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Abstract
Wildfire severity is a key indicator of both direct ecosystem impacts and indirect emissions impacts
that affect air quality, climate, and public health far beyond the spatial footprint of the flames.
Comprehensive, accurate inventories of severity and emissions are essential for assessing these
impacts and setting appropriate fire management and health care preparedness strategies, as is the
ability to project emissions for future wildfires. The frequency of large wildfires and the magnitude
of their impacts have increased in recent decades, fueling concerns about decreased air quality. To
improve the availability of accurate fire severity and emissions estimates, we developed the wildfire
burn severity and emissions inventory (WBSE). WBSE is a retrospective spatial burn severity and
emissions inventory at 30 m resolution for event-based assessment and 500 m resolution for daily
emissions calculation. We applied the WBSE framework to calculate burn severity and emissions
for historically observed large wildfires (>404 hectares (ha)) that burned during 1984–2020 in the
state of California, U.S., a substantially more extended period than existing inventories. We
assigned the day of burning and daily emissions for each fire during 2002–2020. The framework
described here can also be applied to estimate severity for smaller wildfires and can also be used to
estimate emissions for fires simulated in California for future climate and land-use scenarios. The
WBSE framework implemented in R and Google Earth Engine can provide quick estimates once a
desired fire perimeter is available. The framework developed here could also easily be applied to
other regions with user-modified vegetation, fuel data, and emission factors.

1. Introduction

Though some wildfires are essential to the Earth sys-
tem and have beneficial effects on ecosystems that
have evolved with fire, human influences have altered
wildfire risk via increasing ignitions, climate change,
and cumulative impacts of land management and use

(Bowman et al 2009, Stephens et al 2013, Balch et al
2017, Abatzoglou et al 2018, McLauchlan et al 2020).
In addition to ecosystem effects, wildfires directly
impact people through property losses, injuries, mor-
tality, and evacuations, while smoke and its health
impacts are how the largest numbers of people are
affected by wildfires through the regional transport of

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ac80d0
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac80d0&domain=pdf&date_stamp=2022-8-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9532-8815
https://orcid.org/0000-0003-4573-0595
https://orcid.org/0000-0001-9738-6592
https://orcid.org/0000-0002-2982-5255
https://orcid.org/0000-0001-9333-8411
https://orcid.org/0000-0002-7208-6224
https://orcid.org/0000-0001-5470-6306
mailto:qxu6@ucmerced.edu
http://doi.org/10.1088/1748-9326/ac80d0


Environ. Res. Lett. 17 (2022) 085008 Q Xu et al

smoke in the atmosphere (Finlay et al 2012, Reid et al
2016, Bowman et al 2017, Thomas et al 2017, Burke
et al 2021).

The two most commonly used criteria for ana-
lyzing fire effects are burned area and burn sever-
ity (Key and Benson 2006, Kolden et al 2012, Meng
and Zhao 2017). The degree to which a fire-disrupted
ecosystem has changed is referred to as burn sever-
ity (Eidenshink et al 2007, Keeley and Syphard 2019).
Because of differences in wind, topography, fuel con-
ditions, and other factors, burned areas typically con-
sist of complex landscape mosaics of low, moderate,
and high burn severity (Turner et al 1994, Perry et al
2011, Birch et al 2015, Prichard et al 2020). Thus,
landscape-scale quantification of burn severity is vital
to identify the immediate and long-term influence on
fire regimes, air quality, emissions, and other impacts.
Passive spectral reflectance satellites and field obser-
vation have been used to determine burn sever-
ity. The change in Normalized Burn Ratio (NBR)
between pre-and post-fire satellite images (dNBR)
has become the primary index for remote sensing of
severity. In the United States, the Monitoring Trends
in Burn Severity Project (MTBS) (Eidenshink et al
2007), which is derived from long-running Landsat
earth observing sensors, mapped burn severity for
large fires dating back to 1984. However, the MTBS
products have limitations, with sources of potential
errors (e.g. subjective and not field validated sever-
ity classification thresholds) and a 2 year delay in
including new fires in the database, that make the
them less than ideal for research (Kolden et al 2015).
The composite burn index (CBI) field method tabu-
lates severity within 30m plots by averagingmeasure-
ments of several rating factors on a continuous scale
ranging from 0.0 (unburned) to 3.0 (high severity)
(Key and Benson 2006). On-the-ground burn sever-
ity was assessed following the CBI protocol only for
234 fires that burned in the contiguous United States
(CONUS) during 1996–2018 (Picotte et al 2019).

Emission inventories are a critical input for a vari-
ety of modeling applications that seek to understand
how emissions affect air quality, climate, and human
health (Larkin et al 2014, Jaffe et al 2020, Pouliot
et al 2020). Several global biomass burning emis-
sions inventories have been produced and updated in
recent decades. ‘Bottom-up’ inventories such as the
Global Fire Emissions Database (GFED; van derWerf
et al 2004, 2006, 2010, 2017) and the Fire INvent-
ory from NCAR (FINN; Wiedinmyer et al 2011),
rely on satellite burned area and/or active fire detec-
tions, coupled with fuel loads, combustion complete-
ness, and emissions factors to estimate fire emissions.
GFED has provided monthly, daily, and three-hourly
(since 2003) emissions data at 0.25 degrees since 1997.
FINN has provided daily estimates at 1 km resolution
since 2002. ‘Top-down’ inventories such as the Global
Fire Assimilation System (GFAS; Kaiser et al 2011),
Quick Fire Emissions Database (QFED; Darmenov

and da Silva 2015), and Fire Energetics and Emissions
Research (FEER; Ichoku and Ellison 2014) rely on fire
radiative power observations to compute emissions,
along with different approaches to address cloud
cover and to compute scaling factors for fire emis-
sions. GFAS, QFED and FEER produce daily estim-
ates at 0.1 degrees since 2003, 2000, and 2003, respect-
ively. Several emission inventories for the CONUS are
currently available. The United States Environmental
Protection Agency National Emissions Inventory (US
EPA NEI, Raffuse et al 2012) estimates emissions
from all sources including wildfire and prescribed fire
emissions every 3 years. TheWildland Fire Emissions
Information System (WFEIS) (French et al 2014)
provides tools for assessing wildland fire emissions in
area-of-interest or for an identified fire event. It also
provides pre-calculated emissions data on state or
country level onmonthly/yearly scale with the earliest
records back to 1984. Comparisons of fire emissions
inventories have revealed variability in inventory res-
ults, with each having advantages and disadvantages
(Larkin et al 2014, Faulstich et al 2022). Despite all
efforts, there is an urgent need for burn severity and
emissions inventories at the scale of actionable man-
agement (e.g. fuel reduction treatments) and over
longer temporal periods.

Here, we introduce the WBSE and present a
detailed description of the inventory model, initial
results using California historical large wildfires as
an example, comparison with other inventory estim-
ates, and a discussion of uncertainties. The primary
objective of this manuscript is to describe the model,
and our comparison with other emissions inventor-
ies is limited in scope. Similarly, the historical recon-
structions of wildfire severity maps and emissions
are analyzed in more detail in a companion paper.
This study benefits from the recently available regres-
sion models developed at national and regional scales
transforming the dNBR/NBR to CBI to consistently
map burn severity in a transparent manner (Picotte
et al 2021). Following Wiedinmyer et al (2011), we
use modified algorithms and updated fuel emissions
and consumption factors drawing on recently pub-
lished field and remote sensing data to better cap-
ture emissions frommore extreme fires. Larger, severe
wildfires in California increasingly impact ecosys-
tems, human health and life, communities, and infra-
structure due to expanding wildland-urban inter-
faces, fuel accumulation from a century of fire exclu-
sion policies, and increasing aridity, which increases
the amount of biomass available to burn. (Abatzo-
glou and Williams 2016, Westerling 2016, Williams
et al 2019, Goss et al 2020, Goodwin et al 2021). The
comprehensive, long-term event and daily emissions
records described here could be used to study health
effects of wildfire smoke, either by combining them
with transport modeling to model air quality and
estimate exposures, or by incorporating them into
statistical models predicting health impacts as a direct
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function of estimated emissions. These data will also
facilitate analyses of changing emissions impacts on
the carbon cycle over the last three decades. High res-
olution severity and emissions raster maps are gen-
erated for each fire event to support further spatial
analysis. While the emissions calculated for Califor-
nia withWBSE are not a substitute for real-time daily
emissions estimates, it is designed to extend the estim-
ated emissions record back to 1984 with a finer spa-
tial resolution and provide more up-to-date estim-
ates on emissions factors reflecting information from
California’s recent extreme fires.

2. Methods

The WBSE provides estimates of 30 m resolution
burn severity, and emissions of CO2, CO, CH4, non-
methane organic compounds (NMOC), SO2, NH3,
NO, NO2, nitrogen oxides (NOx = NO + NO2),
PM2.5, OC, and BC.We implementedWBSE for Cali-
fornia large wildfires on a per-fire event scale since
1984 and also a daily scale since 2002. The invent-
ory implementation steps, input datasets, and output
data are summarized in figure 1. Emissions of all
species are calculated as a function of area burned,
fuel loading, the fraction of vegetation burned based
on burn severity, and an emissions factor specific to
each vegetation type using the following equation
modified from the FINN model (Wiedinmyer
et al 2011):

Ei = Av,s × Fv × crv,s × efv,i (1)

Where Ei is themass of emission species i emitted,Av,s

and crv,s are the area burned and fuel consumption
rate of general vegetation class v (grass, shrub, forest
<5500 ft, forest 5500–7500 ft, forest >7500 ft) under
severity class s (low, moderate, and high severity), Fv
is the fuel loading of vegetation class v, and efv,i is the
emission factor of emission species i for vegetation v.

The FINN model was developed to estimate
global emissions from open burning at 1 km resol-
ution. It has been used in various modeling studies
for modeling atmospheric chemistry and air quality
(Jiang et al 2012, Val Martin et al 2013, Brey et al
2018). The primary differences of emission calcu-
lation methods between WBSE and FINN are that
WBSE calculates emissions per fire event while FINN
provides global emission estimates in real time. Other
differences include (a) obtaining the area burned by
fire severity class from a new CBI-based burned area
product (based on fire perimeters published byMTBS
and California Department of Forestry and Fire Pro-
tection (CAL FIRE)) while the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) Thermal
Anomalies Product is used in FINN; (b) assigning
vegetation type from the LANDFIRE existing vegeta-
tion type (EVT) product to general vegetation classes
with an updated crosswalk from Hurteau et al (2014)

while theMODIS land cover product is used in FINN;
(c) calculating fuel loading and consumption based
on burn severity for each vegetation class while fuel
consumption is based on a function of tree cover and
fuel loading for generic land cover classifications for
the global regions in FINN; (d) Using region specific
emissions factors for California andWesternU.S. eco-
systems to calculate emissions for the example imple-
mentation over California; and (e) assigning the day
of burning based on MODIS and VIIRS data for each
large wildfire burned since 2002. The inventory has a
spatial resolution of 30 m for per-fire emission estim-
ates and 500 m for daily emissions rather than the
1 km resolution in FINN. The area burned in low,
moderate, and high burn severity is calculated from
Landsat-derived indices (NBR and dNBR) using a
hierarchy of regression models developed by Picotte
et al (2021). We recognize that other fire severity
metrics have been developed (e.g. RdNBR and RBR;
Miller and Thode 2007 & Parks et al 2014, respect-
ively), but we opted to use NBR/dNBR because of
the regionally specific models developed by Picotte
et al (2021) that used NBR/dNBR. We do not have a
quantitative assessment of the uncertainty; however,
we assign a factor of 2 to the uncertainty due to all of
the inputs to the model following Wiedinmyer et al
(2011). A matrix table of 30 m pixel level PM2.5 emis-
sion uncertainty for five general vegetation classes due
to burn severity classification error is given in supple-
mentary table 3.

Fire records for California from 1984 to 2019
were retrieved fromMTBS (https://mtbs.gov/viewer/
index.html) via interactive viewer on 8 May 2021,
resulting in a dataset with a total of 1623 wildfires.
We also acquired fire perimeters for 74 large wild-
fires in 2020 from CAL FIRE (https://frap.fire.ca.gov/
frap-projects/fire-perimeters/) and calculated dNBR
for each 2020 fire using the dNBR calculation tool
with Google Earth Engine (GEE) (figure 2). This pro-
cess first selects either initial assessment or extended
assessment for each fire. The initial assessment util-
izes Landsat images acquired immediately after a fire
to capture first-order fire effects. The extended assess-
ment uses images obtained during the growing season
following the fire to identify delayed first-order effects
and dominant second-order effects (Eidenshink et al
2007). We utilized LANDFIRE Biophysical Settings
(BPS) to determine which assessment type to apply
for each fire burned in 2020. After Picotte et al
(2021), we used extended assessment if the major-
ity of general vegetation groups within the fire peri-
meter are forests, while initial assessment is used
when the majority of general vegetation groups are
grassland/shrubland. By contrast, MTBS uses exten-
ded assessment for forest and shrubland types. We
did not delineate grasslands into burn severity cat-
egories. Instead, we classified them as burned (‘grass
burn’) because of difficulties in assessing vegetation
change. Post-fire images for extended assessment
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Figure 1. Diagram of Wildfire Burn Severity and Emissions Inventory (WBSE) inventory steps and datasets.

were selected during the next peak of the green
season (June–September) using the mean composit-
ing approach suggested by Parks et al (2018). Com-
posite post-fire images acquired immediately within
twomonths after the fire containment dateswere used
for the initial assessment. Composite pre-fire images
for extended and initial assessments were acquired
with the matching periods from the preceding year.
The dNBR images were produced by quantifying the
spectral difference between composite pre-fire and
post-fire Landsat scenes.

Burn severity for a given fire can have either
a linear or non-linear relationship to dNBR/NBR
(Picotte et al 2021). So to make an equivalent burn
severity product across all fires, we calculated the
unitless, continuous CBI variable from dNBR/NBR
values using the linear and Sigmoid B regression
models developed for the CONUS by Picotte et al

(2021). We first applied the MTBS or CAL FIRE
perimeter shapefile for each wildfire event to crop
the BPS raster file. The BPS data are categorized
into one of 12 vegetation groups. For CBI calcu-
lations, we further grouped ‘Conifer’, ‘Hardwood’,
‘Hardwood-Conifer’, ‘Shrubland’, and ‘Riparian’ into
the ‘forest/shrub’ classification; ‘Savanna’, ‘Sparse’,
and ‘Grassland’ into the ‘grass’ classification; and
the rest ‘Barren-Rock/Sand/Clay’, ‘Open Water’, and
‘Perennial Ice/Snow’ into the ‘unchanged’ group. We
applied the decision tree framework (figure 3) for
each pixel categorized as forest/shrub to convert the
dNBR/NBR value into a CBI value. CBI values less
than or equal to 0 were arbitrarily assigned a value
of 0.001 to be classified into the ‘unburned’ group.
Modeled CBI values larger than 3 were assigned the
value 3 to be classified into the ‘high severity’ group.
For the grass group, we set a CBI value of 3.5 to
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Figure 2. Diagram of composite the differenced Normalized Burn Ratio (dNBR) calculation with Google Earth Engine.

Figure 3. A decision tree framework to apply models to convert dNBR/NBR values to CBI values (adapted from Picotte et al
2021). Reprinted from (Picotte et al), Copyright (2021), with permission from Elsevier.

indicate that this pixel was a grass burn. CBI val-
ues were then classified following thresholds modi-
fied based on Crotteau et al (2014) into six severity

classes: unburned, low severity, moderate sever-
ity, high severity, grass burn, and non-processing
area.
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Fuel categories were assigned from LANDFIRE
EVT products. EVT represents the current distribu-
tion of the terrestrial ecological systems classification
(Rollins 2009), and the vegetation layerswere updated
every couple of years to account for landscape dis-
turbances. The most appropriate version was applied
for each fire event depending on the burn year—EVT
data version LF 1.0.5, 1.2.0, 1.3.0, 1.4.0, 2.0.0 were
applied to wildfires burned before the year of 2002,
2002–2010, 2011–2012, 2013–2014, and after 2014,
respectively. For emissions calculations, EVT data
were then categorized into five general vegetation cat-
egories: grass, shrub, forest under 5500 feet (1676m),
forest between 5500–7500 feet (1676–2286 m), and
forest above 7500 feet (2286 m), updated for Cali-
fornia ecosystems (supplementary table 1). Fuel con-
sumption was determined following Hurteau et al
(2014) assigning fuel loading and consumption val-
ues for each severity class for the five general vegeta-
tion categories based on the First Order Fire Effects
Model v5 (Reinhardt et al 1997) (supplementary
table 2).

The LF EVT classes were assigned to generic
vegetation classes of FINN so that emission factors
could be applied. Emission factors for greenhouse
gases, particulatematter, and reactive trace gases were
updated with recent data for each general vegetation
class using results from recent field campaigns and
studies specific for California ecosystems and West-
ern U.S. ecosystems (see table 1).

To assign the day of burning for individual pixels,
NASA fire information for resource management
system (FIRMS) active fire products from MODIS
(Collection 6) within 750 m of the fire perimeter
shapefiles supplied by MTBS or CAL FIRE were
selected for interpolation to account for detections
that might be outside the boundary due to detec-
tion radius. VIIRS 375 m data, when available since
2012, was added to complement MODIS data with
improved performance to assign burn dates using
the fire progression raster tool (figure 4). We filtered
the MODIS/VIIRS detection points to the date range
of interest and created a 500 m buffer around each
point. Points were then converted to circle polygons
to represent each point’s detection extent properly.
The average date was selected as the proper date in
regions of overlapping buffers. We then calculated
daily emissions and assigned them to the centroids of
the aggregated daily progression polygons. Versions
were also implemented using the earliest or latest date
of detection points to assign the day of burning (res-
ults not reported here, but maps are available).

3. Results and discussion

Burn severity and emissions were calculated for
1697 large wildfire events in California during 1984–
2020 at a 30 m resolution scale using the WBSE
framework described above. Day of burning and daily

Table 1. Emission factors (g species emitted per kg biomass
burned) assigned to Grasslands, Shrublands, and Forests.

Emission
factors

Temperate
forest Shrublands Grasslands

CO2 1650a 1588b 1421h

CO 80a 97b 56h

CH4 3.7a 2.2b 2.9h

NMOC 24c 24d 28e

SO2 0.94a 0.73b 3.0h

NH3 1.17f 1.68g 0.56h

NO 0.90f 1.3g 2.9h

NO2 0.99f 0.94g 3.1h

NOx (as NO) 1.2f 2.1g 3.9i

PM2.5 10.6a 7.9a 7.2i

OC 11.6j 3.7k 2.6k

BC 0.4j 1.31k 0.37k

a Average of Forest emission factors, table 5, Prichard et al (2020).
b Shrublands and Grasslands emissions factors, table 5, Prichard

et al (2020).
c Average NMOC emissions for forest fires from Permar et al

(2021).
d Average NMOC emissions from sagebrush fires from Permar

et al (2021).
e Sum of NMOCs in Akagi et al (2011), updated February 2015

for Savanna.
f Average of Forest emission factors, table 5, Prichard et al (2020)

and forest fire E.F.s from Lindaas et al (2020).
g Average of Shrubland emission factors, table 5, Prichard et al

(2020) and sagebrush fire E.F.s from Lindaas et al (2020).
h Grassland emission factors, table 5, Prichard et al (2020).
i Akagi et al (2011), updated February 2015 for Savanna.
j Supplemental table 2, Permar et al (2021).
k Wiedinmyer et al (2011).

emissions were calculated for each fire during 2002–
2020. Data processing and calculations were imple-
mented using R (RCore Team 2021) andGEE (Gorel-
ick et al 2017). The datasets are available for download
and use.

3.1. Burn severities
Over the 1984–2020 period, the average annual area
burned (excluding obscured area) was 0.23million ha
with substantial interannual variability (figure 5).
Obscured area includes data gaps associated with
clouds, smoke, or the Landsat 7 ETM+ scan-line cor-
rector failure (Key 2006), affecting 0.3% of the area
mapped within historical burn perimeters. The max-
imum annual area burned was 1.6 million ha in 2020,
about 220 times the area burned in theminimumyear
of 1991. Of the approximately 8.5 million ha mapped
by this project, about 63% burned at moderate or
high severity (figure 6).

As MTBS has been previously established as a
rough estimate of burn severity rather than a rigorous
calculation for a specified need (e.g. emissions calcu-
lations), a direct comparison of the total area burned
by severity category between MTBS and WBSE is
helpful to contextualize the more rigorous approach
applied here. MTBS analysts subjectively classify
NBR and dNBR into six classes (unburned to low,
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Figure 4. A diagram of assigning day-of-burning with the fire progression raster tool.

Figure 5. The annual area burned in unchanged (fire refugia within perimeters), low, moderate, high severity, and grass burn
categories of large wildfires(>404 ha) in the California region during 1984–2020.

low, moderate, high, increased greenness, and non-
processing area mask) (Kolden et al 2015). Here, we
empirically classified modeled CBI values into four
classes (unchanged, low, moderate, and high) and
two categories of ‘grass burn’ and ‘non-processing
area’ using an objective, standardized procedure. A
pixel-level classification comparison (excluding non-
processing area) indicates that ∼45% of the pixels in
both datasets were classified as the same burn severity
(cells highlighted in blue in table 2); however, WBSE

burn severity was generally higher than MTBS (cells
highlighted in pink in table 3). We found that 22%
percent of pixels classified as low burn severity by
MTBS were classified as moderate burn severity by
WBSE. By contrast, less than 2% of pixels were clas-
sified as having higher burn severity by MTBS than
WBSE (cells highlighted in green in table 3). The
remaining pixels were mainly classified as low burn
severity by WBSE but unburned to low burn severity
by MTBS.
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Figure 6. Burn severity map of all large wildfires(>404 ha) burned in each California air basin during 1984–2020. Some burned
areas overlap since the same place could be burned more than once between 1984 and 2020.

Table 2. Pixel level burn severity classification comparison of MTBS and WBSE (unit: %).

MTBS
WBSE Unchanged Low Moderate High Grass burn Total

Unburned to low <1 19 <1 <1 <1 21
Low <1 14 22 <1 <1 37
Moderate <1 <1 17 8 <1 25
High <1 <1 2 14 <1 16
Increased greenness <1 <1 <1 <1 <1 1
Total 1 34 42 22 1 100

Blue: same burn severity classification in MTBS and WBSE.

Pink: higher severity classification in WBSE.

Green: lower severity classification in WBSE.

White: class not comparable between products.

Table 3. Summary statistics of emissions during 1984–2020.

Min (t)a Median (Gg)a Mean (Gg)a Max (Gg)a Annual average (Gg)b

CO2 8.185 73.59 388.519 48 154 17 819
CO 0.323 3.856 19.834 2397 910
CH4 0.017 0.137 0.798 104 37
NMOC 0.161 1.103 5.734 704 263
SO2 0.017 0.043 0.222 27 10
NH3 0.003 0.06 0.303 36 14
NO 0.017 0.05 0.245 28 11
NO2 0.018 0.048 0.243 29 11
NOx 0.022 0.072 0.346 38 16
PM2.5 0.041 0.426 2.365 302 108
OC 0.015 0.355 2.302 315 106
BC 0.002 0.032 0.143 15 7
a Min, median, mean, and max is the value in the context of each fire event.
b Annual average is the amount averaged over the 1984–2020 period.

t: metric tons.

Gg: Gigagrams.
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Figure 7. Annual fire PM2.5 emissions (Tg yr−1), over 1984–2020 in California, from five global fire emissions inventories
(GFEDv4s, FINNv1.5, GFASv1.2, QFEDv2.5 r, FEERv1.0-G1.2), two regional (CARB and WFEIS) inventories, and WBSE.

3.2. Emissions estimates
Summary statistics of trace gases and particulate spe-
cies emitted by wildfires in California during 1984–
2020 are shown in table 3. The annual average of CO2

and PM2.5 emitted are 18 Tg and 108 Gg, respectively,
with a significant interannual variation. Emissions
from wildfires varied significantly and depended on
fire size, fire severity, and vegetation characteristics.
The largest wildfire was the 2020 August Complex,
which burned 417 898 ha in six counties in the Coast
Range of Northern California and produced themax-
imum amount of all types of emissions. This single
fire emitted approximately 2.5 times the annual aver-
age wildfire emissions for all of California for the past
37 years.

We compared our emissions estimates of PM2.5

to five global fire emissions inventories (GFEDv4s,
FINNv1.5, GFASv1.2, QFEDv2.5r, FEERv1.0-G1.2)
that are commonly used in atmospheric modeling
simulations by extracting monthly and annual emis-
sions for California from 2003 to 2020 using the
FIRECAM online tool (Liu et al 2020). We note
that GFEDv4s values assessed here for 2017–2020
emissions are preliminary. Annual emissions were
also extracted from California Air Resource Board
(CARB 2021) for 2000–2020 and WFEIS for 1984–
2020. The estimates agree reasonably well with other
emissions inventories, although they may vary by as
much as a factor of 3 annually across inventories
(figure 7).

3.3. Daily emissions
We calculated daily emissions for a total of 841 fires
since 2002 when MODIS data were available. For
2002–2020, 6% percent of the original FIRMS fire
points were removed annually due to low detection
confidence. Seventy-four fire events were removed
from the daily emissions database due to less than

ten MODIS/VIIRS fire detections falling within the
WBSE fire perimeter; the daily emissions from these
events are considered uncertain given the low num-
ber of fire detections (after Parks 2014). These 74 fires
were also small fire events, and their total emissions
only accounted for less than 1% of the emissions dur-
ing 2002–2020. The average daily emissions over the
summer during 2002–2020 are higher compared to
the average amount (0.47 Gg8) of daily PM2.5 emis-
sions from all other sectors in California over 2002–
2017 (figure 8). The extremes that peak around the
middle of August and September are primarily con-
tributed by the 2020 wildfires (figure 9).

3.4. Limitations and uncertainties
The results of this research should be considered with
some limitations in mind, as uncertainties are asso-
ciated with several aspects of the calculation process.
Uncertainties related to the FINN model, includ-
ing fire location, timing and area burned, vegeta-
tion identification, fuel loading, and fuel consump-
tion, and emission factors, are described in detail
by Wiedinmyer et al (2011). The modified FINN
model used here reduces uncertainties related to fire
numbers and sizes by using documented fire records
rather than satellite detections. However, fire peri-
meters used in this calculation for wildfires during
1984–2019 were generated by on-screen interpreta-
tion and delineation of dNBR images by MTBS ana-
lysts.We usedMTBS perimeters to better compare the
burn severity difference between WBSE and MTBS.
The resultsmay change slightlywhen using other doc-
umented fire perimeter data; for example, we also cal-
culated emissions since 1984 using perimeters from

8 Calculated based on air pollutant emissions trends data from the
United States Environmental Protection Agency www.epa.gov/air-
emissions-inventories/air-pollutant-emissions-trends-data.
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Figure 8. Average daily PM2.5 emissions aggregated by day of the year from 2002 to 2020. The dashed line represents the value of
average daily PM2.5 emissions from all other sectors in California over 2002–2017; Bars colored in red and cyan indicate when
average daily emissions from wildfires are above and below the average emissions from all other sectors, respectively.

Figure 9. Total emissions from 2002 to 2019 aggregated by day of year compared to daily emissions in 2020.

CAL FIRE (not shown here but available). Uncer-
tainty also arises frommisidentification of land cover:
(a) the burn severity classification is based on the LF
BPS dataset, which characterizes vegetation systems
thatmay have been dominant on the landscape before
Euro-American settlement, but may not be repres-
entative of current vegetation; (b) fuel loading is cal-
culated based on LF EVT, which represents the cur-
rent distribution of the terrestrial ecological systems
classification, but this dataset is infrequently updated
and may not accurately represent the conditions at
the time of burning. Fuel loading, consumption, and
emission rates were constant values for general veget-
ation categories and severity classes, which may not
reproduce the full heterogeneity of land cover. The

day of burning was assigned with an average date in
regions of overlapping buffers in this analysis, and
the results change slightly if the earliest date or latest
date is used as the proper date. In addition, around
5% of emissions were not assigned to a valid date
since no fire points were detected by satellites. This
may lead to a slight underestimate of daily emissions
and thus the derived impact on air quality and pub-
lic health. The open-source, open data framework
presented here can be further refined as needed to
address any of these limitations. Likewise, Picotte et al
(2021) ‘s severity algorithms implemented here are
designed to be robust to limitations in the available
plot-level CBI data and can be extended to incorpor-
ate new plot-level data as they become available.
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4. Conclusions

The WBSE framework implemented in R and GEE
produces quick estimates of burn severity and emis-
sions from wildfires at a 30 m spatial resolution and
day of burning and daily emissions at 500 m spatial
resolution. The burn severity estimates have advant-
ages over MTBS products in that: (a) burn severity
is categorized consistently based on field-validated
equations, rather than subjective thresholds for each
fire event; (b) an initial assessment can be estimated
as soon as the desired fire perimeter is available; (c)
they enable consistent annual estimates for wildfires
burned in California during 1984–2020, which facil-
itates objectively quantifying changes over time and
across fires. Further, daily emissions estimates can be
calculated for periods when daily fire activity data
are available (beginning in 2002). The daily emis-
sion estimates are currently being incorporated into
chemical transport models to evaluate the impact of
wildfire smoke on downwind air quality and popu-
lation exposure. This work facilitates climate vulner-
ability assessments that include the effects of smoke
on public health and provides estimates of green-
house gas emissions during a fire. The publicly avail-
able WBSE fire severity history and emissions invent-
ory offers a valuable, open-source resource for the
fire research community, readily updated after each
fire season, with a framework that allows for iterative
improvements as more data become available. Future
planned improvements include automated fire peri-
meter mapping of observed fires and incorporating
interactive web tools to enable users to estimate fire
emissions for simulated fire severity maps with user-
modified climate and fuels management. For Califor-
nia’s Fifth State Climate Assessment, the Pyregence
Consortium is simulating individual wildfire events
(location, date, size, and severity fraction) for future
climate, land use and fuels management scenarios,
mapping simulated severity at 30 m across the state,
and using the framework presented here for estimat-
ing emissions from individual large fire simulations
through 2100.
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