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of eliminating nonresponse entirely, methods to miti-
gate potential nonresponse bias should be considered 
for incorporation into the estimation of population 
parameters.
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Introduction

Nonresponse is a problem faced by many survey practi-
tioners and its treatment has been widely studied (Särndal  
& Lundström, 2005). In the context of a national for-
est inventory (NFI), nonresponse occurs in the form 
of inability to access field plot areas either partially 
or completely. The primary reasons for nonresponse 
include denial of access by the landowner, hazardous 
conditions that present a safety concern for field crews, 
and other miscellaneous reasons such as skipped visits 
or plot data file corruption. (Magnussen et  al., 2018; 
Patterson et  al., 2012). All of these causes contribute 
to nonresponse in the NFI of the USA, which has been 
conducted by the Forest Inventory and Analysis (FIA) 
program for nearly a century to provide long-term infor-
mation on status and trends in forest resources (Hoover 
et al., 2022). As is done in many countries, FIA gains 
considerable efficiency via a priori determination of 
whether a sample plot may contain forest land or is 
entirely nonforest (Reams et al., 2005; Fattorini, 2015; 
Tomppo et  al., 2010). Information for nonforest plots 
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is obtained from remotely sensed imagery, whereas 
plots possibly having forest land are designated for field 
measurement. Thus, the nonresponse occurs only for 
those plots requiring field observation.

The treatment of nonresponse by FIA in a post-
stratified estimation framework is described by Scott 
et  al. (2005), i.e., completely nonresponse plots are 
dropped from the estimation and partially nonresponse 
plots are used to calculate an adjustment factor that 
is applied to all plots except complete nonresponse. 
The assumption is that partial nonresponse is a ran-
dom process and the expected value of the attribute 
of interest for the area where partial nonresponse 
occurred is equal to the expected value of the attrib-
ute of interest for the area where measurements were 
obtained. It is acknowledged this assumption may not 
always be tenable (Bechtold & Scott, 2005). This key 
nonresponse assumption is implemented at the post-
stratum level; thus, some effort is made to construct 
post-strata such that plots within have similar attrib-
utes and therefore response areas suitably characterize 
the locations where nonresponse occurred (Goeking & 
Patterson, 2013). An approach widely used is incor-
porating ownership information in the creation of the 
post-strata to separate public and private ownerships, 
for the primary purpose of accounting for denied 
access plots mostly occurring on privately owned land 
(Patterson et al., 2012). Also, there exists contiguous 
areas in which many of the plots are not accessed due 
to hazardous conditions (e.g., Okefenokee National 
Wildlife Refuge). These situations may be addressed 
by creating strata specific to the area. Other spatial 
data may also be used, such as canopy cover, forest 
type, topography, or other information that is highly 
correlated with characteristics of nonresponse areas 
(Gormanson et al., 2018).

Despite having methods to account for nonresponse 
in the estimation process, it remains an important 
issue for many NFI around the world (Birigazzi et al., 
2019; Corona et  al., 2014; Henry et  al., 2021; Zeng 
et al., 2015). In the context of the U.S. NFI, there is no 
assurance the within-stratum assumption holds in all 
situations (Goeking & Patterson, 2013) and decreased 
sample sizes produce estimates with less precision. 
Thus, it is sensible to make efforts to minimize nonre-
sponse to the extent possible. As such, the objective of 
this study is to better understand current nonresponse 
circumstances and potential impacts on estimation 

of forest resources from U.S. NFI data. This requires 
activities such as (1) spatiotemporal empirical assess-
ments of nonresponse rates, and (2) examination of 
spectral information to evaluate potential differences 
between nonresponse and forested response plot 
characteristics.

Methods

Data

The data used in this study were collected by the FIA 
program while conducting the NFI of the USA in 48 
states where the annual inventory system (McRoberts, 
2005) is implemented statewide. FIA maintains a net-
work of permanent sample plots, of which a portion 
are measured each year until all plots are completed 
in the inventory cycle that ranges from 5 to 10 years. 
This same plot network is remeasured in subsequent 
inventory cycles. The most recent data (~ 2019) for 
each state were used to assess current nonresponse 
rates, with the time series of yearly nonresponse 
rates providing the basis for temporal trend assess-
ments. The time series length for each state varied 
depending on the beginning year of implementation 
of the annual inventory system. The primary response 
design is a 0.067 ha (0.166 acre) cluster plot, where 
each plot is composed of four circular subplots hav-
ing 7.32 m (24 ft) radius with one subplot located at 
plot center and the remaining three subplots centered 
at azimuths 120, 240, and 360 degrees and distance 
of 36.58  m (120 ft) from plot center (Bechtold & 
Scott, 2005). In terms of quantifying nonresponse, 
FIA employs a mapped plot protocol which allows for 
specifying the proportion of the plot where no obser-
vations could be taken and the reason why. Com-
plete nonresponse plots are those where all four sub-
plots were inaccessible, whereas partial nonresponse 
occurs when only a portion of the plot was inacces-
sible. A secondary factor pertinent to the analyses is 
that an a priori determination of plots requiring a field 
visit is accomplished via examination of remotely 
sensed imagery. When there is high confidence that 
a plot has no forestland, zero values are assigned for 
forest attributes and the plot is not subject to nonre-
sponse because no field visit is required.
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Analysis

One of the most important statistics is the percent of 
plot areas that are affected by nonresponse. There are 
two basic ways to calculate and interpret these values: 
(1) assessing the percent of plots for which no infor-
mation was obtained (only complete nonresponse 
plots), and (2) assessing the total percent of plot area 
that was unable to be observed (includes both com-
plete and partial nonresponse plots). Generally, the 
percent nonresponse can be calculated, respectively, 
as:

where CNR% is the percentage of plots having com-
plete nonresponse, TNR% is the percentage of sample 
plot areas having either complete or partial nonresponse, 

(1)CNR% =

∑n

i=1
pi(NR)�i

n
× 100

(2)TNR% =

∑n

i=1
pi(NR)

n
× 100

pi(NR) is the proportion of plot i area that was nonre-
sponse, �i is an indicator variable (= 1 if plot i is com-
plete nonresponse, 0 otherwise), and n is the total num-
ber of plots selected for field measurement. CNR% and 
TNR% were calculated by survey unit, which is usually 
a county or multi-county area (Fig. 1). To assess the cur-
rent nonresponse rates on a nationally consistent basis 
in time, the plots included in the most recent evaluation 
(primarily 2019; Pugh et al., 2018, Ch. 2) were used for 
each survey unit.

Because FIA collects new data every year (McRoberts,  
2005), it is also possible to calculate nonresponse 
rates over time and assess trends. The number of  
years for which these statistics are available depends 
on the length of time the annualized system has been 
used in the survey unit. Assessment of temporal 
trends within survey units was accomplished via sim-
ple linear regression where a rejection of the hypoth-
esis that the estimated slope parameter was equal to 
zero at the 95% confidence level indicated statistically  
significant change in the nonresponse rate:

Fig. 1  US states and survey units therein by regional FIA unit (Northern, Southern, Pacific Northwest, Rocky Mountain). Survey 
units WV3, CA4, TX4, and UT4 are highlighted as areas in this study that received additional analysis via remote sensing
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where TNR%Year(SU) is the total nonresponse rate in 
survey unit SU for the survey year (Year), �̂

0(SU) and 
�̂

1(SU) are estimated intercept and slope parameters for 
survey unit SU, and �(SU) is random residual error.

In addition to the slope value, it was also of inter-
est to assess the strength of the relationship between 
time and nonresponse rate via the model R2 statis-
tic. For survey units with at least 10 years of data, an 
index of concern was created via multiplication of the 
slope coefficient against the model R2 value where 
large outcomes indicate a strong likelihood of consist-
ent increases in nonresponse over time:

where CSU is the concern index value for survey unit 
SU and R2

SU
 is the R2 statistic for survey unit SU 

determined from model Eq. (3).
Another key analytical assessment is whether the 

nonresponse plots have similar characteristics to the 
plots where observations were obtained. The esti-
mation procedures used by FIA proceed under the 
assumption that the stratum nonresponse plots are on 
average equal to the stratum mean calculated from 
observed plots (Scott et  al., 2005). A deviation from 
this assumption would result in biased estimates. As 
actual values from nonresponse plots are unknown, 
an approximate comparison was conducted using 
remotely sensed data. Harmonic regression coeffi-
cients (similar to Wilson et  al., 2018) derived from 
3rd order Fourier series models fit to dense time series 
(2014–2018) of Landsat tasseled cap components 
(brightness, greenness, and wetness; Crist & Cicone, 
1984; Kauth & Thomas, 1976) were used to test for 
statistical differences between forest and nonresponse 
plots. In this context, the time series harmonics allow 
capture of changing conditions near the time most of 
the FIA plots were measured, while use of tasseled cap 
data provides a well-calibrated, ecologically interpret-
able framework (Cohen & Goward, 2004) from which 
to evaluate potential differences in forest structure via 
wetness (Cohen & Spies, 1992; Collins & Woodcock, 
1996), leaf area via greenness (Cohen et al., 2001; Hall 
et  al., 1991), and vegetation cover via brightness (Li 
& Strahler, 1985; Cohen et al., 1995). Since structural 

(3)TNR%Year(SU) = �̂
0(SU) + �̂

1(SU)Year + �(SU)

(4)CSU = �̂
1(SU)R

2

SU

differences could lead to bias in estimates, the analysis 
focuses on tasseled cap wetness as it has a predictable 
and well understood response to forest successional 
recovery after disturbance (e.g., see Fig.  3 in Cohen 
et al., 2010), is a strong indicator of maturity and struc-
ture in closed canopy forests (Cohen et al., 1995), and 
is relatively insensitive to variations in solar incidence 
caused by topography (Cohen & Spies,  1992; Cohen 
et al., 1995; Jin & Sader, 2005). In general, recent clear 
cuts and low-density forests (e.g., pinyon/juniper, oak 
woodlands) with large areas of bare soil have the low-
est wetness values (− 0.15 or less), while young-closed 
canopy stands ~ 5–20 years of age (depending on for-
est type) have the highest (− 0.05 to 0.10). As a stand 
matures past 30 + years of age, there is a slight darken-
ing of the spectral response due to more frequent gaps 
from advanced competition, canopy die back, and dis-
turbance. In this older, more advanced structural state 
wetness becomes much less variable with mean values 
approaching 0.0 (e.g., see Landsat wetness trajectories 
for western conifers shown in Fig. 4, Schroeder et al., 
2008). Based on this interpretation, wetness is used 
as a surrogate measure of stand structure (i.e., open 
canopy vs. closed canopy forests) and maturity that 
varies in well understood ways based on forest type 
and stand composition, allowing us to compare the 
forest sample and unmeasured nonresponse plots to 
determine if they are similar. We realize wetness only 
captures information about the upper canopy and can 
change based on factors other than age; however, given 
the similarity of forests in each survey unit, we feel it 
provides a well-calibrated, physically interpretable ref-
erence from which to identify and explain differences 
in forest characteristics between the two populations. 
To test this approach, four survey units with high non-
response rates (CNR%) were chosen for evaluation 
(one from each FIA region: CA Unit 4, WV Unit 3, UT  
Unit 4, TX Unit 4). For each survey unit, Kolmogorov-
Smirnoff (KS) tests (Hollander & Wolfe, 1999; Massey,  
1951) are used to determine if the mean wetness val-
ues observed for the forest and nonresponse plots are 
from the same population. The non-parametric KS test 
uses the maximum distance between two cumulative 
distributions (referred to as D) to look for differences 
in shape, spread or median between the two groups. To 
minimize noise from other land uses, only FIA single 
condition forest plots are used for the KS tests.
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Results

Current nonresponse rates

A national-scale analysis indicated the total rate of 
nonresponse (TNR%) due to denied access (8.1%), 
hazardous conditions (1.3%), and miscellaneous other 
reasons (0.4%) is about 9.8% (Table 1). The primary 
cause is complete nonresponse due to denied access 
(CNR% = 7.8%), with hazardous conditions and other 
reasons being relatively minor contributors. Complete 
nonresponse comprises 92.0% of all nonresponse and 

therefore partial nonresponse is of relatively minor 
significance. The Northern region stands out as hav-
ing a larger denied access rate than the other regions, 
with Western regions (Rocky Mountain and Pacific 
NW) exhibiting the most hazardous conditions. How-
ever, there was considerable spatial variability as 
shown in unit-level analyses (Figs. 2 and 3). Survey 
units in the Northeastern and North Central, South 
Central, and Southwest regions tended to have the 
highest rates of denied access (> 20%), whereas the 
Southeastern and Northwestern regions had the low-
est rates. Similarly, hazardous conditions were more 

Table 1  Complete 
(CNR%) and total (TNR%) 
nonresponse rates by type 
and FIA region

Denied access Hazardous Other All

FIA region CNR% TNR% CNR% TNR% CNR% TNR% CNR% TNR%

Pacific NW 4.52% 4.74% 2.44% 3.71% 1.14% 1.18% 8.10% 9.63%
Rocky Mtn 7.36% 7.49% 1.21% 1.78% 1.23% 1.30% 9.79% 10.58%
Southern 7.15% 7.21% 0.50% 0.65% 0.00% 0.00% 7.66% 7.86%
Northern 10.73% 11.70% 0.34% 0.65% 0.06% 0.08% 11.13% 12.43%
All 7.79% 8.13% 0.85% 1.27% 0.40% 0.43% 9.04% 9.83%

Fig. 2  Percentage of field plots that were complete nonresponse due to denied access permission by FIA survey unit
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prevalent in the Western U.S. where phenomena such 
as wildfire, dangerous wildlife, and extreme terrain 
are more commonly encountered.

Partial nonresponse is relatively rare compared to 
complete nonresponse and is easily quantified in the 
context of Table 1 as TNR% minus CNR%. The pres-
ence and magnitude of partial nonresponse implies 
differing levels of landscape fragmentation in terms 
of land ownership and/or rapidly changing topogra-
phy that makes only a portion of the plot accessible. 
Indeed, many of the survey units having high partial 
nonresponse rates occur in the Northeastern U.S. 
where the population density is high and many small 
privately owned forest holdings exist (Butler et  al., 
2021). Similarly, other areas exhibiting high partial 
nonresponse are survey units in the Western U.S. 
where steep mountainous terrain is often encountered 
that creates hazardous conditions on portions of plots. 
Nearly 33% of nonresponse due to hazardous condi-
tions occurs as partial nonresponse (Table 1).

Ultimately, the total amount of nonresponse is of 
particular interest regardless of cause and complete 

or partial configuration (Fig.  4). The Southern FIA 
region stands out as having low nonresponse rates for 
much of the region, the exception being in western/
southern portions of Texas (TX). Much of the field 
data collection in the region is done by employees 
of individual states, which may reduce denied access 
nonresponse relative to use of federal U.S. Forest 
Service personnel. A number of survey units in the 
northeastern portion of the Northern region exhibit 
nonresponse rates exceeding 10%. The relatively high 
population density in this part of the USA may be a 
contributing factor, although further investigation 
would be needed to better understand the phenom-
enon. The largest nonresponse rates in the RMRS 
region occur in the eastern portions where at least 
some of the high rates occur in areas having only 
small amounts of forestland and few plots requiring 
a field visit. High rates coupled with few forested 
plots result in very little information being obtained 
on forest characteristics in these areas. In the Pacific 
NW region, the state of California (CA) generally has 
large nonresponse rates throughout with particular 

Fig. 3  Percentage of field plots that were complete nonresponse due to hazardous conditions by FIA survey unit
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emphasis on many of the coastal survey units (also of 
high population density).

Temporal nonresponse trends

Although quantification of current nonresponse rates 
is valuable, it is also important to understand changes 
in nonresponse rates over time that may result from 
numerous and possibly interrelated factors. Of particu-
lar concern are increasing rates that have the potential 
to further degrade inventory results due to nonresponse 
bias and/or decreasing precision of estimates. In the 
temporal analyses, the assessment of statistically sig-
nificant change via simple linear regression produced 
a wide range of results. At the 95% confidence level, 
statistically significant slope coefficients were all 
positively valued (increasing nonresponse over time). 
Across the country, 92 of 194 (47.4%) survey units 
exhibited a significant slope coefficient (Table 2). The 
NRS and RMRS regions had about 60% of the sur-
vey units showing increased levels of nonresponse, 
whereas approximately 30% of survey units in the SRS 

and PNW regions had significantly more nonresponse 
over time. In addition to statistical significance, the 
value of the slope coefficient is important as an indi-
cator of rate of increase. Although increasing nonre-
sponse is always a concern, areas having relatively 
large slope coefficients are the most troubling and may 
warrant further attention (Fig. 5). Identification of sur-
vey units having both large slope values in combina-
tion with strong correlation between nonresponse and 

Fig. 4  Total nonresponse (TNR%) as a percentage of field plots by FIA survey unit

Table 2  Number and percent of regression results by FIA 
region using model Eq. (3) where the �̂

1(SU) parameter was sta-
tistically significant at the 95% confidence level

FIA region Significant models % significant

Northern 49 59.8%
Southern 20 29.4%
Rocky Mtn 18 64.3%
Pacific NW 5 31.3%
Total 92 47.4%
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time via the concern index  CSU from (Eq.  (4)) rein-
forced earlier results suggesting the Northeastern U.S. 
is an area of concern (Table 3). These results also high-
light two survey units in Wyoming (WY) where there 
is strong evidence that nonresponse rates are increasing 
at over 1% per year.

Tasseled cap wetness comparisons

Apart from reduced sample sizes, concern regard-
ing nonresponse is warranted when the characteris-
tics of nonresponse plots differ from those where a 
response was obtained. The Kolmogorov-Smirnoff 
(KS) tests based on the Landsat tasseled cap harmon-
ics showed statistically significant differences in tas-
seled cap wetness values for three of the four survey 
units examined (Table  4). Survey unit WV3 stood 
out as the exception where no differences in wetness 
were found, although we note the p-value for TX4 is 
only weakly significant (p = 0.048). To help visualize 

the spectral differences, the cumulative distributions 
and kernel density estimates for the forest and nonre-
sponse plots are presented in Fig. 6.

Fig. 5  Map of statistically significant (95% confidence level) regression slope coefficients ( ̂�
1(SU)) for survey units where R2 ≥ 0.40

Table 3  Top 10 survey units with largest CSU values from Eq. 
|(4) where �̂

1(SU) and R
2

SU
 are the respective regression slope 

coefficient and R2 statistic for survey unit SU determined from 
model Eq. (3)

State Survey unit Unit location �̂
1(SU)) R

2

SU
CSU

MD 2 N. Central 2.291 0.690 1.581
PA 5 Western 1.707 0.823 1.405
MD 3 Southern 2.490 0.517 1.287
NY 2 N. Western 1.677 0.761 1.276
OH 4 N. Eastern 1.685 0.752 1.267
PA 0 S. Central 1.511 0.775 1.172
WV 3 Southern 1.881 0.581 1.092
WY 3 S. Eastern 1.501 0.693 1.040
WY 2 N. Eastern 1.201 0.860 1.033
OH 6 N, Western 1.632 0.595 0.971
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Discussion

Nonresponse rates and trends

The results have shown that substantial variation in 
rates of nonresponse exists both spatially and tempo-
rally within the NFI of the USA. In some areas, high 
nonresponse rates are likely causing a nontrivial loss 
in precision for estimates of forest resource attributes. 
For example, there is an approximate 12% increase in 
the standard error of the estimate when CNR% = 20%. 
Further, when nonresponse does not occur randomly, 
there may be bias in the sample as certain popula-
tion attributes are potentially underrepresented and 
resulting estimates from the realized sample may be 
misleading. The concern is escalated in areas expe-
riencing marked increases in nonresponse (Table  3, 
Fig. 5), as there is a possibility that shifting estimates 
of current status might suggest changes in forest 
resources that are not actually occurring. Although 
not specifically addressed in this study, estimates of 
change are even more susceptible to potential sample 
bias and loss of precision due to nonresponse. Change 
estimates rely on observations at two points in time 
and thus plots lacking one or both observations are 
not included. Given that the set of nonresponse plots 
can differ at each time point, nonresponse rates for 
change estimates are higher than those applicable to 
estimates of current status.

Spectral analysis of nonresponse

High nonresponse rates elevate concern as to whether 
assumptions related to ensuring sample unbiased-
ness for estimation of stratum means are being upheld. 
Comparisons of tasseled cap wetness values suggest 
that in some areas of the country, forest structure may 
be different on sampled plots than on nonresponse 
plots (Table 4, Fig. 6). For example, the kernel density 
estimates in Fig.  6 show that in CA4 and UT4, wet-
ness distributions for forest and nonresponse plots are 
noticeably shifted in different directions indicating 
potential differences in forest structure, whereas in TX4 
and WV3, there was very little to no difference in for-
est structure between the two groups. Given the high 
(and increasing) prevalence of denied access in the FIA 
inventory, it is likely some of the forest structural differ-
ences inferred from Landsat wetness in CA4 and UT4 
are the result of broadscale differences in forest den-
sity and composition resulting from different landown-
ers. Because landowners influence forest composition 
and structure via management and conservation (e.g., 
Cohen et al., 1995 found a higher proportion of older 
forest on public lands), as well as impact the probability 
of denied access (e.g., Goeking & Patterson, 2013 used 
ownership to improve stratification of FIA estimates 
in New Mexico), it is important that FIA sample the 
full landscape to ensure its estimates remain unbiased. 
Although limited to resolving upper canopy dynam-
ics wetness did provide an interpretable, wall-to-wall 
source of information from which to better understand 
the types of forests that may be under sampled due to 
nonresponse. Here, a detailed analysis of the wetness 
distributions revealed that in CA4, denied access on pri-
vate lands resulted in under sampling of blue oak wood-
lands (which are sparser, more open grown deciduous 
forests with wetness values falling near the left peak in 
the forest distribution shown in Fig. 6), while hazardous 
plots on public land (i.e., Los Padres National Forest) 
contributed to under sampling of denser, closed canopy 
oak and pine forests (which have higher wetness values 
falling near the right peak in the forest distribution in 
Fig. 6). On the other hand, in UT4, the forest distribu-
tion is skewed toward drier, less structurally complex 
forest conditions (with peak wetness around − 0.15) due 
to the large number of plots falling in pinyon/juniper 

Table 4  Results of Kolmogorov-Smirnoff (KS) tests for dif-
ferences between forested and nonresponse distributions of 
tasseled cap wetness values. Statistically significant differences 
at the 95% confidence level are indicated by p-values less 
than 0.05 (bold). The number of plots in each distribution are 
shown by survey unit. Note, FIA plots with multiple land use 
conditions are not included in this analysis; thus, nonresponse 
rates cannot be derived from the numbers in this table. D rep-
resents the maximum distance between the two groups’ cumu-
lative distributions (shown in Fig. 6, top row)

Statistically significant differences at the 95% confidence level 
are indicated by p-values less than 0.05 (bold)

Survey unit Forest plots Nonresponse 
plots

D p-value

CA4 151 201 0.064 0.000
TX4 701 1351 0.271 0.048
UT4 454 86 0.061 0.001
WV3 331 244 0.227 0.678
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forest compared to the nonresponse plots, which were 
mostly in remote, high elevation areas where denser 
stands of oak, aspen, and pine resulted in higher wet-
ness values (near the forest median >  =  − 0.10).

From a statistical perspective, we recognize spec-
tral differences should be viewed with caution, espe-
cially considering the effect sample size has on the 
significance of the KS tests (e.g., larger sample sizes 
have increased statistical power, Razali & Wah, 2011). 
For example, in TX4, the wetness distributions for the 
forest and nonresponse plots are very similar (Fig. 6); 
however, the KS test still returned a weakly significant 
p-value (Table 4) due to the fact TX4 has 3–4 times as 
many plots as the other survey units, and therefore has 

a much lower minimal bound for finding a significant 
relationship. Despite this limitation, our results sug-
gest that spectrally based nonparametric distribution 
tests may be a useful way of automating identification 
of other survey units where potential bias between for-
est and nonresponse plots warrants closer inspection. 
Because not all field visited plots end up having forest, 
there is a strong likelihood that several nonresponse 
plots are actually nonforest; thus, a stricter minimum 
effect size (< 0.05) would help minimize detection of 
minor structural differences in areas like TX4, which 
are dominated by low density forest. Based on the 
KS tests in CA4 and UT4 (Table  2), a higher cutoff 

Fig. 6  Cumulative frequency distributions (top row) and kernel density estimates (bottom row) of tasseled cap wetness for the forest 
and nonresponse plots. Dashed vertical lines represent the median wetness values for each group
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around 0.001 would likely be a good lower bound for 
identifying other survey units with significant poten-
tial for nonresponse bias.

Differences in wetness found here are at the survey 
unit-level as opposed to the stratum-level, which fur-
ther breakdown the survey units into finer resolution 
classes often based on various combinations of NLCD 
land cover and tree canopy cover data (Coulston et al., 
2012). The analysis here suggests formally testing sta-
tistical differences in wetness at the stratum-level will 
be challenging due to a lack of sufficient sample sizes. 
Based on initial exploration of the NLCD land cover 
data, it was found that most of the forest classes (i.e., 
deciduous, mixed, and evergreen) had sufficient sam-
ple sizes but many of the other classes did not (results 
not shown). The NLCD forest classes showed similar 
patterns of significant wetness differences, as well as 
offered a refined look at the distributional differences 
between groups, which aided the interpretation of the 
broader scale patterns found at the survey unit-level. 
Despite various sources of uncertainty, the evidence 
presented highlights potential under sampling of 
denser, closed canopy forest, as well as habitats which 
are experiencing effects from climate change (e.g., oak 
woodlands in CA4, see Dwomoh et  al., 2021); thus, 
there is a need for more in-depth analysis of sam-
ple bias and its potential effects on FIA estimates. 
Although our use of multispectral remote sensing data 
focused solely on tasseled cap wetness, there are many 
other vegetation indices and time series metrics that 
could be used to further investigate differences in for-
est characteristics of the FIA sample. Future efforts 
will focus on analyzing wetness differences at finer 
scales (e.g., using land cover, tree canopy and distur-
bance maps) and researching new stratification tech-
niques to correct for missing observations (Goeking & 
Patterson, 2013).

Nonresponse mitigation

Various initiatives aimed at reducing nonresponse have 
met with little progress, such that the issue remains a con-
cern to the FIA program. Initial research into the problem 
and potential solutions were reported by Patterson et al. 
(2012), which led to increased emphasis on improving 
post-stratification efforts to better contend with poten-
tial sample bias issues in estimation and maintaining 
the policy to preserve existing plot locations regardless 
of nonresponse frequency. At the national level, current 

data suggests about 7.7% of field plots change status 
from inaccessible to accessible (or vice versa) at time 
of remeasurement. Further, less than 1% of plots were 
consistently denied access for three successive measure-
ments. However, mostly due to differences in inventory 
cycle lengths, not all plots in the FIA inventory have 
been subjected to three measurements and this statistic 
deserves continued attention in future years. These out-
comes suggest a plot replacement effort would be largely 
ineffective and FIA should not alter the original sample 
plot selection.

Given the results of this study, additional effort to 
lessen nonresponse rates would benefit NFIs. Hazard-
ous situations are often beyond the control of inven-
tory practitioners, but generally comprise a small 
amount of the total nonresponse. Therefore, improv-
ing access permission to privately owned lands is 
logically the most impactful pursuit. Private land-
ownership is the primary driver of nonresponse in the 
FIA inventory and the spatial patterns in Figs. 2 and 
4 suggest high population density may be a contribut-
ing factor. However, the lowest nonresponse rates are 
in the southeastern U.S. despite having some of the 
most densely populated areas in the country. This cir-
cumstance suggests other factors are also influencing 
nonresponse patterns. One theory is that southeast-
ern U.S. private forest landowners tend to have larger 
holdings that are more actively managed for eco-
nomic gain than in other areas of the country (Wear, 
1996) so individual landowners may be more inclined 
to grant access to their lands because they also rely 
on FIA data to help them improve their investment. 
In other areas of the country where forests are less 
productive and holdings tend to be smaller, many 
private landowners have less to gain from partici-
pating because they have fewer management objec-
tives and economic interests at stake. There is some 
evidence that suggests a lack of awareness of the 
national forest inventory in conjunction with a gen-
eral distrust of federal government agencies results 
in landowners denying access to their property (Gao 
et al., 2020; De’Arman, 2020; Shindler et al., 2009). 
Landowners may also have concerns about incurring 
liability by allowing crews to occupy their property. 
These hypotheses illustrate that effective nonresponse 
mitigation will likely require better understanding 
of landowner attitudes and concerns such that more 
effective communication strategies can be developed 
to increase access to plot locations.
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Despite potential reductions in nonresponse due 
more effective communications, almost surely some 
nonresponse will always be present. In addition to vari-
ous potential stratum-level assumptions (Domke et al., 
2014), other estimation-based approaches have been 
presented, such as nonresponse calibration weighting 
(Fattorini et al., 2013) and formation of response homo-
geneity groups (Goeking & Patterson, 2013; Westfall, 
2022). Replacement of missing values using imputa-
tion methods has also been suggested as a method to 
overcome nonresponse problems (Magnussen et  al., 
2017; McRoberts, 2001, 2003). The most appropriate 
methods for reducing nonresponse rates and account-
ing for nonresponse to avoid bias in estimation should 
be assessed in the context of circumstances specific to 
a given NFI.

Conclusion

In most NFIs, nonresponse occurs in several forms 
and can be spatially and temporally dynamic. In the 
NFI of the USA, almost 10% of field plot areas were 
inaccessible due primarily to denial of access per-
mission on privately owned forest lands. However, 
substantial spatial variability was encountered which 
suggests an array of factors may contribute to the 
underlying causes of nonresponse and the inherent 
difficulties faced by inventory practitioners to amelio-
rate the issue.

Although only four survey units were analyzed 
to assess potential nonresponse bias, the significant 
differences found in the tasseled cap wetness values 
of forest and nonresponse plots indicated there may 
be considerable dissimilarities in forest structure 
between these two populations in certain areas of 
the country that could lead to bias in forest resource 
estimates. Further, substantial temporal increases in 
nonresponse were also identified in many of the same 
areas such that nonresponse is a continual and likely 
growing concern that warrants further attention.

Ultimately, NFI specialists are faced with the task 
of trying to reduce nonresponse while also recogniz-
ing that eliminating all nonresponse is not a practical 
expectation. Because denied access is the primary 
issue for the U.S. FIA program, meaningful reduc-
tions in nonresponse will likely require investments 
in social science research to understand private land-
owners underlying concerns regarding admission to 

their land. Broader use of multispectral satellite data 
and existing spatial data sets can also help identify 
areas where significant structural differences exist 
between sampled and unsampled forest, facilitat-
ing further study into the causes and potential driv-
ers of nonresponse and informing mitigation efforts 
so resources are targeted in areas of highest con-
cern. Subsequently, more sophisticated communica-
tion strategies may lead to improvements in positive 
landowner responses. A review of current estimation 
methods is also warranted to evaluate the effective-
ness of underlying assumptions and procedures to 
minimize sample bias that nonresponse may impart.
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