implementation in an IAS context.

III SPATIAL ENVIRONMENTAL DATA

(1) Background

Spatial data on environmental conditions associated with
occurrences provide the essential covariates necessary for
species distribution modelling and forecasting of new inva-
sions and secondary spread [i.e. spread after initial

introduction (Vaz et al., 2019; Randin et al., 2020)]. These
data are essential for defining the characteristics of areas
where IAS are detected, enabling statistical inference of the
relative probability of spread or habitat suitability of un-
surveyed or uncolonized areas (see Section V). These model
results are in turn valuable for managersef and decision-
makers, making spatially explicit data sets equally important
as the occurrence data that are often emphasized for moni-
toring. An important caveat to the use of remotely sensed
spatial environmental data is that, in order to be useful in dis-
tribution modelling, especially for predictive purposes (see
Section V), the variables derived from these data must be bio-
logically meaningful with respect to the modelled organisms’
natural history. A clear understanding of the species’ natural
history and ecology should be translated into robust hypoth-
eses with respect to the relationship between its occurrence
and derived environmental variables.
Spatial information like digital elevation models and

hydrographic units are readily available for many regions
of the world through large spatial data repositories
(e.g. Domisch, Amatulli & Jetz, 2015), and have great utility
for informing IAS distribution models. Managers increas-
ingly rely on geospatial information from remote sensing
for this purpose (Palumbo et al., 2017). In the following sec-
tions, we review common, well-established remote-sensing
products as used in IAS research and management, then
highlight new and emerging products with the potential for
new and exciting developments in this applied field.

(2) Common and established remote-sensing
approaches for IAS research and management

Remotely sensed environmental variables from global opera-
tional satellites have distinct advantages for proactive model-
ling of IAS for research and management, and they are
integral to EBV implementation (Dantas de Paula
et al., 2020). For example, the NASA Aqua MODIS (moder-
ate resolution imaging spectroradiometer) land surface tem-
perature (LST) product measures the effective ‘skin’
temperature of the Earth’s surface globally with a reported
accuracy of ±1�C at 1 km and 8-day resolution (Wan,
Hook &Hulley, 2015). Because of the regular mid-day revisit
schedule of the Aqua MODIS and next-generation National
Oceanic and Atmospheric Administration (NOAA) visible
infrared imaging radiometer suite (VIIRS) satellite retrievals,
LST (and other products) can monitor the spatial and tempo-
ral dynamics of the surface environment (e.g. the frequency
and duration of temperature extremes) in addition to
longer-term climatological conditions typically used in spe-
cies distribution modelling (Ibrahim et al., 2018). Although
the links between many remotely sensed variables and spatial
habitat and species distributional characteristics have been
well established (Randin et al., 2020), the temporal variability
inherent in such products has yet to be fully exploited.
While remote-sensing data pertaining to the timing and

duration of ecologically relevant events has been used in
some models, other data products have yet to reach their full
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potential for IAS modelling. For example, spectral indices
such as the Normalized Difference Moisture Index and their
associated temporal variability have been used to assess the
periodicity of waterfowl use of perennially flooded wetlands
(Donnelly et al., 2019). While not strictly using an SDM, the
authors provide a template for harnessing the inherent spa-
tiotemporal variability of such indices and demonstrate the
potential utility of combining images taken across different
time periods for modelling.

A diverse array of complementary Earth observations
from the International Space Station (ISS) is routinely col-
lected and processed by NASA for ecological monitoring
and is freely available for public use (Meerdink et al., 2019).
Remote-sensing products from the ISS relevant to IAS
include multi-channel thermal-infrared based surface tem-
perature retrievals from ECOSTRESS (ECOsystem Space-
borne Thermal Radiometer Experiment on Space Station),
which provides 70 m spatial resolution and high radiometric
precision (±0.15�C) suitable for distinguishing thermal het-
erogeneity in the local environment. The drifting ISS orbit
permits daily monitoring of surface skin temperatures over
land and water between ±50� of N/S latitude, with varying
local sampling times covering diurnal temperature cycles rel-
evant to species thermal tolerances and habitat suitability. In
addition, complementary full-waveform LiDAR observa-
tions from the ISS-based GEDI (Global Ecosystem Dynam-
ics Investigation) instrument provide 25 m footprint
resolution retrievals of terrain and vegetation structure rele-
vant to plant community composition, animal associations,
microclimate variations, and associated habitats (Schneider
et al., 2020).

Satellite microwave radiometers, including the JAXA/
NASA AMSR (AdvancedMicrowave Scanning Radiometer)
and NASA SMAP (Soil Moisture Active Passive) missions,
provide global coverage and near-daily monitoring with
consistent day/night sampling from sun-synchronous polar-
orbiting satellites. The all-weather capability and strong
sensitivity of lower frequency (≤37 GHz) microwave radiom-
eters to changes in the relative abundance of water in the
landscape enables effective monitoring of a range of ecologi-
cal parameters affecting habitat suitability. These include the
subnivium (Zhu et al., 2019), surface water inundation and
soil moisture dynamics affecting IAS spread (Wimberly
et al., 2021), damaging frosts impairing vegetation growth
(Kim et al., 2014), and the timing and duration of seasonal
ice cover on northern lakes (Du et al., 2017). The relatively
long duration of many satellite microwave radiometer mis-
sions has enabled the development of consistent global data
records spanning multiple decades that are well suited for
detecting environmental trends, albeit at relatively coarse
(�25 km) spatial resolution (e.g. Kim et al., 2017). These data
can be supplemented with other multispectral optical and
synthetic aperture radar (SAR) satellites such as Landsat
and Sentinel-1, which provide finer spatial resolution
(�30m) observations of surface moisture and vegetation con-
ditions, but with less frequent (weekly or longer) intervals
(e.g. Das et al., 2019). While satellite optical sensors such as

Landsat (TM/ETM+/OLI) are actively used for IAS appli-
cations (e.g. Pastick et al., 2021), active and passive micro-
wave sensors have received less attention and offer
significant potential for IAS distribution modelling
(e.g. Wimberly et al., 2021).

Although remote sensing has strong utility for IAS model-
ling andmonitoring, a significant limitation for these applica-
tions is that the sensor retrievals may contain spatial or
temporal gaps and other inconsistencies requiring additional
preprocessing of the data before it can be effectively used to
inform models of species occurrences and habitat conditions.
Alternatively, conventional climate data are interpolated
from ground-based weather station network measurements
or derived from coarse global climate models and can also
provide spatially continuous environmental information. Cli-
mate models, involving both interpolated historical weather
station data (e.g. Daymet, PRISM) and Earth System Model
projections of future conditions, can provide insights on how
climatic variables (i.e. precipitation, air, and stream temper-
ature) influence the spread of IAS. For instance, accelerated
warming and stream flow changes have reportedly increased
the rate of hybridization between rainbow trout (Oncorhynchus
mykiss) and westslope cutthroat trout (Oncorhynchus clarkii

lewisi), and were closely associated with interactions between
precipitation and temperature as described with Daymet
precipitation data and statistically derived stream tempera-
ture projections (Muhlfeld et al., 2017).

(3) Innovations in environmental data collection for
IAS research and management

In addition to the wealth of established environmental data
products and acquisition procedures, new technologies are
emerging that further facilitate ecological and environmental
modelling (Ustin & Middleton, 2021). For example, Cube-
sats are miniature satellites whose low cost and fast develop-
ment cycle enables multipoint constellations of coordinated
Earth observations offering global coverage with relatively
high temporal and spatial resolutions from a mix of passive
(e.g. optical-infrared surface reflectance) and active
(e.g. Radar, LiDAR) sensors (Poghosyan & Golkar, 2017).
Although some Cubesat constellations are designed for com-
mercial applications and may be cost prohibitive to potential
users, recent efforts include generating precipitation mea-
surements in difficult-to-reach areas using low-cost Radar
sensors (Peral et al., 2019). Furthermore, full-waveform satel-
lite LiDAR now available from the NASA GEDI mission are
enabling high-resolution three-dimensional mapping of veg-
etation structure over large global domains (Dubayah
et al., 2020). LiDAR retrievals potentially useful for IAS
include local topography, vegetation canopy structure, and
above-ground biomass (Davies & Asner, 2014; Gonzalez
De Tanago et al., 2018).

Lastly, the development of climate model reanalysis prod-
ucts has expanded access to comprehensive and accurate
global weather and climate records. These products are
derived by assimilating multiple observations (e.g. satellite,
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aircraft, buoys, ground stations) within sophisticated Earth
System Model frameworks to produce consistent high-quality
environmental data records. For instance, the Modern-Era
Retrospective Analysis for Research and Applications, version
2 (MERRA-2) is a global atmospheric reanalysis that spans
four decades (1980–present), providing moderate spatial
(50 km) and high temporal (hourly) resolution climate and
weather data including temperature, humidity, wind speed,
rainfall, and snowfall (Gelaro et al., 2017). This and other rea-
nalysis products, whose integrated frameworks mitigate issues
of model and geographic bias ubiquitous to individual earth
systemmodels, remote sensing, and interpolated observational
products (e.g. WorldClim), have enabled new capability for
understanding the spread of IAS worldwide (Atala
et al., 2019; Gillard et al., 2020).

IV DATA MANAGEMENT FOR PROACTIVE IAS
RESEARCH AND MANAGEMENT

(1) Background

Proactive and predictive IAS research for management
requires data that are frequently updated, accurate, standard-
ized (interoperable), and openly accessible to researchers and
managers (Groom et al., 2017). As new sources of occurrence
data (Section II) and spatial environmental data (Section III)
proliferate, accelerate, and diversify, digital infrastructures
and bioinformatics must advance to keep pace (Larson
et al., 2020; Reaser et al., 2020b). The management, preserva-
tion, storage, and sharing of these important IAS data are
essential to providing a foundation for IAS research and man-
agement over larger spatiotemporal scales, such as detecting
long-term patterns or permitting monitoring and predicting
spread across countries or continents.

Online databases are already largely responsible for the
increased feasibility and success of community science IAS
research efforts (Encarnação et al., 2021), and are key for
making knowledge accessible to managers by ensuring its
accessibility and availability via the internet (Beaury
et al., 2020; Section VI). IAS data at national and interna-
tional scales are collected and maintained by diverse institu-
tions with different needs and objectives, making great
volumes of data fragmented, difficult to access, and limited
in interoperability (Groom et al., 2015; Johnson et al., 2020).
Increased coordination among entities that collect, house,
and manage data (providers of IAS data infrastructure) is
needed to upscale IAS research and management in order
to support growing efforts to combat IAS and accomplish rel-
evant biodiversity and SDGs. Such coordination includes
improving core biodiversity data standards (Wieczorek
et al., 2012) and following workflows for data processing
and sharing already developed for biodiversity and IAS data
(e.g. Seebens et al., 2020).

Collating, managing, and maintaining large data sets of
IAS occurrence and spatial environmental data from the
diverse sources reviewed in Sections II and III is critical to

bridging the gap between raw data and aggregated analytical
products better suited to inform research, management, and
control of biological invasions (Hardisty et al., 2019). The
widespread implementation of EBVs for IAS, for example,
is nearly impossible without better interoperability among
databases, and would be a major step forward for upscaling
invasion biology (Latombe et al., 2017; Hardisty
et al., 2019). Data sharing through public databases increases
data accessibility, allowing for replication of experiments and
verification, re-use, and long-term preservation.
The EDDMapS database integrates community science

data from numerous initiatives with federal and state data sets
into a spatially explicit database describing the current extent
and impact of IAS in the USA (Reeves et al., 2021). EDD-
MapS data have been used for research to model the pre-
dicted future distributions of hundreds of invasive plant
species across the contiguous USA (Allen & Bradley, 2016).
TheU.S.Geological Survey’s Nonindigenous Aquatic Species
(NAS) database is the primary U.S. Federal repository and
integrator of spatially explicit data on IAS, combining data
from federal and state natural resourcemanagement agencies,
museum collections, and citizen science initiatives. NAS data
have been used in SDMs to predict the potential range and
spread of non-native fishes, and provide actionable tools for
assisting with EDRR and IAS management including email
notifications on novel occurrences and short-term assessments
of spread in newly invaded areas (Fuller &Neilson, 2015). The
NAS database allows for highly customized data queries, and
the ability to overlay species distribution data with administra-
tive, hydrologic, and environmental data layers.
The ability to identify, aggregate, and integrate data from

multiple sources is necessary for documenting the status and
trends of IAS, but is just as critical for informing predictions
necessary for EDRR implementation. Despite repeated calls
for, and efforts towards, greater interoperability and coordi-
nation of data management (e.g. Groom et al., 2015) these
systems still face numerous challenges (Reaser et al., 2020b).
For example, the Global Invasive Species Information Net-
work (GISIN) was conceptualized in 2004 and provided
cyberinfrastructure to access data from �30 IAS databases
between 2008 and 2015 (Jarnevich et al., 2015), but has not
been updated since then. Changing technologies, reorgani-
zation of institutional structure and priorities, and a lack of
sustained financial commitment have hampered continuing
support for the network (C.S. Jarnevich, personal communi-
cation). Reducing the barriers to data sharing, as outlined
below, will have far-reaching benefits for addressing the
threat of IAS (Groom et al., 2015).

(2) Innovations and developments in IAS databases

Multiple metadata standards exist to facilitate sharing and
integration of foundational data for proactive IAS manage-
ment and research. Geospatial data standards include the
U.S. Federal Geographic Data Committee’s Content Stan-
dards for Digital Geospatial Metadata, the International
Standards Organization’s (ISO) 191** series (including
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ISO 19115 and associated updates and extensions), and the
INSPIRE directive framework (Infrastructure for Spatial
Information in Europe; Table 1). Standards for describing
biological data sets include Ecological Metadata Language
(EML), Darwin Core [see Groom et al., 2019a for proposed
enhancements for IAS data], and the North American Inva-
sive Species Management Association’s (NAISMA) mapping
standards. The FAIR principles (Wilkinson et al., 2016) offer
general guidance for promoting the reuse and integration of
scientific data (Table 1).

Recent efforts to facilitate database integration include R
software packages that use translation tables and automated
workflows to standardize varied terminology so that multiple
alien species databases can be integrated, as in the SInAS work-
flow (Seebens et al., 2020). The Global Register of Introduced
and Invasive Species also aims to provide a common backbone
to support standardized species inventories by countries (Pagad
et al., 2018). Future progress is likely to be made via open-source
and open-access approaches to integrating, updating, and deliv-
ering the data needed for invasion management at multiple
scales. For example, IAS databases could provide data [through
direct download or via Application Programming Interface
(API) access] using one or more data standards described above
and using a common controlled vocabulary (Groom
et al., 2019a), or database metadata and schemas could be col-
lated and used to help develop translation tables.

eDNA data are a new and potentially challenging data
type in need of standardization and collation at larger scales
for IAS management. They have been stored in specialized,
moderate to large-scale databases (e.g. CaleDNA and
Aquatic eDNAtlas; Table 1) and recently incorporated into
broader species detection databases (e.g. GBIF, Atlas of Liv-
ing Australia, NAS; Berry et al., 2020; Table 1). Notably, IAS
occurrence data from eDNA methods require additional
metadata fields to understand the data quality and study
scope (e.g. markers used, DNA purification and other labora-
tory protocols, sample collection information) which compli-
cate database interoperability and standardization and
require careful attention in the implementation of this detec-
tion method (Sepulveda et al., 2020a).

Interoperable databases housing long-term data sets are
likely to be important in the future for understanding real-time
management and frontline experiences in IAS management.
Information on other aspects of biological invasions, like imple-
mentation and impacts of management interventions, or the
interactions of IAS with other species, could support evidence-
based conservation practice and a broader ecological under-
standing of IAS impacts if collated in larger databases.

V SPATIAL ANALYSIS FOR PROACTIVE IAS
RESEARCH AND MANAGEMENT

(1) Background

Despite the intended role of quantitative SDMs as guides for
risk assessments, invasion monitoring, and adaptive

management (Chapman et al., 2019; Rodríguez-Rey
et al., 2019; see Section II), their use in implementation
remains limited, in many cases due to insufficient access to
data and analytical (computational) capacity for managers
(Bazzichetto et al., 2018). SDMs are the core analytical tool
by which foundational monitoring or occurrence data
(Section II) and spatial environmental data (Section III) can
be converted into a useful form for stakeholders, making
them a central part of our proposed workflow (Fig. 1). They
also play a prominent role in emerging disease monitoring
(Machado et al., 2019;Wimberly et al., 2021), upon which this
workflow is based (Fig. 1). SDMs and associated spatial ana-
lytical models are at the heart of this workflow, generating the
probabilistic spatial inferences that are ultimately intended to
guide management decisions in one form or another. For this
reason, we devote this section to reviewing the advantages
and disadvantages of different frameworks used for the spa-
tial modelling of IAS, and the special concerns and limita-
tions that are common to such modelling.

Analytical methods for proactive IAS research vary in com-
plexity and degree of user involvement, where more complex
models require an abundance of high-quality data and more
expert knowledge of the study species and the modelling
frameworks used; and where simpler models are more easily
applied across multiple species, are compatible with often lim-
ited data availability, and can be automated with less need for
user input (Young et al., 2020; Table 2). Complex approaches,
meanwhile, may better accommodate diverse data types and
the statistical difficulties of dealing with IAS populations (see
Bayesian Hierarchical Modeling in Section V.(3)). Correla-
tional models, which examine the quantitative relationships
between occurrence or spread and environmental covariates,
fall more on the simple side of this spectrum, while complex
approaches are typically mechanistic, explicitly utilizing
species-specific knowledge. There can be hybrid models such
as species-specific predictors in correlative models (e.g. boat
traffic to capture anthropogenic dispersal; Cook et al., 2019)
or models encompassing traits of the IAS (Barwell et al., 2021).

SDM applications for IAS typically estimate a species’ cur-
rent distribution (West et al., 2017), the most likely locations
for spread and establishment (Cook et al., 2019), or, most
often, suitable habitat that could support viable populations
(e.g. Chapman et al., 2019). In the latter case, SDMs are effec-
tively simple assessments of the relative risk of spread. While
occurrence data are most common, abundance data used in
this framework can provide information on where an invader
may have impact (Bradley et al., 2018). Horizon scans are a
simple application of climate and habitat matching along
with assessment of introduction pathways, propagule pres-
sure, and species traits proactively to identify potentially
problematic species (Fournier et al., 2019; Roy et al., 2020).

(2) Limitations and statistical concerns with
distribution modelling of IAS

Before reviewing innovations in spatial modelling for IAS, it
is worth exploring the idiosyncrasies of such modelling in
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invasive systems and how these are handled in practice. IAS
violate a major assumption of SDMs: that the focal population
is at equilibrium with the environment (i.e. not presently
increasing or decreasing in abundance or extent; Jiménez-
Valverde et al., 2011). As a consequence, there are unoccupied
regions that may be suitable for establishment if IAS could
reach them, biasing the strength and effect of drivers of species
occurrence. One potential solution is to include distributional
data from both native and invaded ranges of an IAS (Jiménez-
Valverde et al., 2011; Srivastava, Lafond & Griess, 2019),
although invaded range-only models may be preferable later
in the invasion stage (e.g. Liu et al., 2020a). Predictors linked
to physiology or natural history of the species and simpler
models perform better when predicting in novel geographic
regions or times (Jiménez-Valverde et al., 2011; Liu
et al., 2020a). Predictors capturing anthropogenic propagule
pressure (e.g. boat traffic) may be particularly useful for species
dispersed by human activities (Rodríguez-Rey et al., 2019).

This review focuses on distribution modelling using
presence-only data sets because of the poor availability of sys-
tematically sampled presence–absence data, but the assump-
tions involved in modelling presence-only data provide
weaker inference (Guillera-Arroita et al., 2015). Researchers
should be aware of the limitations of these data sets and con-
sider them only when options for presence–absence model-
ling are not available. Presence-only modelling must be
based on some representative sample of potentially available
locations across space that characterize the available but

unused environment. These types of data, alternatively called
background, available, or pseudo-absence data, and the
selection of these locations can affect model estimates
(e.g. Chapman et al., 2019) and inflate model evaluation sta-
tistics. There are various methods for overcoming these issues
of bias related to selection of background data based on den-
sity of records for new invaders (Elith, Kearney &
Phillips, 2010) and modelling sampling bias (Elith, 2017).
Presence-only methods can be used with occurrence or abun-
dance to model the ‘impact niche’, where IAS may cause
more problems (Bradley et al., 2018). Despite the issues
described, these types of models, when developed following
best practices and understanding assumptions, can be very
useful (Sofaer et al., 2019). Other approaches have been
developed to deal with non-equilibrium conditions such as
IAS spatial distribution models (iSDMs), which try to distin-
guish absences that are due to environmental conditions
(i.e. non-suitable habitats) from absences that are due to dis-
persal limitations (i.e. suitable habitat without ability to dis-
perse to; Hattab et al., 2017).
The non-equilibrium nature of the distributions of IAS

also makes standard model evaluation metrics such as area
under the curve (AUC) and true skill statistic (TSS) poten-
tially inappropriate. These emphasize true negatives along
with positives; and given that most IAS are still spreading,
an absence could be due to the invasion stage. One alterna-
tive is evaluating the true positive rate in relation to predicted
suitable areas (Jiménez & Sober�on, 2020).

Table 2. Model types used in invasive alien species (IAS) distributionmodelling, including the type of data used, the output data type,
and the strength and weaknesses of each model type

Model type Input data type(s)
Output data and
information

Why use this model type? Potential issues

Correlation-based and
machine learning
(MAXENT, boosted
regression trees,
random forests,
artificial neural
networks)

Presence/ absence Prediction of
occurrence given
new
environmental
data or
projections

Useful for data-poor systems
(opportunistic occurrence
data, thresholded
abundance data) to make
predictions on where future
and additional sampling
could or should occur

Can be simplistic, need
careful consideration of
inputs and interpretation,
sometimes high
computational demand

Bayesian hierarchical
models

Presence/ absence,
ecological
observations

Prediction of
presence, along
with predictions of
other population
metrics, such as
abundance

Can make use of more
complex data types and
propagate uncertainty; can
transfer information from
data-rich to data-poor
regions; can provide
probabilistic estimates of
future states

Often requires a large
amount of varied
observational data that can
be hard to collect;
computationally intensive
and requires expertise

Mechanistic (future
simulations and
prediction)

Information from
experiments or
other model
types (e.g.
machine
learning and
Bayesian)

Detailed predictions
of future spread
and invasion (e.g.
under climate or
environmental
change)

Higher potential accuracy
rates, and can integrate
many different types of
biological data including
genetic information; can
also be at the population or
individual level which can
further improve model
control

Data intensive, and requires
the most data or
information of all model
types; outcomes dependent
on functional mechanisms
assumed
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Although predicting the influence of changing climate on
species distributions is often a goal, SDM applications often
assume that climate is a limiting factor on current distribu-
tions. However, other factors, such as biotic interactions
which may alter with changing climate, could be more
important (e.g. Sax, Early & Bellemare, 2013). Additionally,
retrospective models projected onto current data have done
poorly at capturing changes in suitability (e.g. Sofaer,
Jarnevich & Flather, 2018) and transferability in space can
be poor (Liu et al., 2020b).

(3) Innovations in IAS distribution modelling

The advent of large IAS databases (Reaser et al., 2020b; see
Section IV.(2)) and unstructured data sets due to newmonitor-
ing and detectionmethods necessitate new analytical strategies
capable of integrating diverse, low-latency, and high-volume
data (Reaser et al., 2020b). Two major analytical approaches
to predicting distributions and spread of IAS that can accom-
modate such data are machine-learning algorithms and
Bayesian hierarchical models (Farley et al., 2018). These two
methods represent a trade-off between automation and inter-
pretability of results and outcomes. Machine learning can
identify complex patterns and trends with little user input,
but requires careful interpretation of results generated by the
algorithms. Meanwhile, Bayesian hierarchical modelling pro-
vides a high degree of control, including the ability explicitly to
accommodate biological dynamics and differing variance
structures between data types, but requires significant user
input (Farley et al., 2018).

Machine-learning applications to IAS distribution and
potential spread have been implemented using a variety of
algorithms, including MAXENT (maximum entropy; Phil-
lips et al., 2017), boosted regression trees (Elith,
Leathwick & Hastie, 2008), random forests (Daliakopoulos,
Katsanevakis & Moustakas, 2017), and artificial neural net-
works (Benkendorf & Hawkins, 2020). Their core functional-
ity is to extract knowledge and identify patterns from data
sets with a model which can describe these patterns and allow
predictions given new data or projections (Lorena
et al., 2011), and they are advocated as a scalable and low-
effort way to develop predictions of future species distribu-
tions (Elith, 2017). It is common for multiple machine-
learning algorithms to be explored in ensemble to capture
better the uncertainty around predictions (Elith, 2017).
One potential trade-off between regression tree and random
forest model types versus more conventional modelling
approaches (e.g. generalized linear models) is the potential
for overfitting at unsampled sites (Temesgen & Ver
Hoef, 2015), as well as an increase in computational demand.
However, more recent work suggests that the ability to fore-
cast future IAS spread to new geographic regions could be
similarly limited across all model approaches, and that these
approaches are nonetheless still useful (Charney et al., 2021).
The computational demands of machine-learning methods,
which might impede their wider application due to inequities
in funding and access to computing resources, could be

addressed by making such tools available through affordable
cloud computing services (Candela et al., 2016). Carter
et al. (2021) recently developed a machine-learning SDM
workflow for aquatic IAS in North America that yielded sim-
ilar insights to highly mechanistic and time-intensive model-
ling methods with considerably less user input.

Bayesian hierarchical models are a powerful and flexible
class of models that can handle multiple layers of complexity
in ecological processes, observations, and uncertainty. They
provide many benefits for IAS distribution modelling, such
as allowing information to be shared from data-rich regions
to data-poor regions and better characterization of uncer-
tainty, which is critical for assessing risk and prioritizing man-
agement strategies and interventions (Farley et al., 2018). By
accounting for this uncertainty and how it propagates or
changes across variables and processes, these models are well
suited for ecological forecasting because they provide proba-
bilistic estimates of future states in a temporally explicit
modelling framework (Dietze, 2017).

Users can explicitly design error structures in models to
account for bias or complexity in data sets frommultiple sources
[e.g. state-space models, integrated models (Isaac et al., 2020);
spatiotemporal models (Thorson et al., 2016)], and thus rigor-
ously accommodate heterogeneous data sets (Isaac et al., 2020).
Such integrated models leverage multiple data types to describe
unobserved latent states (e.g. the ‘true’ distribution of a species)
while accounting for differing error structures among data types.
For example, such a model might account for decreased detec-
tion at the leading edge of invasion by incorporating changing
detection probabilities explicitly into the model.

Mechanistic simulations of future IAS spread under climate
change are a yet more involved analytical approach in which
the actual dynamics of invasion and climate change are repro-
duced and projected into the future (Chapman et al., 2016).
Although much less commonly implemented due to their
greater data needs, these process-based models potentially
offer greater predictive accuracy and a higher degree of con-
trol while integratingmultiple types of useful biological knowl-
edge in replicating future invasions. Mechanistic models can
be based around population dynamics, simulating parameters
like species traits, competition, and propagule pressure
(e.g. Carboni et al., 2018), or can be individual-based, with
specified rates of reproduction, survival among age classes, dis-
persal, and other demographic variables (Messager &
Olden, 2018; Dominguez-Almela et al., 2020). Such
approaches are useful where demographic rates, ecological
relationships, and mechanisms of spread are well understood,
but these conditions may not be met for many new invasions.

VI KNOWLEDGE TRANSFER, DECISION
SUPPORT, AND CO-PRODUCTION

(1) Background

A crucial final step in the analytical pipeline of proactive IAS
management is the transfer of research insights to managers,
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stakeholders, and decision-makers (Groom et al., 2019b; Rea-
ser et al., 2020a). Once spatial data on occurrences and envi-
ronmental characteristics (workflow Steps II–IV) have been
analysed using an appropriate analytical approach (Step V),
primary analytical results must be made relevant and com-
municable to data users. This interface with data users can
then feed back into study design and species prioritization
based on user needs (Fig. 1). This knowledge transfer step
closes the implementation or ‘knowing–doing’ gap, a top pri-
ority for IAS research (Pyšek et al., 2020). The diverse techno-
logical and methodological innovations from the preceding
sections can be translated better into on-the-ground results
if synthesized into products that are usable for those affected
by or responsible for managing IAS impacts (Shackleton
et al., 2019a; Kokotovich et al., 2020). Information uptake
and use are increased by the inclusion of practitioners,
decision-makers and stakeholders throughout the research
process (Lemos et al., 2018; Table 3). Integrating end-user
communities into research and development increases credi-
bility and legitimacy from an exchange of knowledge and
perspectives (Lemos et al., 2018). It can be as simple as co-
designing visualization or decision-support tools with end-
user input to communicate findings better with data users,
or (ideally) a more in-depth process in which data users are
directly involved in planning, data collection, sharing, and
analysis decisions.

This integrated approach has manifested in a variety of
sub-disciplines and frameworks, including structured
decision-making, translational ecology, adaptive manage-
ment, participatory modelling, transdisciplinary research,
and knowledge co-production (Novoa et al., 2018; Gaydos
et al., 2019; Beaury et al., 2020). These methods convene mul-
tiple stakeholders and decision-makers with diverse expertise
and knowledge through an iterative, collaborative, and
reflexive process to co-create context-specific and decision-
relevant knowledge (Norström et al., 2020). Although poten-
tially time- and resource-intensive, these approaches can
enhance the applicability of scientific inquiry to decision-
making (Fujitani et al., 2017; Owen, Ferguson &
McMahan, 2019). This is particularly important for invasion
research, which takes place on a complex cultural and socio-
economic landscape where numerous, diverse stakeholder
values and practices affect management action (Shackleton
et al., 2019b; van Poorten & Beck, 2021).

Natural resources managers are increasingly cognizant of
the threats posed by global change and the need for forecast-
ing hotspots of IAS spread and colonization (Carlson
et al., 2019; Beaury et al., 2020). Near-term ecoforecasting
of IAS spatial distributions can be co-produced between
researchers with scientific and modelling expertise and stake-
holders with on-the-ground knowledge of target species’
occurrence and ecological responses (Dietze, 2017; Gaydos
et al., 2019). Co-production allows for key feedback loops
between model development and data collection in which
models can be improved over time, iteratively generating
and testing decision-relevant hypotheses and predictions
(Uden et al., 2015). Since decision-makers and managers

are often conducting monitoring and surveillance, better
communication with researchers could thus facilitate data
collection in specific areas that address data gaps or maxi-
mally improve SDM performance. This process promotes a
better mutual understanding of the IAS problem, and
desired outcomes, and increases agility in adjusting to chang-
ing conditions across time (Sofaer et al., 2019).

Table 3. Key questions for integrating stakeholders, decision-
makers, managers, and other information end-users over the
course of the IAS workflow

Framework stage Example questions for co-production

I. Problem identification Which species are of greatest concern
to stakeholders?

Which systems can be protected by
early action and spatial
prioritization?

Which systems or environmental assets
can be protected?

II. Occurrence data What data are needed for informing
management?

What data formats are most useful for
end users?

III. Spatial
environmental data

At what scales should data be collected
to address management-relevant
questions?

Which data can best be collected via
community science approaches?

IV. Data management
and sharing

How will data be shared and made
available to stakeholders?

How will the rights and agency of
stakeholders (especially indigenous
people and local communities) be
protected in data storage and
sharing?

Which tools best enable data access?
V. Data analysis Which stakeholders or decision-makers

should be involved in participatory
modelling?

What types of analysis outputs are most
helpful to end-users?

How can parameter uncertainty be
encompassed and accounted for in
modelling?

What degree of model structure and
mechanistic realism is best
applicable to end-user needs?

VI. Knowledge transfer
& decision support

What are the most important key
messages to guide decision-making?

How can the extent of knowledge gaps
within the specific context be
assessed?

How can uncertainty in model outputs
be effectively communicated to
stakeholders?

How can results be communicated in a
two-way exchange with end-users?

What end-user feedback needs to be
built into the next iteration of
modelling?
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The U.S. Forest Service has operationalized such an iter-
ative loop with their spongy moth (Lymantria dispar) program.
This involves developing models of risk for the uninvaded
western USA annually (workflow Step V; Fig. 1), using this
model to coordinate with federal, tribal, and state stake-
holders trapping in the next year, then re-fitting models
including the new year’s surveillance data. Communication
between modellers and data collectors improves the adaptive
cycle (Cook et al., 2019).

Clearly communicated information on IAS spread under
climate change is a priority for land managers so they can
adjust monitoring, intervention, education, and outreach
strategies (Beaury et al., 2020; Wallingford et al., 2020). Pro-
jections of invasion retractions and expansions allow man-
agers to prioritize species of interest for monitoring and
management (Reinhardt et al., 2020). When generating such
predictive outputs (i.e. spatially explicit visualizations like
maps), researchers should be sure to conduct assessments at
scales that are relevant to practitioners and stakeholders,
and their options for management and intervention. Quanti-
tative uncertainty and its sources must also be clearly com-
municated (Crimmins et al., 2020). The production of
visualization tools that allow user specification of analytical
scales, and that use cyberinfrastructure to make data readily
accessible to users, helps get useful information to decision-
makers flexibly and efficiently (Blackburn et al., 2020).

Deliberately co-creating proactive invasion research
requires time and investment that is not always possible, par-
ticularly when scientists, managers, and stakeholders are
embedded in institutions with different priorities and incen-
tives that can disincentivize collaboration (Cvitanovic
et al., 2019). Other barriers to co-production include a lack
of training and capacity among scientists and practitioners
on how to work across sectors and integrate different knowl-
edge, uneven power dynamics or lack of trust that limits
interactions and knowledge sharing (Gaydos et al., 2019;
Rozance et al., 2020). These approaches require significant
time and willingness to engage in social learning, trust build-
ing, and shared decision-making, especially when advanced
and novel technologies are being used (Kokotovich
et al., 2020).

A key aspect of co-production approaches is that stake-
holders and knowledge users are involved in all stages of
the research in an iterative process. Local stakeholders can
participate directly in knowledge collection via community
science (Section II), provide field data on habitat variables
potentially to downscale environmental data for modelling
(Enquist et al., 2017; Section III), and be encouraged to for-
mat their existing databases to match global standards and
contribute data to larger repositories (workflow Step IV).
Participatory modelling methods are an increasingly sophis-
ticated way to include stakeholders in actual data analysis
by creating designated forums for reviewing shared data
(Morisette et al., 2017), and collaboration with stakeholders
can also improve adaptive modelling by opening avenues
for communication around data collection and monitoring.
Furthermore, stakeholders, including amateur experts in

wildlife recording communities and traditional ecological
knowledge holders can bring extensive insights into life-
history traits and ecology that can inform interpretation of
model outputs (Pocock et al., 2015; Bir�o et al., 2019).

(2) Examples and innovations in co-production for
IAS research and management

Lessons learned from collaborative science processes in other
areas (e.g. climate risk assessments) demonstrate that co-
production can foster a community of practice that yields
future benefits (Morisette et al., 2017). For example,
decision-makers, scientists, and stakeholders connected to
co-production activities around climate change in the Great
Lakes region are linked across regions and knowledge
communities (e.g. science and policy), which helps mobilize
climate information in ways that shape policy and decision-
making, resulting in a coordinated network of professional
relationships that increases research-to-management efficacy
(Kalafatis et al., 2015). Similar efforts to establish a commu-
nity of practice between managers, scientists, and stake-
holders around the intersection of IAS and climate change
are underway through Regional Invasive Species and Cli-
mate Change Management Networks in the USA, which
facilitate knowledge sharing and curation (workflow Step
IV) and communication with decision-makers (Step VI).

Beginning in 2018, the USA National Phenology Network
(USA-NPN) released a suite of ‘Pheno Forecast’ products
which provide real-time maps and short-term forecasts of
key insect pest activity at fine spatial and temporal resolutions
across the USA (Crimmins et al., 2020; workflow Steps V and
VI). These maps rely on accumulated growing degree days
(GDDs) and input from both experts and published GDD
thresholds for management-relevant life-cycle events in key
insect pests. The Pheno Forecast maps depict, on a given
day, the status of the insect’s life-cycle stage across the contig-
uous USA. Locations are categorized into one of the four
conditions: not yet approaching the life stage of management
interest, approaching the stage, experiencing the stage, and
past the stage. This effort uses a consultative mode of engage-
ment with practitioners and stakeholders as a way continu-
ously to improve the products so that they become more
useful for the forest-pest-management community. The
incorporation of gridded temperature data, insect phenol-
ogy, and consultative engagement provide insight into
forest-pest-management strategies (Crimmins et al., 2020;
Morisette, Macaluso & Burgiel, 2020).

The Corn Disease Working Group in the USA collated
occurrence data (workflow Step I) of black spot of maize
(Phyllachora maydis), produced spatially explicit visualization
tools (Steps V & VI) for stakeholders (e.g. growers) via social
media (Kleczewski et al., 2020; Table 1) and allowed report-
ing via a web-hosted platform that automatically generated
and sharedmaps in real time. This provided in-season knowl-
edge of disease movement and spread at temporal scales that
were helpful to growers (Kleczewski et al., 2020). This con-
cept is also demonstrated by the Soybean Rust - Pest
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Information Platform for Extension and Education (SBR-
PIPE) program, a collaboration to monitor the distribution
and impacts of soybean rust (Phakopsora pachyrhizi) in North
America (Hershman, Sikora & Giesler, 2011; Sikora
et al., 2014). Data of current conditions from an international
network of sentinel plots are shared with state specialists, crop
consultants, and growers to inform farm management deci-
sions by a stakeholder network and collaborative monitoring
program (Kelly et al., 2015). These allowed contributors to
submit data for the various projects via a mobile app and
website (Steps II and IV). Data from the programs were
made available to the public as value-added products, such
as maps, on the project websites (Kelly et al., 2015).

(3) Formal knowledge transfer tools

The rapid change associated with both IAS themselves and
the fields of study dedicated to their management compli-
cates effective communication with decision-makers across
jurisdictional scales. The ecological and methodological
complexity of IAS and their management are not amenable
to high-level government and inter-government processes,
which require clear, concise, and distilled accounts of poten-
tial IAS impacts on which to act. This necessitates formal
methodologies for translating the complexities of proactive,
forward-looking IAS research into formats that can be used
to make decisions beyond the local scale.

In this final section, we describe practice and innovations
in two approaches that facilitate the translation of IAS knowl-
edge to decision-makers and society at large to spur timely
and necessary action. The analytical techniques involved
with these approaches may differ superficially from the work-
flow presented herein, but their thematic process is parallel,
so we focus on their applications here and refer the reader
to existing reviews for a more in-depth treatment of these
topics.

Scenario planning and analysis centre around generating
scenarios that can be used to communicate potential socio-
ecological futures to decision-makers and the public. Scenar-
ios are coherent, plausible, and internally consistent descrip-
tions of the future state of a region or the planet under a given
management or decision regime (IPCC, 2014). Researchers
generate scenarios through a mixture of expert opinion and
multi-scale modelling to assess ecological and societal drivers
of change, and how they produce different plausible futures
(Peterson, Cumming & Carpenter, 2003). Ultimately, sce-
narios can highlight key uncertainties and incorporate differ-
ent societal perspectives into the analysis of planned
management actions and their anticipated consequences. In
this way, they can be used as a synergistic co-production
practice that helps stakeholders communicate their values
in envisioning potential futures [known as participatory
modelling or scenario development (Caceres-Escobar
et al., 2019; Harm�ačkov�a et al., 2021)].

Scenario planning exercises have been used to great effect
in communicating the science of global climate change to
world leaders (IPCC, 2014), but have only recently been

applied to the ecological and economic realities of IAS
(Lenzner et al., 2019). A long-term perspective of IAS impacts
is urgently needed, to help give decision-makers a forward-
looking perspective on the consequences of biological inva-
sion (Essl et al., 2019; Lenzner et al., 2019). Recent work has
begun to address this need in providing frameworks and
guidance for conducting scenario analysis for IAS.
One such study explored the potential pathways and

invasion scenarios of IAS spread globally with a focus on
intercountry connections and including country-specific bio-
security measures (Faulkner, Robertson & Wilson, 2020).
Regional biosecurity is likely to play a large part in the spread
of IAS between countries as in most cases invasions occurred
prominently from a country that either had no incentive
(e.g. no harmful effects locally) or low capacity to prevent
the spread of IAS (Faulkner et al., 2020). Pathways of biolog-
ical invasions, in general, will be important in scenario plan-
ning as these types of analyses and planning incorporate
many factors (e.g. socioeconomic, sociopolitical, environ-
mental, and management effort and success) related to inva-
sion prevention (Essl et al., 2015).
The AlienScenarios project, started in 2019, is a multi-

pronged effort to generate scenarios and models of biological
invasions for the 21st century at a variety of analytical scales
(Essl et al., 2019). The project framework is centred around a
set of Alien Species Narratives (ASNs): storylines based on a
set of seven key drivers of biological invasions that illustrate
a range of plausible futures. These ASNs can in turn inform
major global initiatives on biodiversity conservation, includ-
ing the Convention on Biological Diversity (CBD) and Inter-
governmental Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES). More recently, the group pro-
duced a participatory workflow for the co-production of
ASNs and implemented it in a series of workshops to gener-
ate a suite of relevant scenarios (Roura-Pascual et al., 2021).
Horizon scanning – the systematic examination of poten-

tial threats and opportunities for future change within a given
context – has been used to determine global research priori-
ties for broader conservation science (Sutherland et al., 2020).
Experts convene to share their knowledge and, through
detailed discussions, aim to reach consensus within the scope
of a specific question. Horizon scanning studies often include
structured expert-elicitation approaches (Roy et al., 2020),
which can be valuable to address knowledge gaps and
limited availability of empirical evidence (Sutherland &
Woodroof, 2009). The importance of horizon scanning as a
tool for decision-makers has been demonstrated via collabo-
rative solutions to complex environmental issues (Palomino
et al., 2012; Sutherland et al., 2020). Many approaches have
been implemented to reduce or quantify the bias associated
with expert-elicitation methods, including Delphi techniques
(Mukherjee et al., 2015). Horizon scanning has been used spe-
cifically within the context of biological invasions to rank
research priorities (Gallardo et al., 2016), develop risk assess-
ment protocols (Roy et al., 2020), inform prevention (Lucy
et al., 2020; Tsiamis et al., 2020), and management (Booy
et al., 2017).
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The most widespread use of horizon scanning within the
context of biological invasions has been to derive ranked lists
of IAS that are not yet established within a region but have
the potential to arrive, establish, and impact biodiversity
and ecosystems. This enables groups of experts rapidly to
assess and compare the impact of thousands of IAS using a
simple scoring approach to inform discussions within a con-
sensus workshop (Roy et al., 2020). Modelling approaches
can be included to guide the horizon scanning (Matthews
et al., 2017) or implemented at a later stage through detailed
risk assessments on the IAS prioritized through the horizon
scanning (Chapman et al., 2019). Future developments could
include the integration of societal perspectives of alien species
alongside consideration of both negative and positive ecolog-
ical impacts (Verbrugge et al., 2019).

Tools (e.g. the CABI Horizon Scanning Tool; Table 1) are
being developed to assist with horizon scanning by using
online databases to generate a list of species that are absent
from a defined area but present in an area that may be nearby
or have a similar climate or linked through trade. However,
there is potential to expand the information accessed to under-
pin horizon scanning, for example through data mining of
social media (Moustakas & Katsanevakis, 2018). Expert opin-
ion will continue to be important to address gaps across
regions and taxa (Verbrugge et al., 2019). It is critical that
structured expert elicitation processes ensure social inclusion,
recognizing the importance of social engagement to address
the complexities of conservation issues like biological invasions
(Seymour et al., 2020).

VII CONCLUSIONS

(1) Cost-effective and appropriately rapid management of
IAS requires a predictive or proactive approach coordinated
across researchers, practitioners, decision-makers, and stake-
holders. As the global extent and severity of biological inva-
sions worsens and grows more complex with global change,
the prevailing reactive management and research paradigm
becomes increasingly untenable. IAS occurrence data, envi-
ronmental information, and other relevant data
(e.g. population genetic data; Fig. 2) must be collected, col-
lated, and mobilized at large scales to promote the necessar-
ily rapid, coordinated, and anticipatory responses to
biological invasions.

(2) Our review shows that a diversity of new and emerging
tools can support this multidisciplinary approach to invasion
biology and management if widely adopted and coordinated
among institutions and in functional communities of prac-
tice. A broader awareness and appreciation of the efficacy
and relevance of these technologies and methodological
approaches among researchers, managers, and decision-
makers is needed, along with support to facilitate their
broader application and integration.

(3) We outline a conceptual framework and generalized
analytical pipeline to implement these technologies,

methods, and workflows in an adaptive, iterative and scalable
fashion (Fig. 1). This framework ultimately embraces the
abundance and diversity of IAS and spatiotemporal environ-
mental data becoming available, encourages its coordinated
use, management and availability, and prioritizes its transla-
tion and distillation into timely, actionable products that are
co-designed with stakeholders to support their decision-
making.

(4) Species distribution modelling, when integrated with
participatory and big data approaches, is a key analytical
approach for supporting proactive management across spa-
tiotemporal and analytical scales using currently available
data and information from new and emerging monitoring
and biosurveillance technologies. SDMs support the genera-
tion of useful products like horizon scans, spatial relative risk
assessments, and EBVs from the best available data. Predic-
tive modelling methods with the ability to handle diverse
and numerous data sets compiled across sources
(e.g. machine-learning ensembles, Bayesian hierarchical,
and mechanistic simulation models) are especially important
to take advantage of new and diverse data sources. Access to
computing resources and expertise for conducting such
modelling, especially on an iterative basis, is a major limiting
factor for the applied execution of this workflow. Cloud com-
puting services with machine-learning functionality may be
key for applying these models at larger scales and at time
intervals that are relevant to management and decision-
making.

(5) Among methodological improvements, better frame-
works for data format standardization and sharing and inter-
operability, and early involvement of IAS managers,
decision-makers, and other stakeholders, could greatly
increase the efficacy and accessibility of existing data and
subsequent knowledge products (e.g. distribution of spread-
risk models). Significant logistical challenges remain around
the collation, interoperability, and wider availability of IAS
occurrence data which constitute a bottleneck to achieving
global-scale proactive management of biological invasions.
Different professional incentives and social networks between
researchers, managers, and decision-makers may also ham-
per coordination and knowledge co-production, a second
roadblock for this applied workflow that reduces the usability
of data products for intended user groups.

(6) Population genomic, transcriptomic, and remote-
sensing methods represent major technological frontiers of
innovation for invasion monitoring and spread prevention
by facilitating semi-autonomous and high-frequency moni-
toring of species occurrence and predictive modelling of the
pathways of spread. Modern hyperspectral imaging, remote
photography (e.g. trail cameras), and active observation mis-
sions may allow for direct observation of certain IAS, pro-
moting continuous spatiotemporal surveillance of high-risk
areas and providing requisite occurrence data to predictive
models. In this way, existing temporally explicit data layers
can be formulated into point data, enabling the mechanistic
modelling of spread and stepwise occurrence for invasion
events across broad taxonomic and spatiotemporal scales.
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Integrating remote-sensing, environmental, and population
genetic data (e.g. in landscape genomic modelling
approaches) allows tracking, mapping, and prediction of spa-
tiotemporal pathways of spread.
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Marčiulynienė, D., Martinou, A. F., Skuhrovec, J., Tricarico, E.,
Wit, E. C. & Roy, H. E. (2021). Species interactions: next-level citizen science.
Ecography 44, 1781–1789.

Grummer, J. A., Beheregaray, L. B., Bernatchez, L.,Hand, B. K., Luikart, G.,
Narum, S. R. & Taylor, E. B. (2019). Aquatic landscape genomics and
environmental effects on genetic variation. Trends in Ecology & Evolution 34, 641–665.

Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A.,
Kujala, H., Lentini, P. E., McCarthy, M. A., Tingley, R. & Wintle, B. A.

(2015). Is my species distribution model fit for purpose? Matching data and models
to applications. Global Ecology and Biogeography 24, 276–292.

Haklay, M., Dörler, D., Heigl, F., Manzoni, M., Hecker, S. & Vohland, K.

(2021). What is citizen science? The challenges of definition. In The Science of Citizen

Science (eds K. VOHLAND, A. LAND-ZANDSTRA, L. CECCARONI, R. LEMMENS, J.
PERELL�o, M. PONTI, R. SAMSON and K. WAGENKNECHT), pp. 13–33. Springer
International Publishing, Cham, Switzerland.

Hamelin, R. C. & Roe, A. D. (2020). Genomic biosurveillance of forest invasive alien
enemies: a story written in code. Evolutionary Applications 13, 95–115.

Hand, B. K.,Lowe,W.H.,Kovach, R. P.,Muhlfeld, C. C.&Luikart, G. (2015).
Landscape community genomics: understanding eco-evolutionary processes in
complex environments. Trends in Ecology & Evolution 30, 161–168.

Hardisty, A. R., Belbin, L., Hobern, D., McGeoch, M. A., Pirzl, R.,
Williams, K. J. & Kissling, W. D. (2019). Research infrastructure challenges in
preparing essential biodiversity variables data products for alien invasive species.
Environmental Research Letters 14, 025005.
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Mukherjee, N., Hugé, J., Sutherland, W. J., McNeill, J., Van Opstal, M.,
Dahdouh-Guebas, F. & Koedam, N. (2015). The Delphi technique in ecology
and biological conservation: applications and guidelines. Methods in Ecology and

Evolution 6, 1097–1109.
Myers, B. J., Weiskopf, S. R., Shiklomanov, A. N., Ferrier, S., Weng, E.,

Casey, K. A., Harfoot, M., Jackson, S. T., Leidner, A. K., Lenton, T. M.,
Luikart, G., Matsuda, H., Pettorelli, N., Rosa, I. M. D., Ruane, A. C.,
et al. (2021). A new approach to evaluate and reduce uncertainty of model-based
biodiversity projections for conservation policy formulation. Biosciences 71, 1261–
1273.

Norström, A. V., Cvitanovic, C., Löf, M. F., West, S., Wyborn, C.,
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