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ABSTRACT OF DISSERTATION 

ACCEPTABILITY OF THE KALMAN FILTER TO MONITOR 

PRONGHORN POPULATION SIZE 

Pronghorn antelope are important components of grassland and 

steppe ecosystems in Wyoming. Monitoring data on the size and 

population dynamics of these herds are expensive and gathered only a 

few times each year. Reliable data include estimates of animals 

harvested and proportion of bucks, does, and fawns. A deterministic 

simulation model has been used to improve estimates of population 

size. Expert judgement is employed for initial estimates of natural 

mortality; adjustments are made until the simulation satisfactorily 

agrees with field data. 

An optimal estimation technique known as the Kalman filter is 

frequently used for aerospace applications with imperfect data and 

knowledge of system dynamics. It combines all available information 

into a single estimator for the state of a system, and it quantifies 

estimation error. When applied to monitoring pronghorn population 

size, it is less subjective and more reproducible than the present 

deterministic model. It also provides confidence intervals which 

have not been available. 

Data and population models generated by the Wyoming Game and 

Fish Department are sufficient to apply the Kalman filter to 

pronghorn populations. Assumptions nec~ssary for the filter are 

iii 



reasonably valid for two of the three herds studied. Based on 

evaluations from three biologists, the filter is an acceptable a tool 

in applied management of pronghorn. However, the degree of 

acceptability varies among biologists. Improvements are identified 

which should increase acceptability. 

Three new contributions to the field of linear recursive filters 

are made. First, minimization of a goodness of fit statistic 

replaces traditional hypothesis tests in adaptive estimation of model 

prediction error; this strategy is sensitive to the entire 

distribution of residuals, not just the magnitude of one or more 

residuals. Second, a technique is developed to standardize 

correlated residuals using a new constraint on the eigenvector 

solution; this makes orthogonal, standardized residuals more 

interpretable as compared to their unstandardized forms. Analysis of 

residuals can suggest improvements to the state and measurement 

models. Third, a solu~ion is found to certain numerical problems 

when prediction and measurement errors are correlated. For the first 

time, the Joseph update equation is adapted to correlated prediction 

and measurement errors. 

iv 

, Raymond 'Lawrence Czaplewski 
Range Science Department 
Colorado State University 
Fort Collins, CO 80523 
Fall 1986 



ACKNOWLEDGEMENTS 

Many people have contributed to my doctoral program. Without 

anyone of them, I might not have been able to achieve this degree. 

I extend my sincere gratitude to each and everyone. 

My parents, Raymond Sr., and Pauline, have always been a source 

of encouragement and support. I thank you for your love and 

sacrifice. You shaped much of what I am today, and I am proud of 

that. I feel your pride in me when you say that I have more 

(academic) knowledge than you. I hope our son, Glen, knows more than 

me when he is grown. I look forward to helping him accomplish this 

if he chooses such a goal. 

My wife, Vicki, ha~ also been a source of constant encouragement 

and support. I know you too have made many difficult sacrifices, and 

I love you for them. Thank you. I look forward to spending more 

time with you after this dissertation is completed. 

My interest in ecology and natural resources was sparked by 

Dr. Frank A. Brown. Thank you for your inspiration. Dr. George T. 

Baxter gave me my first opportunity to become involved in ecosystem 

research. Thank you for your faith in this city-boy. Dr. Douglas M. 

Crowe taught me love of the Wyoming deserts and their wildlife. 

Thank you for enriching my life. Your friendship is greatly valued. 

Dr. George M. VanDyne gave me the opportunity to advance my 

quantitative studies of ecosystems. Thank you for your inspiration. 

v 



I miss you. The encouragement of Dr. Clyde A. Fasick and the support 

of Dr. Hans T. Schreuder were very important to my doctorate program. 

This dissertation would not exist without the knowledge, 

guidance, skill, empathy, and foresight of my advisor, Dr. Donald A. 

Jameson. You are a dedicated and caring mentor. I admire your 

energy, a great deal of which must have been required to apply the 

Kalman filter to resource management. You are a credit to academic 

institutions in general and specifically to the Range Science 

Department at Colorado State University. Thank you for your help. I 

am also grateful to the other members of my committee: Dr. Douglas 

M. Crowe, Dr. Larry R. Rittenhouse, and Dr. Charles D. Bohnam. Thank 

you for your helpful criticism and patience with the tight deadlines 

under which I have worked. 

I am especially grateful to the biologists in the Wyoming Game 

and Fish Department. Data from all biologists within the Department 

were used in this dissertation. Mr. David Moody, Mr. Joseph Bohne, 

Mr. Joseph Nemick, Dr. Harold J. Harju, Dr. Douglas M. Crowe, and 

Mr. Lee Wollrab reviewed an early draft of this dissertation. They 

all contributed important criticisms and insights. Thank you for 

your time and interest. I know you all spend many extra hours to get. 

your own job done. I appreciate your help in getting my job done in 

addition to your own. 

I also acknowledge Dr. Jack E. Gross, who introduced population 

simulation modeling as a practical tool for big game management, and 

Dr. Douglas M. Crowe, who implemented these procedures within the 

Wyoming Game and Fish Department. Both individuals put much work 

into these efforts and endured many frustrations and disappointments. 

vi 



J. 

This dissertation would not have been possible without their 

dedication. A copy of the POP-II software was provided by Mr. John 

M. Bartholow, who permitted me to modify portions of his copyrighted 

code. Thank you for your generosity and dedication to wildlife 

resources. 

vii 



AUTOBIOGRAPHY 

Raymond L. Czaplewski was born on February 2, 1949, in Chicago 

Illinois, where he lived until 1970. In the summer of 1969, he 

received an undergraduate NSF grant to study sea bird behavior at the 

Kent Island Experimental Site in the Bay of Fundy, Canada. In 1970, 

he received a B.A. ,degree in biology from Northwestern Univers:tty, 

Evanston, Illinois. 

He attended the University of Wyoming from 1970 to 1972 in the 

Zoology and Physiology Department. He was a teaching assistant in 

General Biology and Biometry. He received a M.S. in systems ecology. 

His thesis is entitled "A methodology for evaluation of parent-mutant 

competition using a gen~ralized non-linear ecosystem model." He also 

conducted a limnological study at the Jackson Hole Biological 

Research Station during 1971. 

In 1972, he was drafted into the U.S. Army where he was an 

artillery instructor. He taught missile electronics and the 

operation, repair, and troubleshooting of ground support equipment 

for the Pershing missile. He was honorably discharged in 1974. 

He was a research assistant at Colorado State University during 

1974 and 1975 in the IBP Grassland Biome Study under Dr. George M. 

VanDyne. He compared the ELM73 model as parameterized for five 

different rangeland ecosystems. 

viii 



Between 1976 and 1979, he was a wildlife planner for the Wyoming 

Game and Fish Department. He was responsible for the computerized 

implementation of big game simulation modeling, program and project 

cost accounting, wildlife observation data storage and retrieval, 

license issuance, and enhancement of the stream and lake data base. 

He designed systems to rank proposed enhancement proj ects and 

evaluate Department performance from the public's perspective using a 

questionnaire. 

From 1979 to 1982, he worked as a planner for the USDA Forest 

Service on the Bighorn National Forest. He was on the core team 

which produced the Forest's first long range, multiresource plan 

under the National Forest Management Act of 1976. He was active in 

the preliminary design of planning methods and responsible for 

construction and use of the data base for the Plan. 

He has been a mathematical statistician for the USDA Forest 

Service at the Rocky M9untain Forest and Range Experiment Station 

since 1983. He is a member of the Multiresource Inventory Techniques 

Project, which has national responsibilities for exploring new 

methods to monitor the condition of forestland regardless of 

ownership. He has worked on volume and taper regression equations 

and on analysis of remote sensing data. He has contributed to the 

design of a remote sensing study to efficiently monitor changes in 

land cover over multi-state regions on an annual or biannual cycle. 

He is currently exploring the use of the Kalman filter to merge 

ground plot data and remotely sensed data with a deterministic model 

of land cover change for continuous regional monitoring. 

ix 



DEDICATION 

I dedicate this dissertation to the recovery of my mother. 

x 



TABLE OF CONTENTS 

INTRODUCTION 

OBJECTIVES 

METHODS 

Implementation 

Population Dynami'cs Model 
Measurement Model • . • . 
Correlated Prediction and Measurement Errors • . 
Numerical Stability . . • • • . . . • • • • • • 

Validation of Assumptions . 

Acceptability 

Description of Pronghorn Herds Studied in Detail 

Independent Test Data • 

RESULTS 

Performance Comparisons Among Herd Units 

Estimates for Baggs Herd Unit . 

Total Population Size • . • • • 
Independent Test Data 
Buck, Fawn, and Doe State Variables 
Biologist's Evaluation •••• 

Estimates for the Elk Mountain Herd Unit 

Total Population Size •. . . • . • • 
Independent Test Data . . . . • • • . 
Buck, Fawn, and Doe State Variables 
Biologist's Evaluation •..•. 

Estimates for Thunder Basin Herd Unit . 

Total Population Size 
Independent Test Data 

xi 

1 

8 

10 

10 

11 
13 
13 
14 

15 

16 

17 

22 

25 

25 

28 

28 
33 
33 
35 

36 

36 
40 
42 
43 

44 

44 
47 



Buck, Fawn, and Doe State Variables 
Biologist's Evaluation. 0 • 0 

State-wide Evaluation • 

Parameter Estimates • • 

Validation of Assumptions • 

Baggs Herd Unit 
Elk Mountain Herd Unit 
Thunder Bapin Herd Unit 

Acceptability of the Kalman Filter 

DISCUSSION . . • • 

Applicability to Monitoring Other Populations . 

Improvements to Assumptions 

Measurement Error for Herd Classifications . 
Aerial Trend Counts 
Unused Sources of Measurements 

Computer Implementation • 

Ranking Fit for Data 

Systems Ecology • . 

CONCLUSIONS 

LIST OF REFERENCES 

APPENDIX Io BASIC TERMINOLOGY AND DEFINITION OF SYMBOLS • 

Basic Terminology . • • 

Definition of Symbols 

APPENDIX II. CURRENT MONITORING PROCEDURES 

Herd Classification Data 

Harvest Survey 

Aerial Herd Counts 

Present Population Modeling System 

xii 

47 
47 

49 

50 

53 

53 
57 
60 

63 

64 

64 

66 

68 
70 
70 

71 

72 

73 

74 

77 

81 

81 

82 

85 

85 

87 

88 

89 



'APPENDIX III. KALMAN FILTER FOR PRONGHORN HERDS • 

Filter Structure 

Prediction Model for Population Dynamics 
Measurement Model 
Estimation Equations 

91 

91 

91 
92 
94 

Par~meter Estimates for Pronghorn Models . . • • • • • • • • 95 

Time Periods and Population Dynamics 

Estimating Mortality Rates 

Natural Mortality . • • . • • • • 
Interpolating Natural Mortality Rates at 

Intermediate Times • • • . 
Harvest Mortality • • • • 

Estimating Natality Rates 

Model Prediction Errors . . 

Reproducible Parameter Estimates • 
Adaptive Estimates of Covariance Matrix 
Hypotheses Tests to Estimate Prediction Error 
Estimates of Prediction Error Using Goodness 

of Fit . . . . . . . . . . . . . . 
Proportional Estimates of Prediction Error 
Interpolation~for Intermediate Times •• 
Normal Distribution of Errors 
Independence of Errors 

Incorporation of Field Data . 

Herd Classifications • 
Iterative Estimates of Nonlinear Measurement 

Parameters • . • . • • • • 
Aerial Herd Counts . • • • • 

Initial Conditions 

Confidence Intervals 

Inspection of Residuals for Filter Validation • 

Tuning the Kalman Filter . . ." 
Solution to Numerical Problems 

xiii 

96 

99 

99 

101 
• 102 

· • 104 

• • 105 

· 105 
· 106 

• • • . 106 

• • 109 
112 

. . • • 113 
• 113 
· 114 

• 115 

115 

· • 118 
• • 120 

• 120 

• 121 

• 122 

123 

• • 125 



APPENDIX IV. COVARIANCE MATRIX FOR MEASUREMENT ERRORS 
IN HERD CLASSIFICATIONS ••• • • • • • 128 

Measurement Matrix for Herd Classifications • • 128 

Incorporating Measurement Error • • . . . • 130 

Covariance of Prediction and Measurement Error • 131 

Hypergeometric Sampling Model • • • • . • • • . · 135 

xiv 



INTRODUCTION 

Herd size of Antilocapra americana (pronghorn antelope) is 

difficult to estimate using data from a state-wide monitoring 

program. In Wyoming, a winter population of 371,000 pronghorns roam 

191,000 km2 of suitable habitat (Wyoming Game and Fish Department 

1985). Originally, such wildlife populations were not monitored or 

regulated. Harvest mortality was presumed to decrease as wildlife 

populations became small because of low harvest success. This 

strategy of self-regulation has often worked for small game, but has 

been unsuccessful for big game species (Downing 1980). 

Since the early 20th century, qualitative methods have been used 

to monitor and manage big game populations. Indicators were used as 

an index to population size. These include range condition; physical 

condition of sampled animals (e.g., weight, fat thickness, 

parasites); size and composition of the sport harvest; hunter 

preferences and harvest success; rates of recruitment and nonhunting. 

mortality; physical evidence such as frequency of w~ldlife sightings, 

and pellet group or track density; public opinion; and crop damage 

claims (Downing 1980). These indicators are assumed to be correlated 

with population size but are more easily observed than the actual 

number of animals. This type of management prevailed during the 

dramatic recovery of big game populations in the first half of this 

century. 
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The traditional management approach has several shortcomings. 

An indicator might respond slowly to habitat changes and fail to 

identify a problem until significant ecological impact has occurred 

(Downing 1980). Considerable subjective judgement is required to 

interpret indices especially when they show contradictory trends; 

this qualitative element is difficult to advocate. Requirements for 

documentation and quantitative analysis have increased and are needed 

to support decisions affecting the environment. Also, indicators can 

be highly variable and expensive to monitor. 

More quantitative techniques for wildlife monitoring have been 

described (Eberhardt 1978, White et al. 1982, Miller 1984). These 

fall into one of two categories (Davis and Winstead 1980): direct 

counts and change in ratios. These methods have proved valuable for 

intensive studies, but are either infeasible or too expensive for 

broad application to all pronghorn herds in Wyoming. 

Davis and Windsteacl (1980) identified a third method to estimate 

population size: survival rate analysis. Estimated population size 

at time t+l equals past size at time t times an estimated survival 

rate between t and t+1. It has not been widely used because survival 

rates can be more difficult to estimate than population size using 

direct counts or change in ratio techniques. However, Walters and 

Gross (1972) introduced an efficient method to estimate survival 

rates. Expert judgement of a trained local wildlife biologist is 

combined with routine management data in a simple numerical model of 

population dynamics. 

For practical reasons, reliable data gathered for management of 

Wyoming pronghorn populations are limited to annual herd 
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classifications, annual harvest surveys, and aerial herd counts at 

three to five year intervals. Data are collected for each of 55 

pronghorn herd units in Wyoming. A herd unit is a geographic area 

which identifies a closed population of animals. Migrations among 

well defined herd units are assumed negligible. 

Herd classifications are performed in late summer. Ground 

transects through each herd unit are traveled by four-wheel drive 

vehicle, and all observed pronghorns are classified into one of three 

categories: does, fawns, and bucks. Harvest surveys are conducted 

by a random sample of licensed hunters; these are used to estimate 

legal harvest of bucks, fawns, and does. A trend count is an attempt 

to census all pronghorns in a herd unit using observations from 

aircraft; during these counts, animals are not classified by sex or 

age. Usually only 50 to 80% of the total population is enumerated. 

These management data are combined with professional judgement 

using a numerical model.called POP-II (Bartholow 1985). This model 

has a simple structure in which population size at time t+1 equals 

population size at time t plus births and minus deaths which occur 

during this interval. Births are modeled as the average number of 

fawns born per doe, and are estimated using observed fawn:doe ratios' 

from herd classifications. Deaths are divided into two types: 

harvest mortality and natural mortality. The number of animals 

harvested is estimated using the hunter survey. Natural mortality is 

estimated using professional judgement. These latter estimates are 

changed until the model predictions adequately agree with the 

remaining field data such as buck:doe ratios and aerial trend counts. 

Occasionally, a second herd classification is performed after hunting 
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season to provide more data to which model predictions are compared. 

This modeling approach has been used by the states of California, 

Colorado, Minnesota, Tennessee, and Wyoming (Pojar and 

Strickland 1979). More specific details are in Appendix II. 

POP-II is an important tool in the applied management of big 

game herds in Wyoming. However, it has several shortcomings. First, 

there is no systematic way to quantify confidence in the POP-II 

estimate. Second, there is no unique solution to the estimation 

problem. Different estimates of natural mortality can give similar 

POP-II predictions. This poses a dilemma to the biologist who must 

chose among different parameter estimates without empirical guidance. 

This can erode the credibility and defensibility of the model 

predictions. Third, some data fit poorly relative to other data when 

they are combined in a POP-II simulation; however, it is difficult to 

quantify or rank the deviations. It is important to identify such 

data for critical evaluation of field procedures. Fourth, errors in 

representing early events in the simulation can have a profound 

effect on the population simulation for many time steps (Bartholow 

1985). These errors can cause difficulty in fitting the model to 

later time periods (e.g., unusually severe winter mortality). 

Kalman (1960) introduced a recursive estimation (filtering) 

technique which has been used for the past 25 years in aerospace 

applications such as navigation, guidance, and control systems. It 

was developed by engineers to produce the best estimate of the state 

of a system (e.g., location of a satellite, position of an aircraft) 

given data which are subject to measurement errors and imperfect 

knowledge about the dynamics of the system. 
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The concept behind the Kalmap filter is simple. A system of 

difference equations is used to model the state of the system and 

estimation error at time t+1 given all that is known about the system 

at time t and processes occurring between these times. Measurements 

at time t+l are compared to the model predictions. Differences 

between model predictions and measurements of the system are resolved 

by choosing a weighted average between the two estimates. The 

weights are a function of the relative variances. If the variance of 

measurement error is less than the variance of prediction error from 

the model, then the weighted estimate will be closer to the 

measurement than to the model prediction. A variance for the 

combined state estimate is calculated, and the new estimate is 

treated as initial conditions in the model to simulate changes 

between time t+1 and t+2. This cycle is repeated for each time step. 

The predicted state is constantly updated by both model predictions 

and measurements. 

Statistical details of this estimation procedure have been 

widely published in the engineering literature (e.g., Kalman 1960, 

Lee 1964, Kailath 1968, Jazwinski 1970, Gelb 1974, Bierman 1977, 

Maybeck 1979). Only a few studies have applied the Kalman filter to· 

natural resource systems (Bierman 1977). Most have been in water 

resources and are reviewed by Bergman and Delleur (1985). Several 

papers have discussed conceptual aspects of applying recursive 

filters to other fields in natural resources. Filters have been 

proposed for monitoring forestlands by Dixon and Howitt (1979), 

Kennedy (1981), Mitchell and Bare (1981), and Casti (1983); for 

monitoring grazing system studies by Jameson (1986); and for 
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environmental monitoring by Pimental (1975), Sisler and Jameson 

(1982), and Sisler (1986). A problem exists with much of this 

literature. There are differences in nomenclature and notation, 

which makes it difficult to understand the relationship between 

results from different fields of application (Diderrich 1985). 

Examples in the engineering literature (e.g., electronic circuits, 

navigation systems) are unfamiliar to many biologists. With the 

exception of water resources, the Kalman filter has seldom been 

applied using actual data from natural resources. 

The objectivity and confidence intervals produced by the Kalman 

filter could benefit management of wildlife and rangeland resources 

in many ways. First, a measure of confidence in a population 

estimate would be valuable information to judge the risk in 

alternative management actions. If there is little confidence in a 

population estimate, then conservative management decisions 

(e.g., reduction in spo~t harvest) are expected. If the confidence 

in the population estimate is increased, then control of the 

population using less conservative management actions would be more 

likely. 

Second, public management agencies have a responsibility to 

conduct and document an objective and logical process for making 

decisions. Otherwise, subj ective decisions which are based on 

professional judgement might be perceived as arbitrary. Public 

participation in decisions affecting pronghorn herds has increased 

(Wyoming Game'and Fish Department 1985), especially as the market and 

nonmarket values of wildlife habitat have increased. 
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Third, more objective estimates are important to mitigate 

impacts of development activities on the environment. In the 

mitigation process, it is necessary to quantify the size and 

productivity of a renewable resource which is in jeopardy. Pronghorn 

herds are one such resource which has been jeopardized in some areas 

of Wyoming. 

Fourth, it is necessary to evaluate accomplishment of management 

objectives. In Wyoming, the objective is the population goal which 

is desired for a herd. A population estimate with a defensible 

confidence interval could be used to realistically determine if the 

objective is being met. Objectives have been established by the 

interactions between the Wyoming Game and Fish Department, other 

agencies, and the general public. A reproducible and logical test 

for achieving these obje'ctives is far less subject to reasonable 

challenge than is qualitative evaluation. 

Fifth, confidence .-intervals for population size would help 

concerned individuals realistically perceive the relative reliability 

of population estimates. Monitoring intensity, quality of data, and 

inherent problems vary among herd units. The credibility of 

estimates for well monitored herds can suffer if serious problems 

exist with estimates for other herds. Too much emphasis can be 

placed on model estimates from herds which have monitoring problems 

because of success with other populations. Proper confidence 

intervals would quantify relative reliability so that estimates for 

each herd unit could be evaluated on their own merits rather than 

those of another population. 



OBJECTIVES 

The Kalman filter is a relatively untested technique in systems 

ecology and monitoring of renewable natural resources. It has never 

been applied to a wildlife population. The first objective of this 

study is to determine if the Kalman filter can be successfully 

implemented using routine management data to estimate size of 

pronghorn antelope herds. 

The Kalman filter parameterized for a pronghorn population is an 

intricate set of assumptions. These assumptions specify mortality 

and natality rates; the change in these rates over time; differences 

between years in winter severity; changes in harvest levels; 

prediction error of the~demographic model; initial conditions for the 

state variables; the structure and reliability of the measurement 

model; the distribution and independence of errors. If all 

assumptions are approximately true, then statistics of the residuals 

from the filter should closely match those predicted by the filter. 

The second objective of this thesis is to examine the assumptions 

used to implement the Kalman filter using statistical tests of 

hypothesis on residuals. 

To be an acceptable management tool, the Kalman filter must be 

worth the cost to the wildlife biologist who is responsible for 

managing a particular antelope herd unit. This cost consists of two 

components: the time and effort required to implement a new 
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procedure, and any features of the present methods which are lacking 

in the Kalman filtering approach. This criterion is restated as the 

following null hypothesis: 

"The field biologist is unwilling to invest resources in 
adopting the Kalman filter". 

This hypothesis was tested by questioning the app~opriate wildlife 

biologists in the Wyoming Game and Fish Department. These 

individuals are responsible for monitoring three herd units which are 

studied in detail. 



METHODS 

The first objective of this dissertation is to establish if 

existing management data in Wyoming are adequate for implementing the 

Kalman filter. The following sections summarize how this was 

attempted. More specific details are provided in Appendices III and 

IV. 

Implementation 

The Kalman filter requires parameters which are often infeasible 

to measure directly (e.g., estimates of natural mortality). This 

problem also occurs in the POP-II process. In engineering 

applications, a common'" solution to this problem is to use a 

sophisticated computer model as equivalent to the true system 

(Jazwinski 1970, Maybeck 1979). Access is available to every 

numerical value in the model without sampling error. 

Such models are generally too complicated and too nonlinear for 

direct use in the Kalman filter. However, a simple linear model is 

capable of representing important responses of some systems over a 

short time interval. Parameters in the simple model are estimated so 

that the simple model mimics the complicated model over short time 

intervals. These initial parameter estimates may be subsequently 

refined to improve performance of the Kalman filter when it is 
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applied to the the actual system. The same strategy was applied to 

the Kalman estimator for pronghorn populations. POP-II simulations 

were treated as though they were the true state of the pronghorn 

populations. A simpler model was constructed for the filter to mimic 

POP-II. 

Population Dynamics Model 

POP-II represents each cohort of animals which are born in one 

year. There are 10 to 20 such state variables (two sexes, each with 

a life span of 5 to 10 years). However, data on age, sex, and 

harvest are usually restricted to three categories: fawns, adult 

does, and adult bucks. A simple model can be built using these three 

state variables. Age-specific natality and natural mortality are not 

incorporated in such a model. However, old animals are rare and less 

important to population dynamics of a pronghorn herd. Much less 

information is needed to estimate three state variables. 

The simplified population model in the filter requires new 

parameter estimates for natality and natural mortality. POP-II 

parameters could not be used directly because they are specific to 

each one-year age class. However, these were indirectly incorporated' 

into estimates for the two adult state variables in the filter using 

a large number of herd units. This was done for five levels of 

winter severity (Appendix III). Therefore, the model for population 

dynamics in the filter is a simple function of winter weather 

conditions based on POP-II models from the entire State of Wyoming. 

The parameters most difficult to estimate for the Kalman filter 

are those describing the magnitude of prediction error. 
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Conceptually, this could be done by the direct comparison of 

predictions from the simple model to the true state of the system. 

However, the true state of a pronghorn herd is unknown, and this 

method would not work in practice. Instead, the covariance matrix 

for prediction error was indirectly estimated in a two-step process. 

First, the simple model was used to predict known POP-II 

results. Differences between these two predictions are readily 

quantified, and they were empirically used to provide an initial 

covariance matrix for prediction error. However, this is likely an 

underestimate of true prediction error. A simple model should have 

less error in predicting output from a more sophisticated model than 

it would in estimating the true state of a natural system. 

Therefore, the second step increased ,the time series of covariance 

matrices for prediction error by a scalar which did not change over 

time. In the filtering literature, this general approach is called 

adaptive estimation (Jameson 1985). 

This scalar was valued to maximize goodness of fit of 

standardized residuals to their predicted distribution; this 

criterion for adaptive estimation is a new contribution to filtering 

methodology. It solves problems which exist in published techniques 

when correlations are expected among residuals from the same point in 

time. The full details of this method are given in Appendix III. 

The method for estimating natality and natural mortality 

parameters considers differences among years in survival and 

reproductive success that are caused by differences in winter 

conditions. Winter severity is a major source of variability in the 

population dynamics of pronghorns. However, it ignores geographic 
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differences. Some areas of Wyoming are more productive than others 

for pronghorns. This problem was solved by rescaling mortality and 

natality rates for each of three herd units which were studied in 

detail. The scalars for each herd were chosen to maximize goodness 

of fit between the residuals and their predicted distribution. 

Specific details are provided in Appendix III. 

Measurement Model 

The Kalman filter effectively combines two sources of 

information into a single analysis. The first source is a model of 

system dynamics. The second source is measurements of the actual 

system. The Kalman filter includes a second model which 

mathematically describes how the measurements relate to the true 

·state of the system. Measurement errors are formally included in 

this second model. The full measurement model must be specified in 

order to implement the Kalman filter. 

The measurement model for pronghorn herd classifications was 

formulated by assuming that each animal was randomly sampled without 

replacement. Also, classification error (e.g., a fawn being 

misclassified as a doe) is assumed to be negligible. Under these 

assumptions, the covariance matrix for measurement errors was 

computed using the trivariate hypergeometric distribution 

(Appendix IV). 

Correlated Prediction and Measurement Errors 

A measurement matrix is also needed which describes the linear 

relationship between herd classification data and the true state of 
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the pronghorn herd. This had to be approximated using population 

estimates from the model in the filter. These estimates include 

prediction errors. These must be factored out of the measurement 

matrix and added to the measurement error which is predicted by the 

trivariate hypergeometric distribution (Appendix IV). Therefore, the 

full measurement model also include prediction errors from the model 

for population dynamics; this caused the prediction and measurement 

errors to be correlated, which is demonstrated in Appendix IV. 

The basic Kalman filter assumes that measurement and prediction 

errors are independent. However, modifications to the filter have 

developed (Jazwinski 1970, Gelb 1974, Maybeck 1979) which treat 

correlated prediction and measurement errors; these modifications 

require a covariance matrix between the measurement and prediction 

errors. This matrix was quantified for pronghorn herds using 

mathematical statistics (Appendix IV). 

Numerical Stability 

When the Kalman filter was applied to pronghorn populations 

using the above methods, it was numerically unstable. For example, 

negative variances were frequently predicted (correct variance 

estimates are always positive). This type of problem is common in 

engineering applications (Maybeck 1979). Engineers solve this 

problem by using more numerically stable versions of the filter; one 

version is the Joseph form (Gelb 1974). However, the Joseph form, 

which appears in standard texts, assumes prediction and measurement 

errors are independent. This assumption is not true for pronghorns. 

Therefore, a Joseph form which incorporates correlated errors was 
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derived. This appears for the first time in Appendix III. However, 

the Joseph form was numerically unstable when applied to pronghorn 

herds. A second solution used by engineers is the square root 

filter; this filter is always numerically stable (Bierman 1977) and 

it solved the numerical problems. 

Validation of Assumptions 

Many assumptions are required to implement the Kalman filter 

(Appendix III). If all assumptions are correct, then the Kalman 

filter is the· minimum variance, maximum likelihood, least squares, 

optimal estimator (Diderrich 1985), and its standardized residuals 

will be mutually independent and normally distributed (Maybeck 1979). 

It is difficult to directly test most assumptions required by the 

filter. However, statistical tests can be applied to the residuals 

to detect departures from their expected characteristics of 

independence and norma~ distribution. The second objective of this 

dissertation is to validate the assumptions made when applying the 

filter to pronghorn management. This was performed indirectly by 

statistical tests on the residuals. 

The Kolmogorov-Smirnov (KS) test. (Sokal and Rohlf 1969) was used 

to test for the expected normal distribution of the residuals. The 

null hypothesis is that the orthogonal, standardized residuals 

(Appendix III) are normally distributed with zero mean and unit 

variance. If the standardized residuals are mutually independent, 

then there should be no patterns in the residuals beyond those 

expected by chance. Two types of statistical tests were used to 
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detect patterns. The first is a distribution-free test called the 

multiresponse permutation procedures (MRPP). It is described in 

detail by Mielke (1984). It was used as a median-based, metric 

technique (Mielke 1986). Actual values of the standardized residuals 

were used in the statistic rather than ranks. The null hypothesis is 

that the average within-group distance is not smaller than that 

expected by chance. Residuals were divided into groups based on 

fawns versus bucks, preseason versus postseason classifications, and 

year. Second, a correlation test was used to test for linear 

associations among residuals. The null hypothesis is that there is 

zero correlation between residuals from the same time period or from 

sequential time periods. If these hypotheses cannot be accepted, 

then at least one assumption in' the filter is assumed incorrect. 

Alpha levels of 0.05 were used for all tests. 

Acceptability 

The third objective of this dissertation is to determine if the 

Kalman filter is an acceptable tool for applied pronghorn management. 

This objective was formalized into a null hypothesis which predicted 

. that wildlife biologists, who are responsible for monitoring 

pronghorn herds, are not willing to invest resources to adopt the 

Kalman filter. This hypothesis was qualitatively tested by 

questioning three biologists from the Wyoming Game and Fish 

Department. These biologists gathered the data for the three herd 

units which are studied in detail. The three biologists are: 

Mr. David Moody, Mr. Joseph Bohne, and Mr. Joseph Nemick. Each 

biologist has been responsible for their respective herd units for at 
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least 10 years. The decision to adopt a technique is the 

responsibility of the Department rather than that of each biologist. 

Therefore, questioning the biologists is merely a measure of their 

acceptance of the Kalman filter. 

These biologists were sent a draft of this dissertation which 

contained all portions except the biologists' evaluations. After two 

months, they were interviewed. They were asked three questions to 

test the null hypothesis. First, would they be willing to attend a 

one day workshop on the Kalman filter. Second, would they be willing 

to attend a one week workshop. Third, would they be willing to use 

the Kalman filter as implemented in this qissertation. These 

questions were intended to gauge the magnitude of resources, if any, 

which each biologist is willing to invest. Many of their other 

comments were also recorded. These are described in the Results 

sections. 

The draft was also evaluated by personnel at the state 

headquarters of the Wyoming Game and Fish Department. These include 

Dr. Douglas Crowe, Assistant Director; Dr.' Harold Harju, Supervisor 

of Biological Services, Game Division; and Mr. Lee Wollrab, Biologist 

Aid, Game Division, who has state-wide responsibility for the 

technical support of POP-II. Their comments and criticisms are 

included in the Results section. 

Description of Pronghorn Herds Studied in Detail 

There are 55 pronghorn herd units in Wyoming. Field biologists 

judged that 37 are adequately modeled using POP-II. Three of these 
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latter herd units were purposefully selected for application and 

evaluation of the Kalman estimator. They were the Baggs and Elk 

Mountain herd units in south-central Wyoming, and the Thunder Basin 

herd unit in eastern Wyoming. Each were from three different 

administrative Districts within the Wyoming Game and Fish Department. 

They all had an unusually large amount of data or had been modeled 

with better than average success using POP-II. All available herd 

classification and aerial trend count information for these three 

herds are given in Table 1. The remaining 34 pronghorn herd units 

were used for independent parameter estimates for the Kalman filter. 

The Baggs (Fig. 1) and Elk Mountain (Fig. 2) herd units are 

located in south-central Wyoming in extensive sagebrush steppe 

habitat. Both herds sustained an unusually severe winter in late 

1983 and early 1984. However, changes in private fencing practices 

within the Baggs herd unit effectively excluded pronghorns from much 

of their critical winter range during this extreme winter. In early 

December 1983, 2000 to 3000 pronghorns emigrated from the Baggs herd 

unit (Moody, personal communications); this problem with winter range 

did not occur in the Elk Mountian herd unit. 

The Baggs herd is one of the most intensely monitored big game 

populations in Wyoming. Management of this herd is a controversial 

public issue. Critical winter range is limited and overlays valuable 

coal deposits. Development of these resources could have 

irreversible impacts on the Baggs herd. Postseason herd 

classifications are available for Baggs and Elk Mountain; however, 

such postseason classifications are not normally conducted for most 

pronghorn herds in Wyoming. 
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Table 1. Herd Classification and Aerial Trend Data for Herds Studied 
in Detail. 

Herd Classifications 
Preseason Postseason 

Herd Unit Bucks Fawns Bucks Fawns Aerial 
Biological per per Sample per per Sample Trend 

Year 100 Does 100 Does Size 100 Does 100 Does Size Count 
Baggs 

1978 36.9 85.8 1,731 19.4 71.2 755 
1979 38.4 82.8 2,581 22.3 76.2 2~645 
1980 53.8 75.5 2,700 4,281 
1981 47.7 84.1 2,469 
1982 49.2 73.3 2,765 49.8 75.2 1,969 9,142 
1983 54.0 73.6 3,835 49.01 70.0 1 1,524 8,480 
1984 52.7 49.3 1,214 25.9 24.1 833 
1985 39.6 72.9 988 31.7 88.3 1,263 

Elk Mountain 
1979 38.4 72.5 2,522 28.4 70.7 2,158 
1980 41.2 86.6 2,410 31.3 73.5 1,608 
1981 53.0 83.7 2,214 29.0 95.8 2,599 
1982 52.0 73.8 2,959 29.8 60.2 956 5,028 
1983 54.7 80.5 2,246 47.0 40.3 2,350 
1984 41.7 42.8 2,799 28.9 31.8 916 
1985 18.4 87.4 2,278 23.4 78.2 1,639 3,660 

Thunder Basin 
1979 21.5 106.7 1,255 
1980 27.9 90.4 1,048 
1981 40.2 100.2 1,370 
1982 53.7 95.4 2,060 
1983 47.2 96.6 2,282 
1984 44.1 70.4 3,233 
1985 36.8 69.9 3,296 8,535 

1 Only a portion of herd unit sampled. 
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Map of Baggs pronghorn herd unit showing seasonal distribution 
and major fall migration routes as arrows. Shaded areas are 
considered critical winter range by Wyoming Game and Fish 
Department (Raper, et al. 1985). 
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distribution. Shaded areas are considered critical winter 
range by the Wyoming Game and Fish Department (Bohne and 
Rothwell 1985). 
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Much of the Thunder Basin herd unit is located in the Thunder 

Basin National Grasslands (Fig. 3). This herd has higher 

reproductive rates than the other two (Table 1). Habitat is 

primarily shortgrass prairie with some sagebrush steppe 

interdispersed with dryland and some irrigated cropland. The winter 

of 1983 to 1984 was also severe in this part of the state. Fawn: doe 

ratios in the August herd classification have declined in the past 

several years, perhaps in response to local drought conditions 

(Nemick, personal communications). 

Independent Test Data 

Independent validation data are usually used to evaluate 

performance of a predictive model, and model predictions are compared 

to these data. For data to be independent of the model predictions, 

they can not be used to build the model (Draper and Smith 1981). 

Herd classification and~ harvest data were required to implement the 

Kalman filter, which precluded their use as validation data. 

Therefore, aerial trend counts were reserved for validation. 

Aerial trend counts are an attempt to census all animals in a 

herd unit every three to five years. However, typically 80% or less 

of the pronghorn population is actually enumerated. Estimates of 

this percentage are made by the biologists. Therefore,aerial,trend 

counts can be used as an accurate lower limit for population size and 

as an approximate measure of total population size. 

Estimates from both the Kalman filter and POP-II were compared. 

When they differed, aerial trend counts were used to judge which 
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distribution and major fall migration routes as arrows (Nemick 
et ale 1985). 
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model was correct. However, this comparison is confounded by 

differences between the Kalman filter and POP-II in use of aerial 

trend counts. These counts are used to tune POP-II, but were not 

used in the Kalman estimator. Therefore, trend counts are 

independent validation data for evaluating Kalman estimates, but are 

not independent of the POP-II estimates. 



RESULTS 

The first objective of this dissertation was achieved. It was 

determined that data and models already available for pronghorns in 

Wyoming are adequate to implement the Kalman filter. The results for 

each of the three implementations are compared and described in the 

following sections. 

Performance Comparisons Among Herd Units 

Standard error for estimates of total population size is given 

in Fig. 4. The best success (i.e., smallest standard error) was 

achieved for the Baggs herd unit. This was expected because the 

Baggs herd is the most intensively monitored pronghorn population in 

Wyoming. 

Another descriptor of the relative success in applying the 

linear Kalman filter is the estimated model prediction error. As it 

becomes smaller, more weight is placed on the model in the filter. 

This decreases estimation error for population size. Therefore, the 

scalar used to weight initial estimates of prediction error 

(Appendix III) is an index which quantifies of the performance of the 

models in the filter. Using this criterion, the most successful 

application of the Kalman filter was for the Baggs herd unit 

(Fig. 4). 
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The second best success was attained for the Thunder Basin herd 

unit. This was unexpected because less data are available for this 

population than for the Baggs and Elk Mountain herds. Postseason 

classifications are not conducted for the Thunder Basin herd unit; 

this is also true for a majority of Wyoming pronghorn herds. This 

success suggests that the Kalman filter could be applied to many 

other populations of pronghorn antelope in Wyoming. 

Prior to 1984, standard errors for Thunder Basin ranged between 

800 to 1600 animals compared with 400 to 1200 for the Baggs herd 

unit. However, standard errors for Thunder Basin grew after the 

severe winter beginning in late 1983; this was caused by the high 

variability in winter mortality and reproductive success after such a 

winter. However, standard errors returned to their former levels by 

1986 (Fig. 4). 

The greatest variances for estimation error is for the Elk 

Mountain herd unit. T~is was unexpected because postseason herd 

classifications are available for all years. The Kalman filter was 

more difficult to fit to Elk Mountain data than to the other two herd 

units. The model prediction error for the Elk Mountain herd is 

scaled very high; this is necessary to best fit residuals to their 

expected distribution. This causes the prediction error from the 

model to dominate the estimation errors both directly and indirectly 

through the correlated measurement and prediction errors 

(Appendix IV). The models in the filter for the Elk Mountain herd 

unit are not as useful as those for the Baggs and Thunder Basin 

herds. 
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Estimates for the Baggs Herd Unit 

The Kalman estimator for the Baggs herd unit produces the most 

reliable estimates. The estimate of true prediction error is only 

three times greater than the error in estimating POP-II results using 

the simplified population model in the Kalman filter (Figure 4 and 

Appendix III). The KS statistic is also low. lherefore, the 

residuals are close to a normal distribution with the expected 

parameters. 

Total Population Size 

Estimated total population size for the Baggs herd unit is given 

in Table 2. The Kalman filter tended to overestimate buck:doe ratios 

and underestimate fawn:doe ratios. When this occurred, the filter 

sacrificed agreement with the fawn:doe ratio in order to better match 

the buck: doe ratio. This is apparent in the preseason herd 

classifications in 1978, 1981, 1982, and 1985, and the postseason 

classifications in 1982, 1983, and 1985 (Table 2). This discrepancy 

is caused by the higher variance for fawn predictions relative to 

buck predictions in the filter, which causes confidence intervals fo~ 

bucks to be smaller than for fawns. Therefore, the Kalman filter 

places more weight on the buck data. 

The difference between variability in fawn and buck measurement 

error is greater than expected based on the trivariate hypergeometric 

sampling distribution. This disparity was caused by high 

correlations between prediction and measurement errors, which 

dominated the measurement error matrix (Appendix IV). These 
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Table 2. Population estimates for the Baggs herd unit, 1978 to 1985. 
Estimates both before and after the Kalman filter update are 
given. The data which were used for this purpose are also 
given. Herd ratios are presented as descriptive statistics. 

------------------------------------------------------------------------------------------
POPULATION ESTIMATES AND 90\ CONFIDENCE INTERVALS HERD 

---------------------------------------------------------. CLASSIFICATION BUCKS FAWNS 
TOTAL BUCKS FAWNS DOES FIELD COUNTS PER PER 

------------- ------------- --.---------- ------------- ----------------- 100 100 
POP. C.1. POP. C.!. POP. C.I. POP. C.1. BUCKS FAWNS DOES DOES DOES 

----- ------- . ---- ------- .---- ----.-. ----- ------- ----- .---- ----- ------ ------

1918 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 12672 2998 2533 1111 4690 1820 5450 1132 346 641 7U 46.5 86. 1 
KALMAN UPDATE 12159 1132 2146 277 H49 607 5064 308 305 705 721 42." 97.7 
FIELD DATA 287 667 777 36.9 85.8 

1978 POSTSEASON HERO CLASSIFICATION 

KALMAN MODEL 9237 1828 729 450 3906 1171 '602 504 60 319 316 15.8 84.9 
KALMAN UPDATE 9817 738 901 121 ~U2 621 4775 180 69 319 367 18.9 86.7 
FIELD DATA 77 282 396 19.4 71.2 

1919 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 10935 2403 1952 927 3734 1129 5249 1022 461 881 1239 31. 2 71. 1 
KALMAN UPDATE 11000 850 1852 201 3982 410 5161 318 05 93~ 1212 35.9 17. 1 
FIELD DATA 448 966 1167 38.4 82.8 

1979 POSTSEASON HERD CLASSIFICATION 

KALMAN MODEL 8697 1361 751 326 3245 769 '701 519 229 990 1434 16.0 69.0 
KALMAN UPDATE 9188 455 950 81 3309 241 4929 238 274 956 1424 19.3 67. 1 
FIELD DATA 298 1019 1337 22.3 76.2 

1980 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 12192 2256 2092 429 U62 2171 5639 642 '75 1014 1281 37.,1 79. 1 
KALMAN UPDATE 11871 692 2457 184 3~57 280 5957 356 513 807 1390 ~L2 58.0 
FIELD DATA 653 904 1213 53.8 74.5 

1981 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 12732 2617 2246 648 4745 2226 5741 871 n6 920 111.3 39.1 82.7 
KALMAN UPDATE 12852 943 2488 232 4416 418 5948 U9 478 848 1143 41.8 14.2 
FIELD DATA 508 896 1065 47.7 84.1 

1982 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 10558 3071 2081 1147 3599 1267 4818 1345 545 9'3 1278 42.7 73.8 
KALMAN UPDATE 10861 1180 2319 303 3467 US 5081 525 590 882 1293 ~5. 6 68.2 
FIELD DATA 611 911 1243 49.2 73.3 
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Table 2. Continued 

------------------------------------------------------------------------------------------
POPULATION ESTIMATES AND 90\ CONFIDENCE INTERVALS HERD 

---------------------------------------------------------- CLASSI FlCA TlON BUCKS FAWNS 
TOTAL BUCKS FAWNS DOES FIELD COUNTS PER PER 

------------- ------------- ------------- ------------- ----------------- 100 100 
POP. C.I. POP. C.1. POP. C. I. POP. C.1. BUCKS FAWNS DOES DOES DOES 

----- ------- ----- ------- ----- ------- ----- ------- ----- ----- ----- ------ ------

1982 POSTSEASON HERD CLASSIFICATION 

KALMAN MODEL 7779 1858 1240 4B9 2B14 805 3725 B48 314 712 943 33.3 75.5 
KALMAN UPDATE 7576 685 1521 186 1988 171 4067 421 395 517 1057 37.4 48.9 
FIELD DATA 464 574 931 49.8 61.7 

1983 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 10182 2587 2124 512 3681 2232 4377 836 BOO 1387 1649 48.5 84. 1 
KALMAN UPDATE 9867 891 2211 229 3103 321 U93 464 883 1206 1746 50.6 69.1 
FIELD DATA 910 1240 1685 54.0 73.6 

1983 POSTSEASON HERD CLASSIFICATION 

KALMAN MODEL 51B2 1640 750 38B 2195 1105 2837 756 198 579 748 26.' 77.' 
KALMAN UPDATE 6011 629 1115 144 1629 214 3268 404 283 413 829 3L 1 49.8 
FIELD DATA 341 487 696 49.0 70.0 

1984 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 5407 2300 1073 816 1906 1164 2428 980 241 428 545 44 .2 78.5 
KALMAN UPDATE 5321 917 1376 285 1297 272 2648 429 314 296 604 52.0 49.0 
FIELD DATA 317 296 601 52.7 49.3 

1984 POSTSEASON HERO CLASSIFICATION 

KALMAN MODEL 4606 1493 991 461 1044 647 2571 694 179 189 465 38.5 40.6 
KALMAN UPDATE 4139 592 817 173 819 169 2444 339 176 165 492 35.9 33.5 
FIELD DATA 144 134 555 25.9 24.1 

1985 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 5806 2441 1103 492 2212 2201 2491 739 188 376 424 44.3 88.8 
KALMAN UPDATE 5620 848 1104 200 2034 379 2482 401 194 358 436 U.S 81.9 
FIELD DATA 184 339 465 39.6 72.9 

1985 POSTSEASON HERD CLASSIFICATION 

KALMAN MODEL 4729 1573 744 346 1599 1135 2386 659 199 427 637 31.2 67. 0 
KALMAN UPDATE 4613 825 704 126 1568 678 2341 355 193 429 641 30.1 67.0 
FIELD DATA 182 507 514 31.7 88.3 
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correlations caused the Kalman filter to consistently reduce the fawn 

estimate in order to better match the observed proportion of bucks; 

this is apparent in Table 2 for the fawn estimate after preseason 

classifications in 1980 to 1984 and after postseason classifications 

of 1982 and 1983. Reduction in the number of estimated fawns changes 

recruitment rates has an enormous effect upon dynamics of a 

population model. 

Estimates of total population size from the POP-II and Kalman 

techniques are compared in Fig. 5. The estimates are remarkably 

close given that the Kalman filter was tuned using only herd 

classification data. Aerial trend counts used in POP-II but not in 

the filter. There are two noticeable differences between the two 

models for Baggs: total population size in 1982 and 1983, and the 

trend in population size after the severe winter of 1983 to 1984. 

The Kalman filter estimated a total population size during 1982 to 

1983 which is 3000 animals smaller than the estimate from POP-II. 

This difference is within the confidence intervals of the Kalman 

estimates (Fig. 5); however, it is near the extreme of the confidence 

interval. The Kalman filter tended to reduce fawn numbers and 

increase buck estimates; this caused the filter to underestimate the· 

rate of increase in pronghorn population size between 1980 to 1983. 

The second difference is the predicted trend in population size after 

the severe winter of 1983 to 1984. There is a 10% increase per year 

estimated by POP-II; the Kalman filter estimates a stable trend. 
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POP-II and Kalman estimates of total population size for the 
Baggs herd unit, 1978 to 1985. Heavy bars indicate aerial 
trend count data. 
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Independent Test Data 

The POP-II and Kalman estimates of total population sizes 

generally agree (Fig. 5). However, there are times the 

estimates agree much less so than others. The only test data 

available to judge between the two models are aerial trend counts. 

These are minimum population estimates, and they are plotted with the 

Kalman estimates and confidence intervals in Fig. 5. The Kalman 

estimates are less than the aerial trend counts in 1982 and 1983. 

This indicates that the Kalman filter underestimated population size 

in these two years. The Kalman estimate of emigration in late 1983 

was 1500; the field estimates were 2000 to 3000; this also suggests 

that the Kalman filter underestimated population size in 1982 and 

1983. 

Buck, Fawn, and Doe State Variables 

The estimates for the buck, fawn, and doe state variables show 

trends similar to those for total population size. The Kalman 

estimates are closely correlated with the POP-II estimates but tended 

to be smaller. The greatest differences are in 1982 and 1983 

(Fig. 6). Unlike total population size, the differences in ~hese twd 

years exceeded the 90% confidence intervals around the Kalman 

estimates. 

Herd ratios (i.e., bucks per 100 does and fawns per 100 does) 

were used to compare the Kalman filter to POP~II for preseason and 

postseason herd classifications. The fit of both models is similar 

with one exception. Estimates of preseason fawn:doe ratios in POP-II 
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are without error because field biologists use these observations as 

estimates of recruitment parameters in POP-II. The Kalman filter 

treats the fawn and doe counts as a measurement of the system which 

is subject to measurement error. 

Biologist's Evaluation 

Mr. Moody feels that the Kalman filter has potential for 

monitoring pronghorn populations in a applied management program. In 

a recent aerial trend count of this herd unit, he observed less 

animals than expected. The population trend between 1985 and 1986 is 

stable. The Kalman filter also predicted a stable trend; the POP-II 

model predicted an increasing trend. This decreased, although did 

not remove, his concern with underestimates which were produced by 

the filter. 

Mr. Moody is troubled by the high variance for buck counts 

relative to fawn counts in the measurement model for herd ,.. 

classifications. In his judgement, the variability for fawn counts 

is lower than buck counts for the preseason classification. He has 

found that young bucks congregate during the summer in less 

accessible portions of the herd unit. This increases the chance of . 

overlooking these groups even though such areas are sampled. 

However, he feels that reliability of postseason fawn counts is less 

than preseason fawn counts. After hunting season, many fawns have 

grown large enough so that they are easily misclassified as does. 

The size of 90% confidence intervals from the Kalman filter 

agree with his subjective evaluation of the reliability of POP-II 
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estimates for the Baggs herd unit. He feels that this is useful 

information which has never been previously quantified. 

Estimates for the Elk Mountain Herd Unit 

Estimates from POP-II and the Kalman filter are in better 

agreement for the Elk Mountain herd unit than for the Baggs herd 

unit. However, the Kalman filter was much less reliable when applied 

to the Elk Mountain herd unit. The scalar used to estimate model 

prediction error was 30 compared to 3.2 for the Baggs herd unit. 

Therefore, less weight could be placed on models in the Kalman filter 

for the Elk Mountain herd. The quantity of field data was nearly the 

same for both herd units (Table 1). 

Total Population Size 

The Kalman filter produced a time series of population estimates 

very similar to those of POP-II (Fig. 7). The POP-II estimates are 

within the 90% confidence interval around the Kalman estimates. The 

agreement between the two estimation techniques is good given that 

aerial trend counts are used in POP-II but not in the Kalman filter. 

Confidence intervals for Elk Mountain are much broader than those for 

the Baggs herd unit. There is a large decrease in confidence 

intervals after herd classification data combined with model 

predictions using the Kalman filter (Table 3). Updated Kalman 

estimates have confidence intervals that are only 15 to 30% as large 

as those before data are combined with model predictions. 
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Table 3. Population estimates for the Elk Mountain herd unit, 1979 to 
1985. Estimates both before and after the Kalman update are 
given. The field data which were used for this purpose are 
also given. Herd ratios are presentea as descriptive 
statistics. 

------------------------------------------------------------------------------------------
POPULATION ESTIMATES AND 90\ CONFIDENCE INTERVALS HERD 

---------------------------------------------------------- CLASSIFICATION BUCKS FAWNS 
TOTAL BUCKS FAWNS ODES FIELD COUNTS PER PER 

------------- ------------- ------------- ------------- ----------------- 100 100 
POP. C .1. POP. C .1. POP. C.I. POP. C. I. BUCKS FAWNS ODES DOES DOES 

----- ------- ----- ------- ----- ------- ----- ------- ----- ----- ----- ------ ------

1979 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 9410 4802 1576 473 3632 5271 4202 603 422 974 1126 37.5 86.5 
KALMAN UPDATE 8955 871 1623 210 3069 "8 4263 264 457 864 1200 38. 1 72.0 
FIELD DATA 459 867 1196 38.4 72.5 

1979 POSTSEASON HERD CLASSIFICATION 

KALMAN MODEL 7005 2752 1092 417 2480 2725 3432 537 337 164 1057 31.8 72.3 
KALMAN UPDATE 7004 793 1043 169 2590 424 337\ 226 321 798 1039 31.0 76.8 

. FIELD DATA 308 766 1084 28.4 70.7 

1980 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 9296 4035 1966 745 327B 3884 4051 944 510 850 1050 U.S 80.9 
KALMAN UPDATE 9478 1293 1806 303 3785 640 3887 456 459 963 988 46.5 91.4 
FIELD DATA 436 916 105B 41.2 86.6 

1980 POSTSEASON HERD CLASSIFICATION ... 

KALMAN MODEL 7853 2666 1275 520 3189 2136 33B9 782 261 653 694 37.6 94.1 
KALMAN UPDATE 7514 966 1242 209 2914 494 3357 393 266 624 718 37.0 86.8 
FIELD OAT A 246 577 785 31.3 73.5 

1981 PRESEASON HERO CLASSIFICATION 

KALM .. N MODEL 9101 4217 2274 817 3264 3917 4169 10BB 519 74S 951 54.6 7B.3 
KALMAN UPDA1E 9842 1363 2221 358 3503 573 4118 567 500 788 926 53.9 85.1 
FIELD DATA 496 783 935 53.0 83.7 

1981 POSTSEASON HERD CLASSIFICATION 

KALMAN MODEL 7923 2759 1585 602 2943 2098 3394 949 520 965 1113 46.7 86.7 
KALMAN UPDATE 7712 1108 1131 196 3701 634 2880 H4 381 1247 971 39.3 128.5 
FIELD DATA 335 "08 1156 29.0 95.8 

1982 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 9352 4339 24 B7 878 2807 3936 4057 1196 787 8B8 12B4 61.3 69.2 
ULMN UPDATE 9532 14 39 2326 390 3301 559 3905 635 722 1025 1212 59.5 U.S 

FIELD DATA 681 968 1310 52.0 73.9 
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Table 3. Continued 

------------------------------------------------------------------------------------------
POPULATION ESTIMATES AND 90\ CONFIDENCE INTERVALS HERD 

---------------------------------------------------------- CLASS I FICA TI ON BUCKS FAWNS 
TOTAL BUCKS FAWNS DOES FIELD COUNTS PER PER 

------------- ------------- ------------- ------------- ----------------- 100 100 
POP. C.1. POP. C. I. POP. C. I. POP. C.I. BUCKS FAWNS DOES DOES ODES 

----- ------- ----- ------- ----- ------- ----- ------- ----- .---- ----- ------ ------

1982 POSTSEASON HERO CLASSIFICATION 

KALMAN MODEL 7384 2853 1404 651 2803 2091 3176 1053 182 363 411 44.2 88.2 
KALMAN UPDATE 6875 1136 1275 258 2562 523 3037 547 177 356 422 42.0 84.' 
FIELD DATA 150 303 503 29.8 60.2 

1983 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 8863 1447 2163 886 2958 3963 3Hl 1251 548 750 948 57.8 79. 1 
KALMAN UPDATE 8920 U93 2113 394 3111 587 3695 672 532 783 930 57.2 84. 2 
FIELD DATA 522 769 955 5~ .7 80.5 

1983 POSTSEASON HERO CLASSIFICATION 

KALMAN MODEL 5806 2946 961 664 2357 2099 2487 1113 389 954 1007 38.6 9 .. 8 
KALIIIAN UPDATE 5413 1111 114 9 286 1561 391 2703 599 499 618 1174 0.5 57.8 
fIELD DATA 524 710 1116 41.0 63.6 

1984 PRESEASON HERD CLASSIFICATION 

KALKAN MODEL 5989 1008 1382 2638 1964 3426 2643 2988 646 918 1235 52.3 74.3 
KALMAN UPDATE 5612 2859 1451 ,.. 883 1488 908 2673 120B 724 742 1333 54.3 55.1 
FIELD DATA 633 649 1517 41.7 42.8 

1984 POSTSEASON HERO CLASSIFICATION 

KALMAN MODEL 3604 4612 419 1422 1114 2025 2010 1945 107 298 511 20.9 58.4 
KALMAN UPDATE 3566 1535 625 428 688 473 2253 831 160 177 519 21.7 30.5 
FIELD DATA 165 181 570 28.9 31.8 

1985 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 5326 5088 832 1082 2206 4081 2288 1609 356 943 979 36.4 96.' 
KALMAN UPDATE 5035 2004 530 267 2510 1257 1995 763 240 1136 903 26.6 125.8 
fIELD DATA 204 967 1101 18.4 87.4 

1985 POSTSEASON HERD CLASSIFICATION 

KALMAN MODEL 3523 3451 0 469 2072 2606 1452 1263 0 964 675 0.0 142.1 
KALMAN UPDATE 3058 1191 276 173 930 582 1852 701 148 499 992 14.9 50.2 
FIELD DATA 190 636 813 23.4 78.2 
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The variability of prediction errors had to be scaled large to 

maximize goodness of fit of the residuals to their predicted 

distribution; this caused estimation error to increase faster than 

that of the Baggs herd unit. The ratio of prediction error to 

measurement error was greater for the Elk Mountain herd. Therefore, 

herd classification data had much more weight on population estimates 

th~n on the model. 

Independent Test Data 

Two aerial trend counts are available for the Elk Mountain herd 

unit (Table 1), and they are plotted in Fig. 7. The 1982 estimates 

from both the POP-II and Kalman techniques are in close agreement 

with the 1982 trend count. Only 80% or less of the total population 

is thought to be observed during an aerial census. 

The Kalman estimate is almost identical to the estimate of the 

minimum population size from the aerial count in 1985. This suggests ,. 
that the Kalman estimate is too small by at least 20%. Other 

evidence suggests that the Kalman filter underestimates population 

size in 1984 and 1985. The Kalman estimates are less than the total 

number of animals observed during the herd classifications in summer· 

of 1984 and late fall of 1985. Also, the Kalman estimate for bucks 

is less than the bucks harvested in 1985. One plausible explanation 

is variability introduced by the severe winter in 1983 to 1984; 

agreement among the filter, POP-II, and aerial count data is much 

better prior to this severe winter. 
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POP-II versus ~alman Estimates 907. Kalman Conridence Intervals 

Bucks 

a­
o 

p.. 
1000 

ell 
N .-en 
c 
o 

.... 
ftI 
:; 

ra­
e 

p.. 

ell 
N 

en 
c 
e 
:;: 
ftI 
:; .. 
e 

p.. 

Fig. 8. 

o 1979 1981 19B3 1985 1979 1981 19B3 

Fa\lX\s 

1979 1981 19B3 1985 

Does 

POP-II Istimates 

K.al man !sti mates 

POP-II and Kalman estimates for Elk Mountain herd unit. 
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Buck, Fawn, and Doe State Variables 

Comparisons between the POP-II and Kalman estimates for buck, 

fawn, and doe numbers are given in Fig. 8. Agreement is best for the 

doe estimates; the Kalman filter predicts smaller population sizes 

for both bucks and fawns. The POP-II estimates are all within the 

90% confidence intervals around the Kalman estimate; however, these 

intervals are especially large in 1984 and 1985. The Kalman 

estimates for the number of fawns is much lower than the POP-II 

estimates in both years. 

Prior to the severe winter of 1983 to 1984, the filter did not 

consistently reduce estimates of fawn numbers during updates using 

herd classification data (Table 3). The filter tends to reduce fawn 

estimates for the Baggs herd unit. This difference is one possible 

explanation for better correlation between POP-II and Kalman 

estimates for the Elk Mountain herd. However, the filter made large 

reductions in fawn estimates after this severe winter. This 

discrepancy is expected to decrease as more data accumulates after 

1983. 

Estimates of buck:doe and fawn:doe ratios from POP-II and the 

filter were compared for preseason and postseason classifications. 

There is perfect agreement between the field data and POP-II in 

preseason fawn:doe ratios; this is caused by the direct use of these 

data to estimate reproductive success in POP-II. Unrealistically 

high fawn:doe ratios are predicted by the Kalman filter for the 1981 

postseason and 1985 preseason classifications. The latter 

irregularity is associated with the high variability in the fawn 

state variable caused by the severe winter of 1983 to 1984. However, 
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there is no convenient explanation for the unusually high fawn 

estimate for 1981. Otherwise, there are no major differences between 

the Kalman and POP-II estimates for herd ratios. 

Biologist's Evaluation 

Mr. Bohne feels that confidence intervals for population size 

can be very important management information. The Kalman filter 

produced these for the first time for the Elk Mountain herd unit. 

However, the intervals produced in this dissertation are too large to 

be useful. If the confidence intervals were within 10% to 20% of 

total population size, then they would be more plausible and 

meaningful for pronghorn management. 

He is surprised by the relatively small weight placed on the 

population model by the filter. One explanation might be his 

uncertainty in migration estimates for the winter of 1983 to 1984. 

Both immigration and emigration occurred, but he thinks they were 

about equal. However, this hypothesis can be in error, and there is 

no way to test it. Also, much data for this herd unit were gathered 

by various warden trainees. Observer inexperience could have caused 

higher measurement variability. 

His observations on error in herd classification agree with 

those of Mr. Moody. He feels that preseason buck classifications are 

vulnerable to error caused by groups of young bucks in inaccessible 

habitat. However, the filter unrealistically predicts higher 

variability in fawn classifications compared to buck classifications. 

He also believes many large fawns are misclassified as does in the 

postseason field data. 
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He recommends that the Kalman filter be initially applied to 

herds which have a high management priority. The time required to 

implement the filter for other herds is not justified at this time. 

Management of the Elk Mountain herd is not as controversial as many 

other pronghorn in his District. 

Estimates for Thunder Basin Herd Unit 

Total Population Size 

Success of the Kalman filter for the Thunder Basin herd unit 

falls between that of the Baggs and Elk Mountain herd units. 

Estimation variance approached that of the Baggs herd unit until the 

severe winter of 1983 to 1984 (Fig. 4). The Kalman filter produced 

population estimates for Thunder Basin which are below those of 

POP-II after 1981. However, POP-II estimates were within the 90% 

confidence intervals around Kalman estimates (Fig. 9). 

A detailed summary ~f estimates from the Kalman filter is given 

in Table 4. The Kalman filter made relatively minor changes to 

predictions from its model for 1981 to 1985. However, it made major 

changes to fawn estimates in 1979 and 1980. Field counts for bucks 

are much lower than predicted in these two years. The filter 

predicts that the variability in buck counts is less than that for 

fawn counts. This caused the filter to inflate the estimate of 

fawns. Therefore, agreement with the fawn counts was sacrificed to 

better agree with buck counts. This is a transient phenomenon caused 

either by overestimates of buck proportions in the initial conditions 

for the Kalman filter or the unusually low fawn:doe ration observed 
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Table 4. Population estimates for Thunder Basin herd unit, 1979 to 
1985. Estimates both before and after the Kalman update are 
given. The field data which were used for this purpose are 
also given. Herd ratios are presented as descriptive 
statistics. 

------------------------------------------------------------------------------------------
POPULATION ESTIMATES AND 90\ CONFIDENCE INTERVALS HERD 

---------------------------------------------------------- CLASS I FICA TION BUCKS FAWNS 
TOTAL BUCKS FAW~S DOES FIELD COUNTS PER PER 

------------- ------------- ------------- ------------- ----------------- 100 100 
POP. C.I. POP. C.1. POP. C. I. POP. C.1. BUCKS FAWNS DOES DOES DOES 

----- ------- ----- ------- ----- ------- ----- ------- ----- ----- ----- ------ ------

1979 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 10425 3723 1685 367 086 4087 4354 467 203 528 524 3B.7 100.7 
KALIUN UPDATE 11714 902 1362 134 6403 661 3949 170 146 686 423 34.5 162.2 
FI HD DATA 118 587 550 21.5 106.7 

1980 PRESEASON HERD CLASSIFICATION 

KALfilAN NODEL 11272 6002 2321 1038 3770 6309 5182 1052 216 351 482 H.B 72.8 
KALMAN UPDATE 12090 1717 1745 350 5562 1110 4784 523 151 482 415 36.5 116.3 
FIELD DATA 134 434 480 27.9 90.4 

1981 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 13292 6589 2495 1528 4940 6373 5857 1549 257 509 604 42.6 84.4 
KALMAN UPDATE 13647 2171 2279 49' 5669 1224 5699 739 229 569 572 40.0 99.5 
FIELD DATA 229 571 570 40.2 100.2 

1982 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL lU86 7094 2753 1742 5459 6442 62,. 1850 391 776 892 43.9 87.0 
KALMAN UPDATE 14 731 2386 2978 629 5299 1123 6454 905 416 741 903 46. 1 82. 1 
FIELD DATA 444 789 827 53.7 95.4 

1983 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 15003 6744 2927 1857 5594 5329 6482 2194 445 851 986 45:2 B6.3 
KALMAN UPDATE 15259 2528 2888 591 5905 1205 6466 103B 432 883 967 44.7 9r.3 
FIELD DATA 442 904 936 47.2 96.6 

1984 PRESEASON HERD CLASSIFICATION 

KALMAN MODEL 11593 7024 2156 2522 4159 3067 5278 2942 601 1160 1472 40.9 78.8 
KALMAN UPDATE 11732 2704 2415 669 3856 1065 5461 1154 666 1063 1505 U.2 70.6 

FIELD DATA 665 1061 1507 44.1 70.4 

1985 PRESEASON HERO CLASSIFICATION 

KALMAN MODEL 10649 8035 2359 1761 4123 6636 4166 2295 729 1274 1287 56.6 99.0 
KALMAN UPDATE 10112 3014 2135 723 4042 1370 3934 1163 695 1315 1280 54.3 102.7 
F I £LD DATA 586 1110 1594 36.8 69.6 
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in 1979 (Table 4), and the pattern disappears after the first two 

years. 

Independent Test Data 

An aerial trend count was conducted in May 1985 in which 8353 

animals were observed (Fig. 9). The Kalman filter estimated 

approximately 25% fewer animals than were actually observed. 

Therefore, the f'il ter underestimated herd size in 1985. However, the 

POP-II model was tuned with knowledge of the 1985 count; the filter 

used only preseason herd classification data. 

Buck, Fawn, and Doe State Variables 

There is no obvious superiority of one model over the other in 

predicting buck:doe ratios (Fig. 10). The POP-II model matches the 

field data closely for the preseason fawn:doe ratios. This ratio is 

used to estimate the recruitment parameters in POP-II but not in the 

filter. The filter uses average state-wide recruitment rates for one 

of five levels of winter severity; fawn counts are treated in the 

filter as a measurement of the state of the system which are subject 

to error. 

Biologist's Evaluation 

Mr. Nemick is interested in any improvements to present 

techniques. However, he is not convinced that the Kalman filter is 

an improvement based on this dissertation. There may be 

opportunities for the filter in his work, but more testing is 

required. He feels that proper confidence intervals for population 
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estimates would be useful for evaluating success in achieving 

management objectives. However, the confidence intervals produced in 

this dissertation are too large to be meaningful. He believes that 

current POP-II estimates are within 10% of true population size based 

on his qualitative assessment. 

He is concerned with the underestimates of population size 

produced by the filter. Mr. Nemick agreed with the other two 

biologists regarding errors in herd classification. Preseason fawn 

counts are more reliable than buck counts. However, the filter 

misrepresents this relative variability. If these problems were 

solved, he would be more interested in the filter. 

State-wide Evaluation 

Concerns of personnel at the State Headquarters of the Wyoming 

Game and Fish Department closely correspond to those of the field 

biologists. Pronghorn populations in Wyoming grew beyond Department 

objectives during 1978 to 1983. This developed into a maj or, 

state-wide management problem. Population underestimates in 1978 to 

1981 contributed to the development of this problem. Managers at all 

administrative levels do not want to see these problems repeated. 

Therefore, they are very concerned with underestimates made by the 

Kalman filter. They are also troubled by misrepresentations of 

variability in preseason fawn counts relative to buck counts. 

At the state level, they feel that attention must be paid to the 

computer implementation. Microcomputers exist in each District, and 

acceptability is greatest for an estimation system adapted to such a 



50 

computer. The filter developed in this dissertation runs on a 

microcomputer. 

Parameter Estimates 

Initial estimates of annual natality and natural mortality rates 

were made using the proportional change over winter in total 

population size using POP-II. This proportion was used to select one 

of five possible levels of rate estimates based on state-wide 

averages as described in Appendix III. 

parameters is given in Table 5. 

This time sequence of 

The closest fit of standardized residuals to their expected 

distribution is achieved using the scalars in Table 6. Most 

parameter estimates are close to state-wide averages and initial 

conditions from POP-II. There are two exceptions. First, 

parturition rates for the Baggs and Elk Mountain herd units had to be 

reduced by 15%. Second., both natural mortality and initial 

population size had to be increased by 20% for the Elk Mountain herd 

unit. 

Even though the Baggs and Elk Mountain herd units have excellent 

pronghorn habitat, the reproductive rate had to be lowered 

substantially below the state-wide average. One hypothesis is that a 

state-wide model based on five levels of proportional change in 

winter population is not adequate. Another hypothesis is that these 

two southern herd units have been approaching carrying capacity, and 

density dependent mechanisms have reduced recruitment rates. These 

competing hypotheses were not tested. 



Table 5. Winter severity parameters for POP-II and the Kalman filter. 

Baggs Elk Mountain Thunder Basin 
POP-II 

* 
POP-II 

* 
POP-II 

* Winter Kalman Winter Kalman Winter Kalman 
Sever. Pop. Winter Sever. Pop. Winter Sever. Pop. Winter 

Winter Index Change Level Index Change Level Index Change Level 

78-79 1.5 0.267 4 
79-80 1.0 0.179 3 1.0 0.132 1 1.0 0.153 2 
80-81 1.0 0.176 3 1.0 0.134 1 1.0 0.160 2 
81-82 1.0 0.191 4 1 .0 0.133 1 1.0 0.160 2 
82-83 1.0 0.185 .~ 3** 1.0 0.129 1 1.0 0.166 3 
83-84 4.0 0.325 4 2.9 0.400 5 1.5 0.245 4 
84-85 1.0 0.171 3 1.0 0.188 1 1.0 0.152 2 
85-86 1.0 0.190 4 1.0 0.153 2 1.0 0.150 2 

* Winter levels were used to select one of five sets of mortality and parturition 
rates, which were based on five levels of proportional change in population 
over winter. This was done using existing POP-II simulations for pronghorn 
herds State-wide. 

Kalman POP-II Winter 
Winter Population 
Level Chan~ 

1 -0.139 
2 0.139-0.161 
3 0.161-0.189 
4 0.189-0.398 
5 0.398-

** Does not include 1500 pronghorns estimated as emmigrating using Kalman filter 
(field ~stimates were 2000-3000). 

V1 
...... 

~ 



Table 6. Time-invariant scalar multipliers used to best fit Kalman 
filter to observed herd classification data. A value of one 
indicates no change to the state-wide average or POP-II 
initial values. A multiplier of 1.2 represents a 20% 
increase; a multiplier of 0.85 represents a 15% decrease. 

Elk Thunder 
Baggs Mountain Basin ---

Parturition 
(fawns born per female) ~ 0.85 0.85 1.0 

Natural mortality 
(instantaneous death rate) 1.02 1.2 1.0 

Initial population size 
(same as in POP-II) 1.05 1.2 0.95 

Prediction error scalar 1 3.32 30 14.25 
0.49 Modified Kolmogorov-Smirnov (KS) 1.03 0.46 

Statistic 

1 Critical values (Stephens 1974) for modified KS statistic under null 
hypothesis: standardized Kalman residuals are normally distributed with 
zero mean and unit variance. Several significance levels are gtven. 

a = 15.0% 
10.0% 
5.0% 
2.5% 
1.0% 

KS=0.755 
0.819 
0.895 
0.955 
1.035 

'~ 

111 
N 
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Validation of Assumptions 

The second objective of this dissertation is to validate the 

assumptions used in the Kalman filter. Sound application of the 

Kalman filter requires scrutiny of the residuals. If the assumptions 

used in the Kalman filter are valid, then the standardized residuals 

should be mutually independent with zero mean, unit variance, and 

normal distribution. The scalar for prediction error was chosen to 

maximize the goodness of fit to this distribution using the KS 

statistic. 

Baggs Herd Unit 

Distribution of residuals for the Baggs herd unit is illustrated 

in Fig. 11. There appears to be a heavy negative tail (i.e., large, 

negative values of the standardized residual). However, the KS 

statistic is well below the critical value for rejecting the null 

hypothesis (i. e., residttals are distributed as predicted by the 

filter) even for significance levels as large as 15%. The 

assumptions used in the Kalman filter should not be rejected based on 

this one criterion. 

Standardized residuals for the Baggs herd unit are ranked in 

order from smallest to largest in Table 7. The fawn count from the 

1979 preseason herd classificat~on is further from zero than 3.0 

standard deviation units. There is almost no chance of a 

standardized residual having a value exceeding 12 if the assumptions 

used in the filter are valid. 
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Fig. 11. Empirical and theoretical cumulative density functions for the 
Baggs herd unit. The continuous line is the theoretical 
cumulative density function for the normal distribution with 
zero mean and unit variance. The discontinuous line is the 
observed empirical density function for the orthogonal 
standardized residuals. Residuals were standardized using 
covariance matrices predicted by the implemented Kalman 
filter. 
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Table 7. Distribution of standardized residuals for herd cJussifica-
tions in the Baggs herd unit. 

----------------------------------------------------
HERO CUMMULAT1VE 

CLASSIFICATION STANDARD- DEHSITY FUNCTION CATEGORY SUSON YEAR 
IZED ------ ------------------

YEAR S~ RESIDUAL EMPIR. THEORET. BUCK FAWN PRE ~T 1978 li7g 1980 '981 1982 1!83 198' 1985 
- ----- ------ -- - -- ---- - - -- ---- -- -- -- --- - ----
19U PRESEASON -2.507 0.038 0.006 r:rt:i. XXXX XXXX 
19S5 PRESEASON -2.315 0.076 0.010 XXXX XXXX XXXX 
19a PRESUSQt( -1.860 0.115 0.031 XXXX XXXX '1:IXt. 
1982 POSTSEASON .. 1. '9 \ 0.153 D.CS7 XXXX XXXX XXXX 
198 J PRESo.SON -1.160 O. '92 0.122 XXXX XXXX xx XX 
19 U POS T SEASON -O.i06 0.230 0.182 XXXX XXXX XXXX 
19 8 3 PeS TSEASON -0.80l 0.269 0.210 XXXX XXXX XXXX 
1980 PRESEASON -0.7S3 0.307 0.225 xxxx xxxx xxx x 
U8l POSTS~ -0.581 0.3a 0.280 XXXX XXXX mx 
1978 PRESEASON -0.266 D.3U O.39A XXXX XXXX XXXX 
19S5 POSTSo.SC»l -0.239 0 .• 23 0 .• 05 XXXX XXXX XXXX 
1985 PRESEASON -0.229 O.Hl 0.409 XXXX XxXX rox 
1981 PRESo.5OH -0.083 0.500 O.US XXXX XXXX '1X1:I. 
1982 PRESEASON -0.066 0.538 0 .• 73 XXXX XXxX xro: 
1978 PRESE~ O. 119 0.S76 0.50 XXXX XXXx XXXX 
1982 PRESEASON O. HO 0.615 0.555 xxx x XXXX xro: 
1979 POSTSEASON 0.166 0.653 0.566 XXXX XXXX XXX>: 
1981 PRESEASON 0.250 0.692 0.598 xxx X XXXX XXXX 
1979 POSTSEASOH 0.398 0.730 0.65' XXXX XXXX XXXX 
1978 POSTSEASON 0.696 0.769 0.757 XXXX XXXX XXXX 
19S3 PRESEASON 0.872 0.e07 0.808 XXXX XXXX XXXX 
1980 PRESEASON 1. 220 O.8H 0.B8B XXXX XXXX XXXX 
1983 POSTSEASON 1. 259 O.BB' 0.89S x XXX 'f:i.XX 'I:IXi.. 
198' PRESEASON 1. .. 5 0.923 0.925 XXXX xxx X XXXX 
1982 POSTSEASON 1. 618 0.961 0.947 'I.XI.X XXXX XXXX 
1979 PRESEASON 12.377 1.000 1. 000 XXXX XXXX xxx x 
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The postseason fawn counts from both 1978 and 1985 are 

unreasonably large. In the case of the former, a new source of field 

data for herd classifications was added. For the latter, a major 

winter storm disrupted field work. Therefore, these data can be 

considered suspect. In both cases, much better fit of the Kalman 

predictions to the field data is achieved by merging the fawn and doe 

classifications into a single category. The buck classifications are 

retained as valid measurements. 

Table 7 also contains columns for various categorizes of each 

residual (i.e., buck versus fawn; preseason versus postseason, year). 

The purpose is to detect patterns in the residuals which might 

suggest other problems with the assumptions used for the Kalman 

filter. The only significant pattern is the dominance of fawn counts 

in the negative tail (i.e., standardized residuals between -2.5075 to 

-0.7530) and the frequency of buck counts in the positive tail (i.e., 

standardized residuals between 0.2502 to 0.96154). Statistical tests 

of hypothesis were performed using the MRPP statistic. The magnitude 

of these residuals is small enough so that they could be reasonably 

expected by chance. However, this degree of clustering is not 

expected if each standardized residual is mutually independent. This. 

suggests that one or more assumptions or parameter values are 

invalid. The deterministic population dynamics model or measurement 

model in the filter tends to overestimate fawn counts and 

underestimate buck counts. 

If the assumptions used in the filter are valid, there should be 

no autocorrelation among standardized residuals within or among 

seasonal classifications. Simple linear regression was used to test 
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this hypothesis. Temporal autocorrelation (r=0.068, n=24) is below 

its critical value. Correlation between standardized residuals for 

buck and fawn counts is below the 5% critical value (r=0.530, n=14). 

However, this is insufficient evidence to reject the hypothesis of no 

correlation among residuals. 

Elk Mountain Herd Unit 

There are 28 standardized residuals for herd classifications 

from the Elk Mountain herd unit between 1979 and 1985 (Table 8). The 

Kalman filter estimates that total population size is less than the 

sample size in the 1984 preseason and 1985 postseason 

classifications. These classifications are designed to avoid 

duplicate sampling of the same animals. Therefore, the filter 

estimate is in error, and the residuals from these dates are set 

arbitrarily large. 

Model prediction error is scaled to maximize the goodness of fit 

of standardized residuals to the distribution predicted by the Kalman 

filter. However, the difference between the empirical and 

theoretical distributions (Fig. 12) is significant at the 0.025 level 

using the KS test. Many standardized residuals have values between' 

-2.55 and -1.06 (Table 8); these unusual residuals are predominantly 

postseason fawn counts. There is no significant clumping of 

residuals as tested using the MRPP statistic. However, standardized 

errors from fawn and buck counts are significantly correlated 

(r=-0.798, n=14). Based on tests for goodness of fit and linear 
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Table 8. Distribution of standardized residuals for herd classifica­
tions in the Elk Mountain herd unit. 

-------------------------------------------
HERD CtJOOlUIVE 

CLASSIFICATION STAHDARD- OEWSITY FUHCTION CATEGORY SUSOH YUR 
IZED ----- ------ -------- ----------------------

YEAR SEASOH RESIDUAL E~PIR. tHEORET. BUCK fAWN PRE POST 1;76 1919 1geo '981 "12 1113 lQa, li8S - ------ -------- ---- .. ---- ---- ..-..- --- --- ---- ---- --- ---- --- --- --- ---
au PRESH.soo 0.035 0.000 
1985 POSTS05OH o. on 0.000 
19 B 3 POS 1 SE.lSOH -2.~~6 0.101 0.005 XXXX XXXX xro: 
1919 PRESfASOH -1.892 O. "2 0.029 YXf.J. XXXX ro:i. 
1984 POSTSHSOO -1.531 0.118 0.062 xxx x XXXX xxx x 
1980 POSlS~ -1. 321 '0.2 U 0.093 XXXi. xxx x ro:I. 
19 81 POS 1 SEASON -1.066 D.250 0.143 mx XXXX XXX); 

19 8 2 POS T SEASON -1.061 0.285 O.1U rox XXX); rtXi. 
1982 POS1SEA.sON -0.56' 0.'21 0.286 XXXX XXXX xxxx 
1980 PRES~ -O.~10 0.357 D.3(o 'lX'I:t. "I::IXi. n:t:J. 
19 8 2 PRE SEA 500 -0.320 0.392 O.3H xxx x xxx x no: 
1980 POS T SE A.SI)( -0.260 0.08 0.391 '1JXX XXX:( rox 
198 I PRESEAS()( -0.2'5 D.H4 O . .03 XXXX XXXX '1:t:t:1.. 
19 8 3 PR£S£A.Sat -O.OgG 0.500 0.H1 'I:f..'f.:J. XXX): 

19! 5 PRESE.lS(){ -0.014 0.535 D.OO XXXX XXX;( oX'/.. 
19 79 ros T S E .l.SC.l\ ·0.0\6 0.511 0.03 XXXX '1X1:I. XYXJ. 
1979 POSTSEJSOH 0.00\ 0.601 0.500 XXXX XXX X X'J.Xj. 

1985 PRESEASON 0.01\ 0.642 0.504 XXXX "I::f.'I.J. 

1 9 B 3 PRESo.SON 0.01' 0.618 0.528 XXXX X'fY..X xxxx 
198 2 PRESE.l.SOti 0.2C , 0.1 H 0.595 XXXX 'fX1J.. w:x 
1980 PRESE.l.SOtI 0.361 0.150 Q..60 XX'f.:J. X'l:f..X 'tXX1. 
19! \ PRESE.A.SOH o.~ \6 D .185 0.561 '1:1.X'I. XXXi. 't.:I.Xf.. 

1919 PRESE.l..SON 0.65\ 0.!2\ 0.142 "I,YX'I .. XY:1.X WX 

1984 POSTSE.l.50H 0.164 a.eS1 0.711 '1:J.Xj., XXX): rox 
198' POS1SEASOH 0.821 0.892 0.194 XXXX XXXX mx 
1983 POS T S E .!.SOH 1.'14 0.928 0.921 ro.X XXX X ro:x 
U U PRESEASON 0.964 1. 000 
1985 J>OSTSE.l.SON 1. 000 1. 000 



59 

IHPI P.l CAL VS. IXPECTED 
CUMULATIVE DI~SJTY rUHCTIO~ 

1rT~rI-rTi-rTl~'-rT'-II-rTl-rllrT~~~~ 

p 

~ 
B 
~ 
B 
1 
L 
I 
TO." 
Y 

0.2 

.10 •••. 10.10.: •• IO ••• IO ••••. :_ •••• IO .••• '. 10:.10 10 •.•. 

· . 
•• •• 10 •• 10.10: 10 •••• 10 •••••• ;_.10 011 •••• 10 10 •••• • • 10 ••• 10 •• : ... 10 ........ 10 • ~ •••• 10 ••••• 

· . . . 

· . · . . · . · . . 
10 10. <S 10.10 10 ••• 10 • 10.10 10 •••••••••• 10 10 ••• 10 · . • _: ••••• 10 10 10 ••• -:".10 ••••••• 10 10: .... 10 ••••• 10 

· . . 
••••• 10 •• 10. _ •••••••••• 10 _._ ••• 10 ••• 10 ••• ' •• 10 •• 10 ..... 

· . · . 

~~3~~~~~~~ __ ll-L~~~O-L~~~1-L-L~~L2~~~~3 

STANDARDIZED RESIDUAL 

Fig. 12. Empirical and theoretical cumulative density functions for the 
Elk Mountain herd unit. The continuous line is the theoreti­
cal cumulative density function for the normal distribution 
with zero mean and unit variance. The discontinuous line is 
the observed empirical density function for the orthogonal 
standardized residuals. Residuals were standardized using 
covariance matrices predicted by the implemented Kalman 
filter. 
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association, the assumptions used in the filter must be rejected for 

this herd unit. 

Thunder Basin Herd Unit 

The standardized residuals for the Thunder Basin herd unit fit 

their theoretical distribution very well (Fig. 13). The KS statistic 

is well below its critical value even at the 15% s1gnificance level. 

The distribution of standardized residuals is consistent with the 

assumptions, structure, and parameter estimates in the filter. Of 

the 14 residuals from the herd classifications, only the preseason 

fawn count in 1983 is unreasonably large (Table 9). Its standardized 

value is 10.99, which is far greater than expected by chance alone. 

Standardized residuals greater than 3.0 or less than -3.0 should be 

extremely rare. 

The correlation between fawn and buck standardized residuals 

from anyone year is small (r=-0.233, n=7) compared to the Baggs and 

Elk Mountain herd units. The temporal autocorrelation is also low 

(r=-0.078, n=12). However, there is a tendency for the model to 

overestimate buck counts and underestimate fawn counts in the herd 

classifications before 1983. Using MRPP, there is a significant 

aggregation of negative residuals for buck classifications and 

positive residuals for fawn counts. Therefore, the assumptions used 

for the filter must be rejected for the Thunder Basin herd unit using 

this one criterion. There were no significant aggregations using 

other categorizations of the residuals. 
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Ftg. 13. Empirical and theoretical cumulative density functions for the 
Thunder Basin herd unit. The continuous line is the theoreti­
cal cumulative density function for the normal distribution 
with zero mean and unit variance. The discontinuous line is 
the observed empirical density function for the orthogonal 
standnrdized residuals. Residuals were standardized using 
covariance matrices predicted by the implemented Kalman 
filter. 
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Table 9. Distribution of standardized residuals for herd classifica­
tions in the Thunder Basin herd unit. 

------------------------------------------------------------------------------------------
HERO CU~~UL~TIVE 

CLlSSIFICATJDW ST!WOARD- DENSITY fUNC110H CA1EGORY YEAR 

--------------- lIED --------------- --------- --------------------------------------. 
"fAR SHS~ I£SIOOAl EMPIR. lHEORET. BUCK HWN 1978 1919 1980 \981 \982 1983 au '98~ 

---- ---------- .------- ------- ------- ---- ---- .--- ---- ---~ ---- ---. ---- ---- ---. 
n 19 PHSEASON -1.'57 0.071 0.077 XXXX XXXX 
19&0 PRESfASC»i -1.111 O. U2 O. 133 XXXX XXXX 
1183 PHS[A~ -0.663 O.2U 0.253 xxxx XXXX 
1981 PR£S£~ -0.S52 0.215 0.290 xxxx XXXX 
19H PRESEASON -0 .• 5\ 0.351 0.325 xxxx XXXX 

1915 PRESEASQjj -O.lH D.na 0.366 xxxx XXXX 
19!~ PRESEASOW -0.296 0.500 0.383 xxxx xxxx 
1982 PRESEASON 0.015 0.51\ 0.506 Y:1.'I:I. xxxx 
UB2 PRES(J.SOH o.as, 0.U2 0.525 xxxx XXXX 
19 U PRESE.lSC*( 0.291 O.1U 0.6" xxxx no: 
19 79 P RESE J..5OH \.013 0.185 O.8U XX:(X xxxx 
1980 PRESE.lSOH L 135 0.851 0.811 xxxx xxxx 
1981 PRESE1SON 1. 211 0.928 0.8Bl XXXX XXXX 
1983 PR£SEASOH 10.98B 1. 000 1. 000 XXXX xxxx 
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Acceptability of the Kalman Filter 

The third objective of this dissertation is to determine the 

acceptability of the Kalman filter as an applied tool for pronghorn 

monitoring. The null hypothesis is that the biologists are unwilling 

to invest resources into the adoption of the Kalman filter. All 

three biologists feel that the Kalman filter has at least some 

potential. All are willing to attend a one day workshop on this 

methodology. This is interpreted as minimal evidence to reject the 

null hypothesis. Mr. Moody and Mr. Bohne are willing to attend a one 

week workshop on this technique. This is stronger support to reject 

the null hypothesis. Mr. Moody feels that the confidence intervals 

have value as they are estimated in this dissertation. He is willing 

to modify field procedures if necessary and to work personally on 

applying the filter to his populations. This is the strongest 

support for rejecting the null hypothesis. 



DISCUSSION 

Applicability to Monitoring Other Populations 

The first objective of this dissertation is to determine if the 

Kalman filter can be implemented using existing management data. The 

filter was implemented for all three pronghorn populations which were 

studied in detail. In order to accomplish this, information was used 

from existing harvest surveys and population simulation models 

(POP-II) for 37 pronghorn herd units in Wyoming. The typical POP-II 

model contains data from seven years. Existing POP-II models were 

indispensable for preliminary estimates of the prediction errors made 

by the simple model in the filter. Without these estimates, the 

filter could not be implemented using the methods described in this 

dissertation. Other structural portions of the filter were 

formulated using mathematical statistics (Appendices III and IV). 

The Kalman filter combines model predictions with measurements 

of the system. Measurement data from preseason herd classifications 

over seven years are sufficient to apply the filter to pronghorn 

herds. The postseason classifications for the Baggs and Elk Mountain 

herd units are not required to implement the filter. However, such 

additional measurements decrease variability of estimation errors and 

the size of confidence intervals. 
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The Kalman filter was applied to pronghorn herds using these 

data and population models. However, implementation success could be 

different for other species of big game or for monitoring programs in 

different states. Availability of established modeling systems might 

not be a prerequisite for initiating this filtering strategy. 

However, POP-II models for the many pronghorn herd units in Wyoming 

greatly facilitated the application of the Kalman-- filter in three 

respects. First, POP-II provided cost-effective estimates of natural 

mortality and model precision. Natural mortality is very difficult 

to estimate for wildlife populations unless aided by an analysis tool 

such as POP-II. The variance of model predictions is also very 

difficult to estimate. Adaptive procedures for estimating prediction 

error used POP-II models for all 37 herd units in Wyoming. Second, 

the POP-II process and closely related predecessors had focused 

attention on previously unrecognized problems in the collection of 

field data. This fostered many refinements in field procedures 

between 1976 and 1979. Without this evolution, broader confidence 

intervals around population estimates would be expected. Third, a 

modeling system such as POP-II makes an entire management agency more 

receptive to possible improvements in closely related quantitative . 

analyses such as the Kalman estimator. 

In one respect, the most successful application of the Kalman 

filter is to the Thunder Basin herd unit prior to 1984. There is 

only one significant pattern apparent in the standardized residuals, 

which means that the Kalman filter extracted most of the information 

available in the data. The levels of estimation error in 1986 seem 

to have returned to their levels prior to severe winter of 1983 to 
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1984, which indicates a fairly rapid recovery time after such an 

unusual event. The quantity of data available for the Thunder Basin 

herd unit is similar to that for most pronghorn herds in Wyoming. 

Therefore, the Kalman filter is expected to be applicable to most of 

these herds. 

Improvements to Assumptions --

The validity of some assumptions used for the filter is suspect 

for all three herds because the standardized residuals do not exactly 

correspond to their expected distribution or have unexpected 

patterns. However, this does not necessarily mean the Kalman 

estimates of population size are incorrect. It does mean that the 

Kalman estimates as implemented in this dissertation do not explain 

some of the patterns in the residuals and thus are not the minimum 

variance estimates. The confidence intervals produced by a minimum 

variance estimator would be more narrow. The Kalman filter is such 

an estimator if all assumptions are correct (Maybeck 1979). 

Therefore, there are opportunities to decrease the confidence 

intervals in this dissertation if erroneous assumptions are 

identified and corrected. 

underestimation problem. 

This should also diminish the 

Many sets of assumptions are required to apply the Kalman 

filter. Model structure, parameters, and initial conditions are 

assumed to be correct. Prediction, measurement, and initial 

estimation errors are assumed to be unbiased, independent, and 

normally distributed (except for correlations within one time period 
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discussed in Appendix IV). One or more of these assumptions are 

rej ected for all three herd units. Unfortunately, there is no 

consistent method to diagnose which assumptions are invalid. All 

assumptions seem reasonable ~ priori (Appendix III). However, the 

standardized residuals provide empirical evidence which can help 

identify likely problems. 

As expected, standardized residuals for the Baggs and Thunder 

Basin herd units are normally distributed. As expected, there are no 

significant linear associations among residuals within herd 

classifications or between years for these two herds. Also, there 

are no significant aggregations of residuals by year or season for 

classification. However, there is a significant clustering of 

residuals for buck versus fawn classifications for both herds; this 

is unexpected because the residuals should be mutually independent. 

This latter association is the only evidence which challenges the 

validity of assumptions used in the filter. 

The filter consistently overestimates the proportions of fawns 

and underestimates the proportion of bucks in preseason and 

postseason herd classifications for the Baggs herd unit (Tables 2 and 

7). The opposite pattern exists in residuals for Thunder Basin. The. 
r; 

filter consistently underestimates fawn counts and overestimates buck 

counts in preseason herd classifications (Tables 4 and 9). 

(Postseason classifications are not conducted in Thunder Basin.) 

Compared to POP-II estimates, the population model in the Kalman 

filter consistently underestimates both fawn and buck numbers 

(Figures 6 and 10); this is different than the observed pattern in 

the residuals. Therefore, the associations in the standardized 
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residuals for these two herd units are more likely caused by the 

measurement model than the model for population dynamics. 

Measurement Error for Herd Classifications 

The variability predicted by the filter for fawn classifications 

is higher than for buck classification. However, biologists who 

-

monitor pronghorn herds believe that this difference is 

inappropriate. They feel that doe and fawn counts are more reliable 

than buck counts from the preseason herd classifications. As 

structured in this dissertation, the Kalman filter misrepresents 

measurement error for fawn classifications because of correlated 

measurement and prediction errors. This correlation occurs because 

estimates from the population model are required to compute the 

measurement matrix in the measurement mod"el (Appendix IV). 

Variability for fawn predictions from the population model is greater 

than variability in predicting adult state variables. The correlated 

errors transfer variance for fawn estimates in the model to variance 

of fawn classifications in the measurement data. This causes 

variance for fawn classifications to be unreasonably high. The 

filter should be restructured to minimize these correlations. 

It is possible to treat the preseason fawn and doe counts as a 

measurement of the reproductive rate rather than estimates of state 

variables. The filter can be restructured so that a rate parameter 

is estimated along with states of the system CMaybeck 1979). The 

fawn:doe ratio from herd classifications is a direct measurement of 

reproductive rate. Therefore, the measurement matrix for 

reproductive rate would not require estimates from the population 
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model in the filter. This would reduce the correlation between 

measurement and prediction errors and reduce the distorted estimate 

of variance for fawn counts, and might eliminate patterns in 

residuals and yield smaller variance in estimation error. Smaller 

estimation error would produce smaller confidence intervals. 

The measurement model assumes random sampling without 

replacement; this may be inadequate. All three biologists believe 

that buck groups congregate in fringe areas which are usually more 

inaccessible than areas frequented by does and fawns. Transects 

cannot be randomly located because they are sampled from vehicles. 

These factors make the assumption of random sampling less reasonable. 

Unfortunately, theoretical distributions such as the multivariate 

hypergeometric require such assumptions. Otherwise, they become 

mathematically intractable or their parameters are difficult to 

estimate. However, alternatives are available; robust techniques 

exist which estimate the error variance-covariance structure from 

empirical data. Examples include bootstrapping and j ackknif ing 

methods (Efron 1982). 

Both biologists who conduct postseason classifications believe 

there is substantial misclassification error in late fall. Many 

fawns have grown large enough so that they can easily be mistaken as 

does; this may bias postseason classification data to an unknown 

degree. One solution is to group fawns and does into a single 

category; the filter would then use only the proportion of bucks as a 

measurement of the system. Another solution is to include an unknown 

parameter for bias and simultaneously estimate its value along with 

the state of the system (Bierman 1977). This should not add an 
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excessive number of parameters if the bias is reasonably constant 

over time. Under this assumption, only one parameter for 

misclassification error would need to be estimated for the entire 

time series of available data. 

Aerial Trend Counts 

The Kalman filter, as implemented in this dissertation, tends to 

underestimate population size. However, POP-II also tends to 

underestimate population size until aerial trend count data become 

available. At that time, biologists usually must reestimate POP-II 

parameters to increase estimates of population size for better 

agreement with the aerial count. In this dissertation, aerial trend 

counts are used as independent validation data but not as input to 

the Kalman filter. The underestimation problem with the filter 

should be reduced by incorporating trend counts as a measurement of 

the system. There are few data available to quantify the proportion 

of the total population enumerated in an aerial survey. The usual 

estimate is 0.5 to 0.8; this could be treated as an unknown parameter 

and estimated using the filter. 

Unused Sources of Measurements 

Some of the available data for pronghorn herds are not used in 

this application of the Kalman filter. More recent herd 

classifications in Wyoming differentiate yearling bucks from older 

bucks. These data are not used because they are not available for 

many herds, especially before 1983. Also, the harvest survey does 

not make a distinction between buck age classes. More recent check 
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station data could be used to estimate the proportion of 2, 3, and 4 

to 5 year old bucks in the harvest. However, the error covariance 

matrix, which includes these buck categories, would be difficult to 

quantify. Sample sizes are often small. The addition of state 

variables for older bucks could improve the filter estimates if 

parameters for measurement error could be quantified. 

Additional information may be available from --hunters. First, 

the ratio of applications per available hunting licenses might be a 

weak index to pronghorn density assuming that pronghorn density is 

correlated with hunter preference. However, demand for licenses is 

also affected by public access, desirability of other hunting areas, 

proximity to human population centers, hunting regulations, and past 

history. Second, the harvest survey is also used to estimate average 

days hunted per animal harvested, which could be considered an index 

of pronghorn population size. However, this index is affected by the 

same factors as demand for hunting licenses. It is also affected by 

weather conditions, especially during the beginning of the hunting 

season. If the variability of these data are correctly quantified, 

then they would improve estimates from the Kalman filter. The Kalman 

filter can combine different sources of information with high 

variance to produce more efficient predictions. 

Computer Implementation 

The Kalman filter in this dissertation was implemented on a 

personal computer. Personnel from the Wyoming Game and Fish 

Department identified this as an important design feature because 
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field biologists have relatively easy access to such equipment. If 

other types of computers are used, then access would be much more 

dif f icu1 t and acceptability would be decreased. Many potential 

improvements are identified which would require major structural 

modifications to the filter. For example, an augmented state vector 

and transition matrix are required to simultaneously estimate 

parameters and the state of the system. Experimentation is required 

to evaluate each potential improvement; such experimentation would be 

facilitated by using one of several matrix languages which are now 

available for microcomputers. 

Ranking Fit for Data 

The Kalman filter is capable of realistically ranking 

observations based on their agreement with model predictions. These 

rankings suggested ways to improve the model for population dynamics. 

After all such improvements were made, large residuals indicate a ,. 

possible problem. For the Baggs herd unit, this process identified 

three residuals which are much larger than reasonably expected. In 

two of these cases, reasonable explanations were available to account 

for the magnitude of the error. However, one large residual has no 

obvious explanation; it is this type of situation which should be 

studied so that the source of the problem (either the model or the 

field procedures) can be discovered and corrected. This has already 

proven to be an important benefit of POP-II. 
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Systems Ecology 

Many of the most important achievements in systems ecology are 

sophisticated deterministic quantitative models for managed systems 

of natural resources. These models are well suited for establishing 

initial conditions and parameter estimates for the Kalman filter. 

The filter described in this dissertation builds upon one of these 

achievements. Precise estimation of the present state of a big game 

population is more useful in applied management than the other 

benefits afforded by deterministic models. Optimal estimation should 

be added to the list of opportunities offered by systems ecology. 



CONCLUSIONS 

This dissertation demonstrates that the Kalman filter can be 

implemented using existing data and management mo-dels. Therefore, 

the filter can be used to monitor certain systems of renewable 

natural resources. The filter is an obj ective and reproducible 

technique which estimates the state of natural systems for which 

adequate, direct observations are difficult. It provides confidence 

intervals around estimates. These intervals provide useful 

information to evaluate accomplishment of management objectives for 

pronghorn herds. 

Many assumptions are required to apply the Kalman filter for 

monitoring natural resources. It is necessary to evaluate these 

assumptions in order to establish the reliability of filter estimates 

and confidence intervals. Statistical tests of hypothesis should be 

used for this purpose; as a result, the assumptions were rejected for 

all three herd units. Independent test data indicate that the Kalman 

filter underestimated population size for all herd units. Therefore, 

assumptions used in this dissertation for the Kalman filter need 

improvement. 

Several improvements are recommended. The correlation between 

measurement and prediction errors must be minimized. A better model 

is needed to predict reproductive success, and it should be treated 

it as a parameter which is simultaneously estimated along with the 
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state of the system. Aerial trend counts need to be incorporated 

into the measurement model within the filter. The measurement model 

for herd classifications assumes random sampling without replacement; 

this model should be replaced by one with less restrictive and more 

realistic assumptions. 

Based on a sample of three field biologists, the Kalman filter 

is an acceptable tool to professional managers who are responsible 

for monitoring pronghorn herds. However, there are differences in 

their degree of acceptance. This dissertation has explored one of 

several possible ways to apply the filter to pronghorn management. 

If improvements are made, then acceptability to applied managers is 

expected to increase. 

The Kalman filter is helpful in quantifying the degree of 

uncertainty in estimates of pronghorn population size. However, it 

is still the responsibility of those individuals or management 

agencies, who are responsible for managing natural resources, to 

judge the level of acceptable risk in alternative management 

decisions. All the other constraints and objectives must also be 

considered. This is a problem which can only be resolved using 

professional judgement and personal ethics rather than quantitative 

analysis tools alone. 

It is unlikely that the Kalman estimates for population size 

will be radically different from those already produced by the POP-II 

procedure, especially if the improvements to the Kalman filter 

identified in this dissertation are made. The main difference 

between the two techniques is that the filter formally quantifies the 

confidence which can be placed in its estimate. However, all 
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individuals associated with management of these herds and their 

habitat already have qualitatively estimated this level of 

confidence. The most valuable contribution of the Kalman filter 

might be reconcilation of differences among these qualitative 

assessments. 

The utility of the Kalman filter to mediate differences among 

these perceptions will be inversely proportional to the variance of 

the combined estimates, and further efforts should be made to reduce 

estimation variance below that achieved in this dissertation. There 

is empirical evidence that improvements in the implemented filter are 

possible, even for the Baggs herd unit. 
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APPENDIX I 

BASIC TERMINOLOGY AND DEFINITION OF SYMBOLS 

Basic Terminology 

1) Unless otherwise specified, all underscored, uppercase letters 

represent matrices and all underscored, lowercase letters 

represent column vectors. 

2) The transpose of a vector (~) or a matrix (A) is denoted by an 

T T 
uppercase "T" superscript (~ or ~ ). 

3) The symbol ~ implies a definition 

4) The symbol ~ means that the expressions on both sides are 

approximately equa~. 

5) Derivatives are expressed using the dx/dt format. 

6) A prime (or multiple primes) over a variable means that this 

7) 

8) 

variable is different . than the unprimed variable (or the 

variable with a different number of primes) which uses the same 

letter symbol (e.g., x:/:x':/:x":/: ... ). However, these variables all 

have similar definitions (e.g., x, x', x", ••. are all state 

variables) . 

a The "exp" function denotes exponentiation [exp(a) = e ]. 

The E(a) notation refers to the expected value of a. 
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9) An element (row i, column j) of the two-dimensional matrix A is 

given as the lower case a .. (no underscore). 
~J 

10) The expression "~ is N(Q,~)" indicates that vector ~ is normally 

distributed with covariance matrix 8 and each element of a has a 

zero expected value. 

Definition of Symbols 

Gain matrix in biological year b at within-year time k 

Measurement matrix, defining relationship between 

available data and the population. Dimensions are m x 3. 

I Identity matrix, which is a square matrix with ones on 

the diagonal and zeros otherwise. 

k Time subscript 

m Number of different types of observations. For herd 

classifications, m = 2 (fawn:doe, and buck:doe ratios). 

Covariance matrix for estimation errors at time k+1 given 

all that is kno~~ about the system at time k and the 

model of how the system changed between time k and k+l. 

Dimensions are 3 x 3. 

~k+ll k+l 
Covariance matrix for estimation errors at time k+1 after 

the model predictions are combined with observations (if 

any). Dimensions are 3 x 3. 

!:01o Covariance matrix for estimation errors at time 0 (i.e., 

initial conditions). Dimensions are 3 x 3. 
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~k 

~k+l 

~k 
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Covariance matrix for model prediction errors (including 

harvest estimation error) between time k and k+l. 

Dimensions are 3 x 3. 

Covariance matrix for observation errors at time k+l, 

which includes measurements and sampling errors. 

Dimensions are m x m. 

Control vector including number of each age / sex group 

removed by harvest or migration between time k and k+l. 

The latter is usually zero. Also included are known bias 

of estimates in predicting age/sex group sizes using 

population model. Dimensions are 3 x 1. 

Observation error vector. It is the difference between 

the m observations and the true, but unknown, state of 

the population being observed at time k+l. Dimensions 

are m x 1. The exact value of ~k+l is not known, but it 

is assumed to be normally distributed with a zero mean 

"" (unbiased). 

Prediction error vector. The difference between the 

predicted number of pronghorns in each of the three 

age/sex groups and the true, but unknown, number at time. 

k+l. Dimensions are 3 x 1. The exact value of ~k is not 

known, but it is assumed normally distributed with a zero 

mean (unbiased). 

State vector. The true, but unknown, population size in 

each of the three age/sex groups at time k. Dimensions 

are 3 x 1. 



.!k+ll k+l 

84 

Estimate of the system state at time k+l given all that 

is known about the system at time k and the model of how 

the system changed between time k and k+l. Dimensions 

are 3 x 1. 

Known estimate of the system state at time k+l after the 

model predictions and observations are combined. This 

will be initial conditions for the estimate at time k+2. 

Dimensions are 3 x 1. 

Measurement vector. Contains observations on the entire 

herd unit population such as herd classifications and 

aerial herd counts. Dimensions are m x 1. 

A scalar which is initially one and is subsequently 

varied iteratively to achieve expected qualities of the 

residual time series for all biological years for which 

data are available for updating Kalman estimates. 

State transition matrix. Represents a linear model of 

how the population changes from time k to k+l. It 

contains survival proportions of each age/sex class and 

recruitment rates (e.g., fawns surviving to late summer 

herd classification per doe). 



APPENDIX II 

CURRENT MONITORING PROCEDURES 

The following appendix is a detailed description of the data and 

modeling techniques currently used by the Wyoming Game and Fish 

Department. The Kalman filter implemented in this dissertation is 

closely connected to the monitoring program for pronghorn in Wyoming. 

Substantial modifications to the filter would be required for 

monitoring programs which are different from that described in this 

appendix. Even in Wyoming, there are fundamental differences in the 

data gathered for antelope compared to deer and elk. These 

differences in data are caused by differences in habitat and animal 

behavior. More research is required to determine the acceptability 

of the Kalman filter in other monitoring programs. 

Herd Classification Data 

One of the most precise types of routine management data for 

each herd is age and sex classifications during late summer field 

reconnaissance: bucks per 100 does and fawns per 100 does. Fawn: doe 

ratios represent direct monitoring of net annual reproductive 

success, which is of fundamental importance in population dynamics. 

Buck:doe ratios monitor the higher mortality of males compared to 
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females, which is largely caused by sport hunting. Attempts have 

been made to use deviations from a an equal sex ratio and harvest 

data to estimate population size (Hanson 1963, Paulik and Robson 

1969, Davis and Winstead 1980). However, the high variability in 

this change in ratio technique has made it of little practical value 

for Wyoming pronghorn management. 

Herd classifications are normally performed for each herd in 

late summer, before the fall hunting season and after the fawns are 

roaming openly with the older animals. These are termed preseason 

classifications. For some herd units, a similar classification is 

performed shortly after the hunting season (e.g., November) and is 

labeled the postseason classification. The timing is established to 

minimize errors in classifying animals into fawn, adult doe, and 

adult male categories under normal field conditions. If performed 

too late, there is a danger in biased postseason classifications 

because of erroneously identifying larger fawns as does (Raper et 

al. 1985). 

Most transects in a pronghorn herd unit are purposefully 

selected so that they may be traveled using a four wheel drive 

vehicle. It is the biologist's responsibility to avoid biasing the 

field data, which may be caused by transects which are 

"non-representative." Transects are often similarly located from one 

year to the next. Effort is made to avoid counting the same animal 

more than once, which permits the more efficient assumption of random 

sampling of a finite population without replacement compared to 

sampling with replacement. Using one of these two sampling models, 

it is possible to estimate confidence intervals and the variances for 
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observed herd ratios (Czaplewski et a1. 1983). Each animal counted 

is considered an independent replication. Monitoring objectives for 

confidence intervals around herd ratios are set by the wildlife 

biologist, and required sample sizes are computed using these 

sampling models. 

Harvest Survey 

A second type of routine management data for each herd unit 

comes from a hunter survey. A random stratified sample of licensed 

hunters from each hunt area is mailed a questionnaire which requests 

information on the type of pronghorn harvested if any (i.e., fawn, 

adult doe, adult buck) and the number of days spent hunting (Harju 

1985). There may be some bias; fawns may be mistaken for small 

adults by responding hunters. However, this bias is assumed to be 

negligible. 

The majority of hu?ting pressure occurs during the first week of 

the hunting season with 50% of the licensed hunters in the field on 

opening day. Most hunters with an either-sex permit harvest a buck 

with success rates between 80 to 100%. Most hunters with a doe-fawn 

license harvest a doe with equally high success rates. Anyone 

hunter may have both types of licenses, which are valid concurrently. 

The number of issued licenses of both types is closely controlled to 

achieve formal management obj ectives established for each herd 

(Wyoming Game and Fish Department 1985). The success rate and days 

spent in the field by Wyoming residents are usually very different 

than those for nonresident hunters. 
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Estimates of harvest for each hunt area are made for each of 

three categories of animals (fawns, does, and bucks) and two types of 

hunters (resident and nonresident). Separate harvest estimates are 

not made for either-sex versus doe-fawn licenses. Estimates of days 

hunted per animal harvested (i.e., inverse of catch per unit effort) 

are available for residents and nonresidents, but cannot be 

partitioned by type of animal harvested (i.e., fawn, doe, or buck). 

Confidence intervals are available for total annual harvest for each 

herd unit but not for each category of animal (fawn, doe, buck), for 

type of hunter (resident versus nonresident), type of license 

(either-sex versus doe-fawn), hunt area within a herd unit, or days 

hunted per animal harvested. The average 90% confidence interval is 

i 3% of total harvest, or ± 50 animals per herd unit (Harju 1985). 

On the average, this is less than 0.5% of the preseason population 

size. 

Aerial Herd Counts 

The third type of routine management data for each herd is 

aerial herd counts. Pronghorns are well suited for an aerial census 

because their habitat is typified by low vegetation, usually under 

0.75 meters in height (Yoakum 1980). Every three to five years, 

transects are flown in an attempt to count all animals in the herd 

unit. Trend counts for some herds are available annually. The 

animals are not classified by type (fawn, doe, or buck). Surveys are 

usually conducted in late spring when contrast between pronghorns and 

the green rangelands is greatest, but some surveys may occur as early 
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as mid-winter. Parallel transects are normally established everyone 

or one-half mile, and they are located to avoid counting the same 

animal more than once. 

Even for pronghorns, it is very unlikely that all animals in the 

herd unit are observed during these surveys. The actual number 

counted represents the minimum population size. Estimates of the 

proportion of animals observed from aircraft may he· available from a 

subarea of the herd unit, which is intensively ground sampled on the 

same day as the aerial herd count is conducted. However, these data 

are very rare. Typically, only 50 to 80% of the pronghorns 

populations are observed using these techniques. 

Present Population Modeling System 

Since 1976, the Wyoming Game and Fish Department has used a 

deterministic, difference equation, computer simulation model to 

operationally improve e~timates of population size for each herd 

unit. The current model (POP-II), as well as earlier versions, 

resembles a Leslie matrix and has been described by Walters and Gross 

(1972), Lipscomb (1974), Pojar (1977), and Bartholow (1985). 

The model structure is simple; population size at time t+l 

equals population size at time t plus births minus deaths. The 

natality rate is directly estimated by the fawn: doe ratio from 

preseason herd classification data. Mortality caused by legal sport 

hunting is also estimated directly using the harvest survey. The 

missing piece to the demographic puzzle is an estimate of "natural" 

mortality, which includes predation, disease, starvation during 
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severe winters, natural accidents, and human-related factors (Yoakum 

1980). The latter includes illegal harvest (poaching), road kills, 

entanglement in fences, inability to reach critical wintering areas 

because of fencing, and predation or stress induced by domestic dogs. 

It is not feasible to acquire reliable field estimates of natural 

mortality in most cases of applied management because of difficulty 

and expense in directly observing such mortality --events (Downing 

1980). 

In the modeling process, the field biologist enters harvest 

estimates into the model. He or she interactively changes estimates 

of annual natural mortality until simulated variables satisfactorily 

agree with field data (e.g., age and sex ratios, aerial herd counts) 

for that herd (Bartholow 1985). Professional judgement is the main 

source for both mortality estimates and evaluation of goodness of fit 

to field data. This is repeated each year as new data are gathered. 

In this way, the wildlife biologist considers all available data in a 

single analysis. Data on these widely distributed populations of 

wildlife are limited and very expensive to gather. Combining all 

available data into a single analysis is crucial to improving 

efficiency of wildlife population estimates (Eberhardt 1978, Downing. 

1980). 



APPENDIX III 

KALMAN FILTER FOR PRONGHORN HERDS 

Filter Structure 

Prediction Model for Population Dynamics 

The linear Kalman filter requires that population dynamics be 

represented by a linear, first order difference equation. The models 

described by Walters and Gross (1972) and those currently being used 

by the Wyoming Game and Fish Department (POP-II) meet these criteria. 

In mathematical notation, let the dynamics of a wildlife population 

be written as: 

~~;= .!k ~k + ~k + ~K' 

~k is N (Q,gk) , (1) 

where ~k is a 3 x 1 "state vector" containing the true, but unknown, 

number of bucks (x1 ,k) fawns (x2 ,k), does (x3 ,k) at time k. Bucks 

and does include all animals older than 12 months; no distinction is 

made between buck and doe fawns. !k is a 3 x 3 "state transition 

matrix", which gives the proportional changes (e.g., survival rate) 

for each of the three state variables (fawns, bucks, does) in state 

vector ~k between time k and k+l. The values in ~k are based on 

estimates of recruitment and natural mortality rates. ~ is a 3 x 1 

column vector containing known "control actions" such as harvest for 
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each of the three state variables. This vector may also include 

estimates of migration. 

The random error in predicting the true state vector is 

represented by ~k' which is a 3 x 1 vector with one value for each 

state variable. ~k may also include the error in estimating the 

control vector ~k (e.g., harvest survey, migration numbers). The 

exact values of the prediction errors (~k) are never known but are 

assumed to be normally distributed with a zero mean and 3 x 3 

covariance matrix gk. 

Measurement Model 

In model (1), ~k+1 is the true but unknown number of pronghorns 

in each of the three state variables. It is therefore, necessary to 

formulate a model which describes the relationship between known 

observations and the unknown state of the system: 

Ik+1 = gk+1 ~k+1 + ~k+1' 

~k+l is N(Q'~+l)' (2) 

where Ik+1 is an m x 1 vector of m observations. m=2 for proportion 

of bucks and fawns classified in late summer. !:!k is the m x 3 

"measurement matrix" and represents how the field data Ik+1 are a 

linear vector function of the state vector ~k+l. ~k is an m x 1 

vector of random error terms. The values in ~k are not known but are 

assumed to be normally distributed with zero mean and an m x m 

covariance matrix ~+l. They represent the measurement and sampling 

errors inherent in the observations Ik+l· The k subscript in !k' ~k' 

gk' !:!k' and ~ indicates that they can change with time. 
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It is assumed that the prediction errors (~k) and measurement 

errors (_v
k

) are independent, i.e., E(w. v:)=O for all i and j. (The 
-1 -] -

E operator represents the expected value.) It is also assumed that 

all errors are uncorrelated through time, i. e. , 
T 

E(~k ~k+1 )=0 and 

T 
E(~k ~k+1)=0. It is further assumed that errors in the estimate of 

initial conditions are uncorrelated with all the other errors, 

T T 
i.e., E(~ ~k)=O and E(~ ~k)=O. If these assumptions are met, then 

the innovation sequence (observed minus predicted population 

observations) is expected to be normally distributed with a zero 

mean, and the autocorrelation of the innovation sequence through time 

is expected to be zero (Maybeck 1979). 

A properly implemented Kalman estimator filters all information 

out of the data and produces uncorrelated, normally distributed 

residuals. Testing for these qualities in the known residuals is 

possible using goodness of fit and correlation tests. In a goodness 

of fit test, the null hyppthesis is that the orthogonal, standardized 

residuals are normally distributed with zero mean and unit variance. 

They are standardized using the variances and covariances for the 

residuals which are predicted by the Kalman filter (Maybeck 1979). 

In a correlation test, the null hypothesis is that the standardized· 

residuals have zero temporal correlation. The standardization 

algorithm removes any correlations among residuals which are 

predicted by the Kalman filter. These tests of hypothesis are used 

to detect failures in meeting the assumptions incorporated into the 

filter. Adjustments to the structure or parameter estimates of the 

Kalman filter is made until this hypothesis is reasonably acceptable 

or until the likelihood of the null hypotheses is maximized. 
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Estimation Equations 

The conditional population estimate at time k+l before combining 

observations (i.e., model prediction using !k as initial conditions 

and a zero expected value for the prediction error ~k) is 

( 3) 

with the 3 x 3 conditional estimation error covariance matrix 

(4) 

Based on (3), it can be expected that 

(5) 

but this prediction will almost always contain error, so an 

"innovation vector" of residuals is defined as the 2 x 1 vector 

~k+l (6) 

This vector of residual~ defines the discrepancy between between herd 

classification data and model estimates for pronghorn fawn and buck 

counts. 

The innovation !k+l will rarely equal zero, and an estimate of 

the system state (~k+1\k+l) is made using a weighted average between 

the observations and the model predictions: 

where 

~k+l\ k+l (! - Qk+l ~k+l) ~k+l\k + Qk+l Yk+l 

!k+l\k + Gk+1 (Yk+l - ~k+l !k+l\k) 

~k+l\k + Qk+1 !k+l 

Qk+1 
T T-1 

~k+l\k ~k+l (~k+l ~k+llk ~k+l + ~k+1)· 

(7) 

(8) 
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Qk+1 is the 3 x 2 "gain matrix" of the system. It is the 

proportional weight placed on the residuals in modifying the 

predicted conditional mean (~k+llk) using the observed buck and fawn 

counts (Yk+1). Elements of Qk+l~+l have values ranging from -1 to 

1. 

The updated 3 x 3 estimation error covariance matrix (~k+llk+l) 

after the model prediction is combined with the obgervations is 

(9) 

If the assumptions of normally distributed errors are reasonable, 

then ~k+1Ik+1 can be used to place confidence intervals around the 

estimates of each state (i.e., fawns, does, bucks) or linear 

combinations of these variables (e.g., total population size = number 

of fawns, does, and bucks) using the standard normal distribution. 

~k+1Ik+1 and ~k+l1k+l are also used in the next estimation cycle as 

initial conditions to predict the state at time k+2 given all that is 

known at time k+l. This cycle is repeated using the entire time 

series of herd classification data. If a measurement is not taken at 

time k+l, then Qk+l = Q, ~k+1Ik+1 = ~k+llk' and ~k+llk+l = ~k+llk· 

Parameter Estimates for Pronghorn Models 

In order to apply the Kalman filter to pronghorn populations, 

estimates of model parameters, initial conditions, prediction and 

error covariance matrices, and measurement matrices are required. 

Many of these assumptions can be time variant, meaning different 

estimates are required for each year or for different time periods 
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during the year. Some, such as natural mortality rates and the 

covariance matrix for model prediction errors, are very difficult to 

estimate. Estimates for these parameters might have been impossible 

to produce if it were not for the availability of POP-II simulation 

models for the 55 pronghorn herds in Wyoming. 

POP-II simulation parameters have been estimated by professional 

wildlife biologists, some of whom have closely -observed these 

pronghorn herd units for decades. All of these biologists spend much 

time in the field gathering management data on these herds. Each 

biologist has adjusted POP-II parameter estimates (e.g., natural 

mortality) to resolve differences between POP-II simulations and 

field observations using professional judgement on the quality of 

their management data and other observations (e. g., severity of 

winter conditions). The POP-II simulations are the best available 

estimates of population size, recruitment, and mortality for Wyoming 

pronghorn herds. These simulations were frequently used in this 

study to make preliminary estimates for parameters in the population 

model (!k' Qk) and initial conditions (~olo' ~olo) in the Kalman 

filter. 

Time Periods and Population Dynamics 

Before describing methods used to initially estimate parameters 

a definition is required for time periods within the biological year 

for the population model. Unlike many filtering problems, there is a 

strong cycle of change between time periods in the pronghorn system. 

Events controlling population dynamics change seasonally more so than 



97 

annually (Fig. 14). A large "birth-pulse" (Caughley 1977) occurs in 

late May to early June. During this two to three week period, fawns 

are born and population size doubles. In the POP-II model, these 

births are simulated as occurring instantaneously immediately before 

June 1, and this date is considered the start of the modeled 

biological year (Bartholow 1985). 

Neonatal mortality reduces the new fawn cohort by 25 to 75% in 

the first few weeks after parturition. This mortality depends 

largely on habitat quality and severity of the previous winter. 

Natural mortality for all age and sex classes occurs continuously 

until the preseason, late-summer herd classification. At this time, 

biologists conduct herd classifications to estimate the proportion of 

fawns, does, and bucks in the population. 

About one month later, the hunting season begins. Twenty to 30% 

of the total population is harvested. In POP-II, only one simulated 

time period exists for natural mortality between the start of the 

biological year and the hunting season. Most of the legal harvest 

takes place in the first week of the hunting season (Harju 1985). 

Harvest mortality is assumed to occur instantaneously. Occasionally, 

a postseason herd classification is conducted shortly after the close 

of the hunting season. Aerial counts are occasionaily made in late 

spring or early winter. Natural mortality is constantly decreasing 

the population size by an additional 20 to 40% between hunting season 

and the end of the biological year. The cycle is then completed with 

a birth pulse. There is only one time period in POP-II for natural 

mortality occurring between hunting season and the end of the 

biological year. 
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critical period for doe nutrition 
needed to produce healthy fawns, 
varies with winter severity (Yoakum 1980) 

I 
I 

JUN_median parturition L ___________ . 
date (annual). . 

JUL 

AUG 

SEP 

OCT 

NOV 

DEC 

JAN 

FEB 

MAR -

APR 

r-1AY 

hlgh neonatal mortallty 
in fawns (annual) 

fawns difficult to 
observe because of their 
hiddin~ behavior 

late summer herd 
classification (annual) 

hunting season (annual) 

postseason herd class­
ification (rare for 
most herds) 

winter aerial trend count 
.(rare for most herds) 

spring aerial trend count 
(once every 3 to 5 years) 

I 

Total Population Size 

t 
weather-dependent 
wi nter 
mortality 
(annual) 

j 

7 
,L 

Fig. 14. Symbolic representation of events occurring during one 
biological year. 
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Even though there are vast changes within a year, population 

size between years does not change as rapidly. The biological year 

must be partitioned into several time intervals within the Kalman 

filter, but !k and gk for anyone period within a year period will be 

fairly stable between years. 

Estimating Mortality Rates 

Mortality is one of the major factors affecting pronghorn 

population dynamics. It was segmented into three components for the 

Kalman filter: natural mortality in the summer, mortality caused by 

sport harvest during hunting season, and natural mortality during the 

winter. These same three mortality periods are also used in POP-II. 

Each of these components of mortality were separately estimated for 

each of the three state variables in the Kalman filter. 

Natural Mortality 

For the three monitored herd units, estimates of natural 

mortality in the winter were made for the Kalman filter by 

summarizing the simulated population changes (POP-II) over this 

interval for a large number of Wyoming pronghorn herd units and for 

all available simulation years. All 10 to 20 one-year adult age 

classes in the POP-II model for a herd unit were summed into two 

state variables for the filter: adult males and adult females. The 

two POP-II classes for fawns were summed into a single state variable 

in the Kalman filter. This yielded 268 replicate estimates of winter 

natural mortality for each of the three state variables. 
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Thirty-seven pronghorn herd units with an average of seven years of 

reliable POP-II simulations for each herd were used. The other 18 

herd units in Wyoming were not used because they had frequent 

migrations across herd unit boundaries. For each of the three state 

variables, the number of animals simulated by POP-II at the end of 

this eight-month time interval was divided by the number at the 

beginning of this interval to estimate winter survival rates ¢. 

Summer natural mortality was estimated in a similar fashion using 

appropriate time periods in POP-II. 

This crude modeling strategy assumes that all herd units have 

the same expected survival rates, and these rates do not change 

between years. However, winter survival rates for pronghorns are 

strongly affected by winter climatic conditions, which can vary 

greatly between years. The precision of the population dynamics 

model in the Kalman filter was improved by partitioning the 268 

replicate estimates of ~seasonal mortality. Five groups were formed 

based on the proportional change in total population size during 

winter. One of five levels of winter mortality can be selected for 

any herd to which the Kalman filter was applied. In this manner, 

winter mortality estimates are specific to the winter conditions 

affecting the monitored herd even though state-wide averages are 

used. 

In a similar fashion, summer mortality rates were estimated for 

each of five levels of proportional population change during the 

preceding winter. Summer survival for adult pronghorns is not 

expected to be strongly influenced by previous winter conditions. 

However, neonatal fawn mortality is expected to vary substantially as 
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a function of winter severity and the stress which severe winters 

place on pregnant does and fetal fawns. 

Interpolating Natural Mortality at Intermediate Times 

Herd classifications and aerial herd counts may occur at times 

within the biological year other than the end of the year or during 

the hunting season. The state of the system must be predicted by the 

model at the time data are gathered so that differences between 

predictions and observations may be resolved. Since POP-II is a 

difference equation, it represents differences between ~he start of 

the biological year and hunting season. It is necessary to 

interpolate survival proportions for intermediate time intervals 

which corresponds to the time at which field data were gathered. 

This process is described for the simple case of a single state 

variable (e. g., fawns) and is extended heuristically to the 

multivariate vector cas~ for all three state variables. 

There are known to be Xo fawns at time 0, and xl are known to be 

surviving at time t1 using POP-II. Population size at time t must be 

predicted when observations are taken, but there are no POP-II 

predictions available at that time (POP-II time period ends at start' 

of hunting season). Assuming a constant instantaneous mortality rate 

(d) per individual animal between time 0 to t
1

, the number of animals 

(x
t

) surviving at time t decreases exponentially (Patten 1971) as 

follows: 

where d is calculated as 
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and the proportion surviving between time 0 and t is 

dt 
St (xOe) /xO 

exp(dt). 

This value is used as the diagonal element in!. The survival 

proportion (s2) for the second part of the POP-II time interval (t to 

t
1

) is 

s = 
2 

This method is extended directly to the multivariate case in 

which ~ is a 3 x 3 diagonal matrix·containing survival proportions 

between time 0 to t. 

N n N n 
d In [ (i __ L: 1 J" __ L: 1 x ..) / (. L: 1 . L: 1 xl'" ) ] 

01J 1= J= 1J 
i#m i+m 

where N is the number of suitable herd units in Wyoming, m is the 

herd unit being monitored, n is the number of years simulated by 

POP-II, and Xo and 1 are the number of simulated pronghorns in each 

state variable between times 0 and 1. This formulation for ~ assumes 

that natural mortality was independent between each state variable. 

Harvest Mortality 

Unlike natural mortality, it is feasible to directly monitor 

legal harvest mortality for each herd unit. This is accomplished 

annually using a hunter questionnaire. The 90% confidence interval 
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for harvest mortality is typically less than 3% of the estimated 

harvest, or about 0.5% of total population size. 

Harvest mortality is treated as the control vector ~k in (3). 

This assumes that harvest mortality is known without error (e.g., ~k 

has no effect on Qk)' This assumption, although not strictly true, 

is reasonable given the relatively narrow confidence intervals. If a 

covariance matrix were available for the errors in estimating the 

number of bucks, does, and fawns harvested, then it could be added to 

gk (Maybeck 1979). However, estimates of precision are only 

available for total harvest (Doll, personal communications). 

Harvest mortality is multipled by a wounding loss factor to 

calculate total mortality during the hunting season in POP-II. This 

factor was estimated using a state-wide average of wounding loss from 

POP-II. These are based on professional judgement because there are 

few empirical data. For the Kalman filter, wounding loss is 

separately estimated for each of the three state variables. 

Wounding loss factor was treated as a known constant. 

Uncertainty in its estimate could not be formally incorporated into 

the filter because there is no estimate of its reliability.. Wounding 

loss is typically assumed to be near 10% of the legal harvest, which· 

equals approximately 2 to 3% of the total population. Therefore, 

error in estimating wounding loss adds only minor uncertainty to the 

Kalman filter. 
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Estimating Natality Rates 

A strategy similar to that used for mortality estimates is also 

employed to estimate natality rates (average number of fawns born per 

adult female). The total number of fawns was divided by the 

simulated number of adult females using POP-II estimates for all herd 

units. The two fawn categories (male and female) in POP-II are 

combined into a single state variable for fawns, and the 5 to 10 

cohorts of adult females in POP-II are combined into a single group 

of adult females. Estimates of adult females were taken from the 

POP-II simulation immediately before the birth pulse and addition of 

the one-year-old female cohort. This assumes that female fawns are 

not pregnant at the end of their first year. 

Severe winters affect winter mortality. They also affect 

parturition rates during the following early summer. Stress is 

placed upon pregnant does and their fetal fawns during the winter. 

Therefore, parturition~ates are partitioned by the same five levels 

of winter severity as are the winter mortality rates. Thus, the net 

recruitment rate (parturition less neonatal mortality rates) in the 

Kalman filter is a function of percent change in total population 

size (as estimated by POP-II) during the previous winter. This 

partitioning is performed using percent change in total population 

size during the previous winter as already described for estimating 

mortality rates. 
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Model Prediction Errors 

Perhaps the most difficult estimate required by the Kalman 

filter is prediction error (g) of the model over one tima-step and 

before the prediction is combined with the data. Prediction error 

for the POP-II process has not been quantified for two reasons. 

First, POP-II results are not unique, i.e., different biologists or 

the same biologist at different times would not produce exactly the 

same POP-II solution. Second, true populations sizes are never known 

exactly. POP-II estimates are the best available. 

Reproducible Parameter Estimates 

The first problem, model reproducibility, is solved by making 

natality and natural mortality parameters constant (e.g., averages 

for many other pronghorn herd units) or simple functions of other 

sources of information (e.g., a general rating of winter conditions 

into five categories o~ severity). This avoids direct reliance on 

professional judgement to make and adjust parameter estimates. This 

does not necessarily produce better parameter estimates; it simply 

makes them reproducible so that prediction error of the model can be 

quantified. This also permits a completely mathematical model 

formulation which is required to apply the Kalman filter. It is not 

possible to fully capture the complex process of professional 

judgement used with POP-II with such a formulation. However, a large 

portion of past professional judgement is incorporated into natality 

and natural mortality parameters using existing POP-II models. 
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Adaptive Estimates of Covariance Matrix 

The second problem in estimating model prediction error is that 

population size is unknown. This is typical for many applications of 

the Kalman filter. An upper bound for prediction error can be 

estimated using adaptive estimates of g such as those described by 

Jazwenski (1970), Chin (1979), Maybeck (1979), and Jameson (1985). 

These procedures use the empirically known variance of the residual 

innovation sequence to mathematically compute an estimated maximum 

covariance matrix for prediction errors. However, this process can 

fail in certain applications (e.g., negative variance estimates can 

be produced). This is especially true when the variance of the 

residuals is estimated using a small number of measurements (Jameson 

1985) . Wildlife monitoring is particularly vulnerable to these 

problems. Only one or two measurements per year are usually 

available, and only seven or eight years can be considered using 

existing pronghorn data. 

Hypothesis Tests to Estimate Prediction Error 

A second class of techniques used to estimate prediction errors 

within the Kalman filter uses tests of hypotheses on the empirically. 

known innovation sequence of residuals. If all the assumptions of 

the Kalman filter are met (e.g., independence of errors, unbiased 

estimates), then the innovation sequence should have a zero mean with 

variances predicted by the Kalman filter. The expected covariance 

matrix for the innovation sequence can be derived from the Kalman 

filter using mathematical statistics (Maybeck 1979); for any single 

vector of measurements at time k, it is: 
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( 10) 

If all assumptions are reasonable, then it can also be proven that 

residuals at time k are independent of those at any previous time t, 

i. e. , 

o for k#j (11) 

Unlike the prediction error covariance matrix (Qk) , the statistics 

for the residuals (!1' !2' •.• , !k) can be directly computed from 

the measurement data and the model predictions. These can be 

numerically compared to their expected statistics predicted by the 

filter. If the differences between the empirical and expected 

distributions are large, then the fidelity of the model must be 

questioned. 

The parameterized Kalman filter can be considered an intricate 

set of assumptions which specifies mortality and natality rates; the 

change in these rates over time; differences between years in winter 

severity; changes in harvest levels; the prediction error of the 

demographic model; initial conditions for the state variables and 

their variance, the model relating measurements to the state of the 

system, and the precision of those measurements. If all assumptions 

are approximately true, then the statistics of the residuals should 

closely match those predicted by the filter (equations 10 and 11). 

Soeda and Yoshimura (1973) describe a procedure in which a 

t-test is performed on a set of residuals. A simple null hypothesis 

is formulated in which the residual difference between the Kalman 

filter prediction before combining measurement data (~k+1 ~k+1Ik) and 
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the actual measurement (~k+1) is zero. The variance of the residual 

is that predicted by the Kalman filter (10). If this hypothesis is 

rejected at a specified alpha level for anyone residual, then a 

weighting factor (S) is applied to systematically increase the model 

prediction error (gk). This increases the weight (Qk) placed on 

measurement data until the null hypothesis is accepted. As a result, 

sensitivity of the filter to errors in estimating the covariance 

matrix for model prediction error is reduced. Jameson (1985) reports 

that this technique performs very well. 

Maybeck (1979) reports another adaptive procedure using a test 

of hypothesis. A log likelihood function is constructed using the 

ratio of the observed squared residual to its expected variance 

assuming the structure and coefficients in the Kalman filter. He 

recommends that the most recent 5 to 20 innovation residuals be 

summed in this function. If the value of the likelihood function 

exceeds a specified cr~tical value under the null hypothesis, the 

filter failed because the magnitude of the residuals is unreasonably 

large. When this occurs, then parameter estimates or filter 

structure need modification. One attractive modification is that of 

Soeda and Yoshimura. Prediction error covariance matrix gk in the 

Kalman filter is increased by a scalar multiplier (S) until the 

likelihood function falls below its critical value, and the null 

hypothesis is accepted. This technique is more robust than that of 

Soeda and Yoshimura because the latter is sensitive to a single 

residual of large magnitude. This can be expected on rare occasions 

even if the assumptions in the Kalman filter are true. 
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Estimates of Prediction Error Using Goodness of Fit 

These adaptive methods have been especially successful in 

aerospace applications when rapid numerical solutions in real time 

are essential (e.g., lunar lander, air-to-air missile). However, 

they ignore an important characteristic of the residuals which may be 

empirically investigated to further test credibility of assumptions 

in the Kalman filter. If both prediction and measurement errors are 

normally distributed and all other assumptions in the Kplman filter 

are correct, then the residuals should be normally distributed with a 

zero mean and covariance relationships (10 and 11) predicted by the 

Kalman filter (Maybeck 1979). Goodness of fit tests are available to 

test the hypotheses of normally distributed residuals. Soeda and 

Yoshimura (1973) and Maybeck (1979) assume the distribution is normal 

but never test this assumption. 

Tests for goodness of fit assume independent, identically 

distributed replicates... However, each residual from the Kalman 

filter can have a different variance. If all residuals were 

independent, then this problem of different variances could be easily 

solved; each residual would be divided by the square root of its 

variance predicted by the filter. If assumptions in the Kalman 

filter are valid, then this set of standardized residuals would be 

normally distributed with a zero mean and unit variance. If the 

assumption in (11) is valid, then each standardized residual would 

also be independent of all residuals at other time steps. However, 

the two measurements in a herd classification at time k are not 

independent; this violates an assumption in the test for goodness of 

fit. 
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* * i 1 ,k+1 /i2,k+1 i 1,k+1/ i 2 ,k+1 • 

These transformations produce a set of identically and normally 

distributed independent residuals from the entire time span estimated 

using the Kalman filter. This typically ranges from 1978 or 1979 to 

the present for Wyoming pronghorn populations (one or two herd 

classifications per year). 

A test of the null hypothesis regarding the distribution of the 

* standardized orthogonal residuals (!k) is possible using the 

Kolomogorov-Smirmnov (KS) statistic, which is a goodness of fit test 

(Sokal and Rohlf 1969) • This test compares the cumulative 

distribution function under the null hypothesis (e. g., normally 

distributed, zero estimated mean, and estimated variance of one) to 

the empirical cumulative distribution. As the agreement between 

these two distributions becomes closer, then the KS statistic becomes 

smaller. 

Compared to the me thods recommended by Soeda and Yoshimura 

(1973) and Maybeck (1979), this method provides additional 

information on the credibility of the implemented Kalman filter. One 

way to use the information is to declare a failure in the filter if 

the KS statistic exceeds a critical value as in Maybeck's technique. 

In the spirit of Soeda and Yoshimura, another strategy is to increase 

the prediction error covariance matrix Qk until the KS statistic 

falls below a given critical value. However, a third option is to 

mUltiply the series of covariance matrices for prediction error 

(Q1,Q2' ···,gk) by a time invariant scalar (8) to minimize the KS 
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statistic. The best estimate for prediction error would be that 

which produced the closest match between the observed and expected 

distributions for residual error (i.e., the smallest KS statistic). 

The magnitude of the KS statistic can be well below the critical 

* value for rejecting the null hypothesis for the distribution of i
k

• 

This third approach was applied to monitoring pronghorns. I 

have not found any reference in the literature to such an adaptive 

technique for estimating prediction error. This appears to be an 

original contribution to the field. This is an important 

contribution because the covariance matrix for model prediction error 

is very difficult to quantify for the Kalman filter. 

Proportional Estimates of Prediction Error 

The above procedure estimates the scalar S, which produces 

residuals that are most likely to be normally distributed with a zero 

T 
mean and covariances of~ (~k+1 ~k+1Ik gk+l + ~k+1)· However, this 

requires initial estimates of Q
k 

for each time step k. These must be 

provided using some other technique. It is important that initial 

estimates of Qk be proportional to their true values because the 

initial values of Qk are later rescaled using S. It is much less 

important that they equal the true values. Unfortunately, the true 

value of Qk is unknown; it is not possible to validate how well the 

estimated values of Q
k 

meet this criterion. 

One way to estimate Q
k 

is to treat POP-II simulations as the 

true population sizes. Then the error statistics in predicting 

POP-II simulations using the simplified model (1) in the Kalman 

filter are reasonable initial estimates of Qk. This comparison is 
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only necessary over a relatively short time interval (e.g., June to 

October, or October to May for anyone biological year). Covariance 

matrices are estimated empirically using the usual maximum likelihood 

estimator (Helstrom 1984). If the errors of (1) in predicting POP-II 

results are independent of the errors in estimating the true 

population size using POP-II, it is reasonable to assume that this 

estimate of .9. is proportional to its true value. 

Interpolation for Intermediate Times 

These procedures produced initial estimates of .9. at the end of 

one seasonal time period. However, measurements are taken at an 

intermediate time period t (e.g., late-summer herd classification), 

and it is necessary to interpolate an initial estimate Q at that 
-t 

time. Model prediction error is zero at time zero. Error increases 

linearly with time assuming a constant instantaneous rate of change 

in the prediction error over the time interval. However, a variance 

has units of squared error, and it was assumed to increase 

quadratically with time. Therefore, the estimate of the prediction 

error covariance at time t (gt) is proportional to the error 

covariance at time t1 (.9.1) as follows: 

Normal Distribution of Errors 

A common assumption in the Kalman filter is that the model 

prediction errors and measurement errors are normally distributed 
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with a known mean. Statistical theory for the Kalman filter under 

this assumption is far more developed than for other assumptions. 

Also, the assumption of normality is useful for quantifying 

confidence intervals. The Central Limit Theorem supports this 

assumption for pronghorn populations. This theorem states that the 

sum of independent, identically distributed events tends towards 

normality as the number of independent events becomes large. Each 

may have a distribution other than normal (e.g., Bernoulli). For 

wildlife populations, system processes (e.g., mortality) and 

measurements (e.g., herd classifications) are sums of events which 

occur on individual animals. Most antelope herds have at least 

500 animals, which makes the Central Limit Theorem applicable. This 

assumes approximate independence among events occurring on individual 

animals. 

~Independence of Errors 

In the Kalman filter, it is assumed that measurement (~k+l) and 

model prediction errors (!k) are independent of those at previous 

times (i. e., no temporal autocorrelation). These assumptions are 

more difficult to support ~ priori compared to the assumption of 

normally distributed errors. Correlation of measurement errors over 

time can be tested empirically. If this or other assumptions are 

violated, then the residuals will not be normally distributed with 

zero mean (Maybeck 1979). Therefore, failure to meet the assumptions 

of the Kalman filter can be detected. In fact, there are theoretical 

reasons to expect a correlation between the prediction and 

measurement errors given the measurement model which was used for 
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pronghorn herd classifications (Appendix IV). More elaborate 

formulations of the Kalman filter can adequately incorporate this 

type of correlated error (Lee 1964, Kailath 1968, Soeda and 

Yoshimura 1973, Maybeck 1979). 

Incorporation of Field Data 

The power of the Kalman estimator originates in the formal 

combination of measurements of the system with information on how the 

system changes over time (i.e .. a deterministic difference equation 

model of population dynamics). The mathematical model for pronghorn 

population dynamics has been discussed in the previous sections. A 

model for the measurement system is now presented. 

Herd Classifications 

The herd classification model uses the actual number of animals 

counted in each of the .. three categories (fawn, bucks, and does) 

rather than the fawn:doe and buck:doe ratios derived from these data. 

The latter are more familiar to wildlife biologists; however, actual 

counts permit the measurement matrix ~k+1 to be linear: 

~k+l = ~k+l ~klk+l + ~k+l' 

~k+1 is N(Q, ~+1)· 

The number of animals classified into each of these categories 

is represented by the measurement vector ~k+l. ~+l is a diagonal 

measurement matrix which mathematically specifies how the states in 

the model linearly relate to the field data. The values of all 
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diagonal elements in gk+1 are the same, namely the proportion of the 

total population observed in the herd classification, i.e., 

h. . Y/X, i=j 
1.J 

O,i4j 

3 
where Y = L: y. 

i=l 1. 

3 
X = I x 

. i 1.=1 

This assumes that the herd classificat-ions are unbiased samples. 

~k+1 is the difference between the known field data and the exact, 

but unknown, number of animals which should have been classified if 

there were no sampling errors. The value of ~k+1 is not known, but 

it is assumed normally distributed with zero mean. 

This formulation is seldom used in applied wildlife management 

because it requires a value for the true total population size. If 

this value could be accurately estimated by field observations, then 

there would be no need for estimators such as POP-II or the Kalman 

filter. However, the filter produces estimates of the total 

population size eX) and its variance [Var eX)], where 

3 
X 1: (Xk lk+1) ,i 

i=l 

3 3 
and Var X= E E q ..• 

i=l . 1 1J J= 

This estimate, rather than the true but unknown population size, is 

used for computing the proportion of the population sampled in the 
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herd classification (Appendix IV). This produces values for the 

measurement matrix ~k+1. 

The measurement matrix is assumed known without error in the 

Kalman filter. However, an estimate of gk+ 1 is all that is 

available. It is necessary to extract the estimation errors from 

!\+1 and incorporate them into the ~k+1 vector for measurement 

errors. 

h .. 
11 

The model used to accomplish this is: 

3 3 
r y./ L (x. + w.)· 

i=l 1 i=l 1 1 

The error term (w.) in the population size estimate X. can be 
1 1 

factored out of this equation. However, ~k is nonlinearly related to 

!.!k+l' and the linear Taylor series approximation must be' used. This 

linear approximation is then added to the measurement error vector 

~k+1· 

The procedure above ad~resses the problem of using estimated 

population size rather than the true, but unknown, population size in 

Unfortunately, it produces another problem; the new 

measurement error vector (~k+1) is now a function of the model 

prediction error (~k+1)' which makes ~k and ~k+1 correlated. The 

Kalman filter assumes these are uncorrelated. However, it is 

possible to modify the basic filter to accommodate correlated 

prediction (i.e., process) error and measurement error. Gelb (1974) 

discusses how this is accomplished for the continuous case. Maybeck 

(1979) gives equations for the more complicated discrete case. In 

T 
this technique, the cross-covariance matrix ~k+1 between ~k+1 and ~k 

is incorporated into the update equations for Qk+1 and ~k+1Ik+1' All 
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other estimation equations in the filter remain the same. This 

covariance is derived in Appendix IV. Formal incorporation of 

prediction and measurement error cross-correlations can greatly 

improve performance of the Kalman filter (Maybeck 1979). 

The above describes how errors in estimating ~+1 are extracted 

and combined with the sampling model, but the basic sampling error 

--

needs to be quantified. Three categories are used for pronghorn herd 

classifications, and the multinomial distribution could be employed 

to estimate a covariance matrix for the sampling errors. However, 10 

to 40% of a pronghorn herd (a finite population) is typically sampled 

in a Wyoming herd classification. Field procedures are designed to 

avoid classifying individual animals more than once. Therefore, the 

more efficient assumption of sampling without replacement is validly 

applied. The multinomial distribution may be replaced with the 

trivariate hypergeometric distribution to quantify sampling error for 

the ~+ 1 covariance matrix. Specific details are given in 

Appendix IV. 

Iterative Estimates of Nonlinear Measurement Parameters 

Application of the trivariate hypergeometric distribution 

requires known values of total population size and the true 

proportion of each category in the population. These are usually 

unknown. Use of the estimated total population size rather than the 

true population size has already been discussed. The problem of 

using estimated proportions of each category in the population is now 

discussed. 
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A common estimate of the true proportions in the total 

population is the proportions in the sample. This method was used as 

a first approximation. However, an improved estimate of the true 

proportions of bucks, fawns, and does in the population is 

subsequently available in the Kalman estimate ~k+ 11 k+ 1 • Also, the 

Taylor series approximation must use estimated population sizes 

~k+ 1 I k from the Kalman filter. However, better es-timates (~k+ 11 k+ 1) 

are subsequently available from the Kalman filter after the data are 

combined with the model prediction. 

Jazwinski (1970) recommends that local iterations be used to 

improve performance of the Kalman filter when nonlinear measurement 

models are represented by linear approximations. In a local 

iteration, the estimate ~k+l1 k in the linear approximation is 

repeatedly replaced by the updated ~k+llk+l from the previous cycle. 

Cycles are repeated until the ~k+llk+l estimate from the previous 

cycle is almost identical to the ~k+1Ik+l estimate from the current 

cycle. This is labeled a local iteration because the cycles are 

restricted within time interval k to k+1 rather than the entire time 

series. 

Jazwinski (1970) gives the conditions under which this iterated 

extended Kalman filter is locally convergent. Under the Gaussian 

assumption, he proves that they are also the maximum likelihood 

Bayesian estimates. This strategy was applied to estimating the true 

proportions of bucks, fawns, and does in the population for use in 

the trivariate hypergeometric sampling model. 



120 

Aerial Herd Counts 

Aerial herd counts attempt to count all animals in a pronghorn 

population. Confidence intervals for actuai counts are difficult to 

establish because the total count can only be treated as a lower 

bound; the true population is larger than the aerial count. It would 

be possible to use estimates of the proportion of animals counted 

during the aerial herd count to adjust the population estimate 

upward. However, I do not know how to quantify the variance or bias 

of such data; this is necessary for the Kalman filter. Rather, 

aerial trend counts are used as independent test data to evaluate 

model performance. They are not used to improve estimates of 

pronghorn population size. 

Initial Conditions 

The initial population size for the Kalman filter was determined 

using the initial conditions from POP-II. However, initial 

conditions for the error covariance matrix (Polo) are also needed; no 

guidance is available from POP-II to estimate these values. 

Fortunately, the initial prediction errors quickly attenuate with 

time, and the model prediction errors (.Qk) soon dominate the 

estimation errors Therefore, the Kalman filter is 

insensitive to errors in estimating the initial population covariance 

matrix. Elements of ~ I a were arbitrarily chosen as in many 

engineering applications of the Kalman filter (Maybeck 1979). 
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Confidence Intervals 

A covariance matrix quantifies the reliability of an estimate, 

but it is difficult for most nonstatisticians to interpret a 

covariance matrix. The confidence interval is a much more familiar 

expression of estimation error. The confidence interval for total 

population size requires the variance of this estimate. Estimated 

total population size is simply the sum of the buck, doe, and fawn 

estimates. The variance of such a linear combinations (Wild 1962) is 

3 3 
Var (x

1
+x

2
+x

3
) L: Var (x. ) + 2 L: Cov (x.x. ) 

i=l 1. i <j 1. J 

3 3 
L: j~l (Pk+1\k+1) ij· 

i=l 

The square root of this variance is multiplied by 1.645 (zO.10) to 

produce a 90% confidence interval for total population size. The 90% 

confidence interval was chosen because it is the standard used by the 

Wyoming Game and Fish Department. 

Confidence intervals for individual state variables (e.g., doe 

population size) uses the appropriate diagonal element of ~k+1Ik+l as 

an estimate of variance. This produces a confidence irtterval for one 

of the state variables when multiplied by 1.645. However, this fails 

to acknowledge the off diagonal covariances in ~k+1Ik+1. Therefore, 

confidence intervals for more than one state variable are not 

independent. 
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Inspection of Residuals for Filter Validation 

The adaptive estimate of gk considers only two expected 

characteristics of the residuals. First, they should be normally 

distributed predicted. Second, they should have variances and 

covariances which are predicted by the Kalman filter. However, the 

residuals can be shown to be mutually independent if the assumptions 

of the filter are valid (Maybeck 1979). The Kalman filter should 

extract all information from the data and leave behind only an 

independent sequence of Gaussian residuals. If a pattern is present 

in the residuals beyond that which may be reasonably expected by 

chance, then the assumptions used in the Kalman filter must be 

suspect. 

Inspecting residuals for their expected characteristics is 

common in engineering applications and is necessary to assure 

validity of the Kalman estimates. There is a wide array of 

statistical techniques for pattern recognition. These could be used 

to explore for information left behind in the residuals. However, 

the simplest of these methods were expected to be adequate. These 

were simple linear regression and nonparametric permutation tests. 

Temporal autocorrelation among the residuals is not expected if 

the assumptions used in the Kalman filter are true. If temporal 

autocorrelation exists, it is reasonable to assume that it should be 

greatest between equivalent measurements taken at adjacent time 

periods (e.g., buck counts at time k and k+l). Simple linear 

regression was used to test for such a linear relationship within the 

standardized sequence. If there is one herd classification (i.e., 2 
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measurements) for each of 7 years, then there are 12 replicates 

available to test for temporal autocorrelation (i.e., 6 pairs of 

years times 2 measurements per year). 

A nonparametric permutation test was also used to detect a third 

type of pattern in the standardized residuals. If a certain type of 

measurement is consistently located in one portion of the empirical 

residual distribution, then there likely is bias-' in . the model 

predictions. For example, if preseason fawn counts are consistently 

in the negative tail of the residual distribution, then it indicates 

that the Kalman filter consistently overestimates fawn counts, and 

there is likely a bias in estimated parturition or neonatal survival 

rates. If there were seven herd classifications available over time, 

then there would be 14 residuals available to test for an unusual 

association. 

These techniques test for only several types of patterns, and 

other tests might also ~e reasonably expected. However, the selected 

tests are believed to be adequate to detect major patterns, 

especially given the small number of standardized residuals available 

for the pronghorn applications. 

Tuning the Kalman Filter 

A test which casts suspicion upon assumptions used in the filter 

may also suggest a change in assumptions which could improve 

performance of the implemented filter. For example,. high 

correlations between measurements within a single herd classification 

might suggest an inadequate measurement model or its associated 
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representation of measurement errors. High temporal autocorrelation 

might suggest correlated measurement errors over time, and there are 

well developed techniques in filtering theory to treat such problems. 

If a test indicates that an unreasonably large number of standardized 

residuals after a catastrophically severe winter are in a tail of the 

residual error distribution, then the representation of that winter 

(e. g. , 
- -

the assumption of no maj or migrations across herd unit 

boundaries) in the Kalman filter is suspect. These represent 

potentially substantial structural changes to the implemented Kalman 

filter. 

Even if the Kalman assumptions are accepted, it may be possible 

to improve performance by preserving the existing filter structure 

and change specific parameter estimates. The process of parameter 

modification so that the predicted and observed observations best 

agree is termed model tuning. This is true for both the POP-II and 

Kalman filter literatures. ~The KS statistic describes how well the 

distribution of standardized residuals matches its theoretical 

distribution from the Kalman filter (i.e., normally distributed with 

a zero mean and a variance of one). This same criterion was 

previously applied to finding an estimate for S in the adaptive 

estimation of model prediction error cg
k
). However, the KS statistic 

was also used to select scalars which tuned_parameter sequences in 

order to better match predicted and observed field data. 

Three sets of parameters were tuned using time invariant 

scalars: the time series of natality rates; the time series of 

natural mortality rates; and the initial population size for each of 

the buck, fawn, and doe state variables. For example, parameter 
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estimates, which were made using state-wide averages for five levels 

of winter severity, might consistently overestimate fawn counts in 

the August herd classification. This would suggest the need to 

reduce estimates of reproductive rates in the model by mUltiplying 

reproductive rates for all time periods by a scalar. The value of 

this scalar could be varied by trial and error until a minimum value 

is obtained for the KS statistic. However, the estimate for S would 

also have to be determined by trial and error for each value of the 

reproductive scalar. 

This cyclic process was applied to each of the three herd units 

which were studied in detail. It required a very large number of 

iterations to tune scalars for prediction error, reproduction and 

mortality rates, initial conditions, and model prediction errors. 

The filter was implemented on a personal computer, and each execution 

of the Kalman filter took two to three minutes. Therefore, the 

tuning process was time consuming. Fortunately, initial parameter 

estimates were based on POP-II simulations, which had already been 

tuned by field biologists. 

Solutions to Numerical Problems 

Implementing the Kalman filter for pronghorn population 

presented unexpected numerical problems. When the standard update 

equations (7) to (9) were used for the pronghorn populations, there 

were obvious problems such as negative variance estimates. Such 

problems are common in engineering applications when prediction 

errors (gk+ 1) are large relative to measurement errors (~+ 1) , 
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especially when computers with large roundoff errors (i.e., small 

word size) are used. This relative difference in errors is exactly 

the case for pronghorns and Wyoming management data, and a personal 

computer with small word size was used to implement the filter. 

A frequent engineering solution to this problem is use of the 

"Joseph form" of the covariance update equation: 

~k+llk+l 

Maybeck (1979) states that the Joseph form is the sum of two, 

symmetric positive definite and semidefinite matrices. Numerical 

computations based on the Joseph form are generally better 

conditioned and less sensitive to roundoff errors than (9). However, 

the Joseph form does not account for correlated measurement and 

prediction errors (~k+ 1) . In Appendix IV, a new version of the 

Joseph form is derived which formally incorporates ~k+l: 

~k+ll k+l 

However, even this Joseph form was numerically unstable when applied. 

to Wyoming pronghorns. 

Bierman (1977) and Maybeck (1979) present another form of the 

Kalman filter which is always numerically stable: the square root 

filter. The square roots of the covariance matrices in the filter 

are used, and the update equation for Pk+1\k+l is formulated in terms 

of matrix square roots. This square root filter effectively solved 
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the numerical problems when the Kalman filter was applied to Wyoming 

pronghorns. 



APPENDIX IV 

COVARIANCE MATRIX FOR MEASUREMENT ERRORS IN HERD CLASSIFICATIONS 

Measurement Matrix for Herd Classifications 

The simple models for the state vector and measurement system in 

the Kalman filter are 

x x = ~ x + u'+ w' -k - -k-1 
(12) 

L !!~+~', (13) 

where w is N(Q,g') 

E(w'v') = 0, 

H ley/X) 

x (14) 

Y is a scalar representing total sampling size in the herd 

classification (i.e., total number of fawns, does, and bucks 

counted). X is a scalar representing the unknown total population 

size. The measurement matrix H is simply a diagonal matrix with each 

diagonal element equal to Y/X. In other words, the number of animals 
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classified into each fawn, doe, and buck category is a constant 

proportion of the total number of animals in each category in the 

entire population. Unfortunately, Y/X is unknown; however, it can be 

estimated. 

An estimate of x. (i.e., the number of animals in category i) is 
1. 

available from (1): 

x. ¢ .. x'k 1 . + u' i for <P.. = 0, i :f j. 
1 ~1. - ,1. 1J 

This uses a ze.ro expected value for the unknown prediction error·w'. 

Therefore., from (12) and (13) 

Xi xi + w. 
1. 

X X + W (15) 

where 

3 
X i~l X. 

1. 

3 
W i~1 w' . 

1.. 

X is a known estimate of total population size, which is provided by 

the Kalman filter. W is the unknown difference between the estimated 

total population size (X) and true total population size (X). 

However, the expected value of W is 

E(W) E(w' + w' + w') 122 

E(wi) + E(wi) + E(w3) 

0, 

and the variance is 



Var(W) 
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3 3 3 

i~IVar(wi) + 2i~1 j=!+I Cov (wiwj) 

L L 
i=1 j=1 

qt' J • 

(16) 

qi
j 

is the (ij)th element of the prediction error covariance matrix 

g' from (12). 

For element i in the measurement vector from_C 13), and using 

(15) 

Yi (Y!X)x i + vi 
[Y/(X+W)]xi + vi 

Incorporating Measurement Error 

(17) 

The Y / (X+\n term represents the (ii) th element in the diagonal 

measurement matrix H from (13), and a known estimate must be 

available for H. However, only the distribution of W is known, not 

its value in any given situation. Therefore, W must be factored out 

of the multiplicand of xi and combined with the measurement error 

term v .. Equation (16) is nonlinear with respect to W, and a linear 
J. 

approximation in the neighborhood of X must be made using the first . 

two terms in the Taylor series expansion: 

,. ""2 
fey/X) + (X-X) (-Y)/x ]x

i 
+ vi 

(Y/X)x. + [v! - w(yx./i2
)] 

~ 1. J. 
(18) 

The compound error term in (18) is an approximation because the 

. " 
xi = xi is used. The error in this approximation is ignored. 
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Treating this independent variable as a random variate introduces 

difficult problems in evaluating high-order joint probability density 

functions. 

The variance of the compound error term in (18) is 

"2 2 
Var (v!) + (Yx./X) Var(W) 

1 1 

assuming Cov(wf,vj) = O. 1he Var(W) is given in (16). Var(vi) is 

computed using the trivariate hypergeometric distribution assuming 

sampling without replacement in the herd classification (i.e., there 

is a zero probability of counting the same animal more than once). 

If sampling with replacement is a more accurate assumption, then the 

less efficient trivariate multinomial distribution must be used to 

compute Var(vi). 

The above scalar example can be extended to the multivariate 

case to produce 

Y... !! ~ + ~J (19) 

where 

v is N(Q, ~) , 

H ley/X) (20) 

. 
(_y/x2) v W x + v' ( 21) - . 
(y2/x4) Var(W)~ ~T R + R' (22) 

Covariance of Prediction and Measurement Error 

An underlining assumption of the Kalman filter is that the 

prediction and measurement errors are independent. However, this is 

not the case for v in (19) because, from (19) to (22), 
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where 

The Vj term contains wi, which makes Cov(wi,vj)#O. This can be 

shown mathematically as follows: 

E(w~v.), for E(wi') = E(w!v~) 
l J l J 

o 

(23) 

Let C be the 3 x 2 non-symmetrical matrix with these elements. 

Maybeck (1979) presents a way to incorporate correlated 

prediction (~') and measurement errors (~) into the Kalman filter 

gain and update equations if the covariance matrix for v and w' is 

known. In the pronghorn case, this covariance is C from (23). The 

Kalman filter equations for ~k+1Ik, ~k+llk+1, and ~k+llk remain 

unchanged; however, the update equations are 

The R measurement error covariance matrix represents the compound 

error (measurement error plus preduction error) and is computed in 

(22) . 
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Although (25) is certainly a valid expression for the updated 

covariance, it is very vulnerable to numerical errors. This can lead 

to serious numerical problems such as negative variance estimates. 

An alternate form of the covariance update equation exists for 

uncorrelated prediction and measurement errors. It is called the 

"Joseph form" (after the man who first developed it). For C = 0, the 

Joseph form is 

This is the sum rather than the difference of two symmetric matrices. 

This form promotes symmetry of the covariance matrix and positive 

diagonal elements (variances). It is much less sensitive to small 

errors (e.g., round off error) in computing the gain matrix Q. This 

is especially important when measurement error is small relative to 

prediction errors (Maybeck 1979) which is true for Wyoming pronghorn 

populations. It is also important when computer word size is small, 

such as with micro computers. I have been unable to find a published 

version of the Joseph form when £ # Q, and the following is a 

derivation of the Joseph form for cov(wkvk+1) ~ Q. 

The covariance update equation (24) may be readily rewritten as 

P I (I - G H) P I + G C
T 

-k+1 k+l = - - - -k+l k --
(26) 

Post multiplying both sides of (26) by (I - Q ~)T, adding ~k+llk+l G 

H to both sides, using (25) for ~k+llk+l on the right-hand side, and 

rearranging, it can be shown that (26) yields 

(27) 
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Multiplying by (~~k+1Ik ~T + ~ ~ £ + £T~T) and rearranging, it can 

be further shown that 

Adding this equivalent expression (28) for a 3x3 zero matrix to (27) 

and rearranging, the following results are obtained: 

-.-

(I G H) P (I G H)T + (_G _cT-_c _GT) ---- -k+1Ik----

+ Q (~ + ~ £ + £T~T) QT (29) 

T T 
~k+1Ik+1' ~k+1Ik' and (~+ ~ £ + £ ~) in (29) are symmetric, 

square (covariance) matrices, which forces G CT and C GT to be 

symmetric. 

The covariance update equation (25) may be rearranged to yield 

the following identities: 

G C
T 

= ~k+1Ik - ~k+1Ik+1 - G H P 

C G
T 

= ~k+1Ik - ~~+1Ik+1 _ (Q ~ ~)T 

Subtracting (31) from (30) produces 

(30) 

(31) 

(32) 

Si Q £T, PdP . (30) nce -k+1Ik an -k+1Ik+1 In are symmetric, then Q ~ ~ 

must also be symmetric. Therefore, (Q ~ ~)T = Q ~~, and from (32) 

(Q £T _ £ QT) = O. The end result is the Joseph form of the 

covariance update when prediction and measurement errors are 

correlated: 

T 
(! - Q~) ~k+1Ik(! - Q~) + 

Q (~ + ~ £ + £T~T) GT (33) 
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Hypergeometric Sampling Model 

Assuming that the herd classification into three categories 

(fawn, doe, and buck) is designed so that anyone animal can only be 

observed once (i.e., sampling without replacement), and the 

observation of anyone animal is independent of observations of all 

other animals in the herd, then the R' covariance matrix in (12) and 

(21) is calculated using the standard trivariate hypergeometric 

distribution (Wilds 1962): 

r' 
i 

Yi(Y - Yi)(X - Y) 

YeX - 1) 

-y.y.cx - Y) 
~ J 
YCX - 1) 

for i~j 
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There is a mathematical solution for lack of independence. 

Dependent random variables may be transformed into orthogonal 

independent variables using the singular value decomposition theorem 

(Graybill 1969). It is accomplished by multiplying the vector of 

correlated residuals from a herd classification at time k by the 

inverse square root of its covariance matrix as predicted by the 

Kalman filter. This is conceptually similar to-- standardizing 

independent residuals by dividing them by their standard deviation 

(square root of their variance). 

There is no unique solution to the square root of a covariance 

matrix. There is an infinite number of possible matrices which 

satisfy the definition of a matrix square root (Graybill 1969). One 

class of square root solutions involves eigenvectors. The 

standardized eigenvectors commonly used in decomposing a covariance 

matrix do produce independent, identically distributed, standardized 

residuals. However, tpey also were observed to produce apparent 

anomalies. For example, the standardized residuals can be large and 

positive while the untransformed residuals are small and negative. 

These irregularities make it difficult to interpret patterns in the 

residuals. Such patterns can be useful in suggesting improvements to. 

assumptions used in the Kalman filter. 

This problem was solved by constraining the eigenvector solution 

so that the first two elements of the standardized vector of 

* independent, identically distributed residuals !k was proportional to 

the original, untransformed vector of innovation residuals !k+l as 

follows: 


