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Before being used in scientific investigations and policy described. The objective of this article is to elucidate these
fundamental structures. We describe the three basic com-decisions, thematic maps constructed from remotely sensed

data should be subjected to a statistically rigorous accu- ponents of an accuracy assessment, the sampling design,
the response design, and the estimation and analysis pro-racy assessment. The three basic components of an accu-

racy assessment are: 1) the sampling design used to select tocol, and we provide recommendations and general
guidelines for a statistically rigorous assessment.the reference sample; 2) the response design used to ob-

tain the reference land-cover classification for each sam- An accuracy assessment begins with the definition of
the target population, which is the area or region repre-pling unit; and 3) the estimation and analysis procedures.

We discuss options available for each of these compo- sented by the land-cover map. The individual units or
elements of this population are defined as pixels or poly-nents. A statistically rigorous assessment requires both a
gons, depending on the map representation. A sample ofprobability sampling design and statistically consistent
units is selected from this population for accuracy assess-estimators of accuracy parameters, along with a response
ment. Choosing the sampling unit and the sampling de-design determined in accordance with features of the
sign are two major decisions required when planning themapping and classification process such as the land-cover
sampling protocol. The reference or “true” classificationclassification scheme, minimum mapping unit, and spa-
is obtained for each sampling unit based on interpretingtial scale of the mapping. Elsevier Science Inc., 1998
aerial photography or videography, a ground visit, or a
combination of these sources. The methods used to de-
termine this reference classification are called the “re-INTRODUCTION
sponse design.” The response design includes procedures

Land-cover maps are used in numerous natural resource to collect information pertaining to the reference land-
applications to describe the spatial distribution and pattern cover determination, and rules for assigning one or more
of land-cover, to estimate areal extent of various cover reference classifications to each sampling unit. The land-
classes, or as input into habitat suitability models, land- cover classifications from the map are compared to the
cover change analyses, hydrological models, and risk analy- reference classifications, and the extent to which these
ses. Accuracy assessment quantifies data quality so that two classifications agree is defined as map accuracy.
map users may evaluate the utility of a thematic map for
their intended applications. Despite the widespread ac-

SELECTING THE REFERENCE SAMPLEceptance of accuracy assessment and the numerous arti-
cles published on this topic, the basic structures of a sta- In this section, we discuss details of the sampling design
tistically rigorous accuracy assessment have not been fully component of the assessment. The sampling design is the

protocol by which the reference sample units are selected.
A probability sampling design is a key element of a statisti-
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Frames a 1 ha areal sampling unit may encompass many pixels,
each having a different land-cover classification, or spanA sampling frame consists of “the materials or devices
portions of several different land-cover polygons.which delimit, identify, and allow access to the elements

The choice of sampling unit is not necessarily fixedof the target population” (Särndal et al., 1992, p. 9): the
by the map representation. For example, a polygon sam-two types are “list frames” and “area frames.” A list
pling unit may be employed for a pixel-based map repre-frame consists of a list of all sampling units, for example,
sentation, or a point sampling unit rather than a polygoneither pixels or mapped polygons, in the target region.
unit may be selected for use with a polygon-based mapThe sample is selected directly from this list of sampling
representation. The sampling unit must be defined priorunits. An area frame provides a map or description of
to specifying the sampling and response designs, and sev-the population boundaries. The sampling protocol used
eral sampling and response design options will be avail-with an area frame is based on first selecting a sample
able for any choice of sampling unit.of spatial locations, followed by associating a sampling

The distinction between the sampling unit and theunit with each sampled location. Thus the actual sam-
attribute or observation recorded on that sampling unitpling units, for example, polygons, are selected indirectly
is important. The sampling unit is just a location (point)via the intermediate step of the sample of point loca-
or area in space, whereas the observations taken on thetions. An explicit rule for associating a unique sampling
sampling unit are determined by the response design.unit with any spatial location within the area frame must
The sampling unit can be defined without specifyingbe established. For example, a rule for associating a
what will be observed on that unit; thus no assumptionunique polygon with a randomly selected point location
about homogeneity of land-cover for the sampling unit isis to sample that polygon within which the random point
necessary. It is possible to use features of the map orfell. This particular area frame sampling protocol illus-
ground to define the sampling unit. For example, land-trates that it is not necessary to delineate all polygons in
cover polygons displayed on the classified image may bethe population to obtain the sample. An area frame is
defined as sampling units. But these polygons simply de-preferable to a list frame when a systematic design is
termine the spatial boundary of the sampling unit, andplanned. For example, if the area frame is a map of all
the validity of the boundary does not require that thepixels, converting the map to a one-dimensional list
actual land cover within the polygon be homogeneous.frame of pixels would not only be unnecessary work, it
That any specified spatial region (e.g., 1 ha, 10 ha, or 1would lose much of the spatial structure important for
km2 plot) can be defined as the sampling unit illustratessystematic sampling. Area frames better retain the spatial
the independence of the sampling unit definition fromfeatures of the population.
the characteristics of the land cover that might be found
within that sampling unit.Sampling Units

The sampling unit (e.g., 0.1 ha pixel, 10 ha polygon, 1000
Point Sampling Unitsha circular plot) is the fundamental unit on which the

accuracy assessment is based; it is the link between a The distinction between point and areal sampling units
is that the statistical population associated with a pointspatial location on the map and the corresponding spatial

location on the earth. The response design is applied to sampling unit is viewed as continuous, rather than parti-
tioned into discrete spatial units such as pixels or poly-each sampling unit to obtain the reference land-cover

classification, and the comparison of the map and refer- gons. A continuous population perspective avoids the dif-
ficulty of interpreting the representation or support of anence classifications is conducted on the scale of a sampling

unit. For example, if a pixel is chosen as the sampling unit, individual pixel (Moisen et al., 1994). When the sampling
unit is a point, the reference land-cover classification isthe reference land-cover classification is obtained for each

pixel (as represented on the earth) and compared to the still determined via the response design protocol. The re-
sponse design may evaluate a spatial extent larger thancorresponding map pixel. If the sampling unit is a point,

the correspondence is between the classification pro- just the point location to obtain the reference classifica-
tion at that point, but the comparison of the map andvided by the map at that point, and the reference classifi-

cation associated with the same point location on the reference classifications remains on a per point (sampling
unit) basis. Point sampling units are usually selected fromearth.

The two types of sampling units are points and areal an area frame. Probability sampling concepts still apply to
point sampling, and designs such as unrestricted random,units. Points have no areal extent, whereas areal units pos-

sess two-dimensional spatial coverage. Pixels and polygons stratified random, and systematic sampling are available.
However, the continuous population perspective leads toare examples of areal sampling units that are directly asso-

ciated with mapped land-cover features. But an areal some different sampling issues from those encountered
in the finite population sampling framework in which ac-sampling unit can also be defined without reference to

land-cover features of the map or ground. For example, curacy assessment problems are usually treated. Some of
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the statistical details are reviewed by Stehman and Over- pling unit. The diversity of sampling units employed in
accuracy assessment is illustrated in Table 1. Because theton (1996), but we will not pursue those issues further in
sampling unit is not required to match the map repre-this article.
sentation of land cover, arguments about how to best rep-
resent land cover are peripheral to the choice of a sam-Areal Sampling Units
pling unit for accuracy assessment, although these issuesThe three primary areal sampling units are pixels, poly-
are still critical to the mapping effort itself (cf. Fisher,gons, and fixed-area plots. Each of these sampling units
1997). Accuracy assessment begins after a decision onpartitions the population into a finite number of discrete
the representation of land cover has been reached.units. Both pixels and polygons correspond to structures

The choice of sampling unit usually represents a com-used in geographic information systems to represent land
promise among various benefits and costs associated withcover, whereas our definition of fixed-area plots does not
each type of sampling unit. Janssen and van der Welrequire this correspondence. Pixels are defined by the
(1994, p. 422) and Franklin et al. (1991) advocate usingland-cover representation of the map itself, and are usu-
pixels as the basis of an accuracy assessment, the formerally uniform in shape and size. Pixels representing small
arguing that “remote sensing data should be considered toareas (e.g., 30 m pixel) are related to point sampling
be ‘point-sampled’ data, in which the points possess a cer-units, but because pixels still possess some areal extent,
tain spatial extent.” Janssen and van der Wel (1994) fur-they partition the mapped population into a finite,
ther state that individual pixels are the most appropriatethough large, number of sampling units. Larger pixels,
sampling unit for a pixel-based classification, but suggestsuch as the 1 km2 pixels of AVHRR, are more closely
“cluster-based sampling” when spatial smoothers haverelated to the fixed-area plot sampling units defined sub-
been applied, and when accessibility to terrain is poor.sequently than to point sampling units.

Homogeneous land-cover polygons (as identified onA polygon sampling unit is initially conceptualized as
the map) have an appealing convenient structure for thean area of homogeneous land cover displayed on the
sampling unit and a direct correspondence to the land-classified image (digital polygon), or identified on Earth
cover representation displayed by the map. A disadvan-from aerial photography or videography (photointerpre-
tage of using map polygons as sampling units is that theted polygon). Polygon sampling units are usually irregular
sampling units are now inseparably bound to a particularin shape and differ in size. Digital polygons may be orga-
map. If subsequently this map is updated, for example,nized into a list frame or maintained in an area frame
after a revised classification is developed to improve ac-representation, whereas, for practical reasons, photoin-
curacy, the original polygon sampling units are still validterpreted polygons are represented by an area frame. As
for the assessment, but they may no longer corresponddescribed in the subsection on “Frames,” the area frame
to land-cover polygons of the revised map. A similar is-representation of photointerpreted polygons requires de-
sue arises in a change detection accuracy assessment. Alineating only those polygons identified as part of the
mapped land-cover polygon used to define a samplingsample, and not all polygons in the population.
unit at one point in time may not exist at a later pointFixed-area plot sampling units are usually regular in
in time. Hierarchical land-cover classification schemesshape, and cover some predetermined areal extent. Ex- present a related problem when defining the sampling

amples of fixed-area plot sampling units include a maplet unit based on a map polygon. At which level in the clas-
(Stoms, 1996), defined as a high resolution map of a small sification hierarchy should the polygons be identified?
geographic area (Chrisman, 1991), a video frame, an aerial How is this sampling unit then used when assessing ac-
photograph, and a 1 ha plot. We distinguish fixed-area curacy at a different level of the classification scheme in
plots from pixels and polygons by not restricting the fixed- which the land-cover polygons differ from those identi-
area units to correspond to a land-cover structure of the fied at another level in the hierarchical scheme?
map such as a pixel or digital polygon, or to a land-cover Fixed-area plots defined independently of land-cover
structure identified on the earth such as a photointerpre- polygons retain their identity under map revisions and
ted polygon. Although in reality pixels and polygons are over time. The disadvantage is that these units do not
special cases of fixed-area plot sampling units, we distin- correspond directly to landcover polygons, either of the
guish these three types of areal units to focus more easily map or the ground. For example, a 1 ha areal sampling
on features of each. unit may include portions of several different land-cover

polygons, or contain several smaller polygons within the
Selecting the Sampling Unit sampling unit. The nonsite specific character of large
No consensus exists on which sampling unit is best, and fixed-area plots may result in an assessment that is too
it is unlikely that any one sampling unit is optimal for all coarse for some uses of the data, such as when the small-
applications. Differences in project objectives, character- scale spatial distribution of land cover is more important
istics of the landscape, features of the mapping process, to the objectives than regional estimates of land-cover

area proportions.and practical constraints guide the choice of the sam-
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Table 1. Sampling Units Employed or Recommended for Various Accuracy Assessment Projectsa

Project Sampling Unit

Bauer et al. (1994) 88-Acre unit (psu), pixel (ssu)
Cibula and Nyquist (1987) 333 pixel block
Clerke et al. (1996) 400 ha (psu), polygon (ssu)
Conese and Maselli (1992) Pixel
Congalton et al. (1993) Polygon (aerial photograph)
Dicks and Lo (1990) 5-Acre grid cell
Edwards et al. (1998) 1 ha plot within psu
Felix and Binney (1989) Polygon (map)
Fenstermaker (1991) 333 pixel block
Fiorella and Ripple (1993) Pixel
Fitzpatrick-Lins (1981) Point
Franklin et al. (1991) 333 pixel block
Fung and LeDrew (1988) Pixel
George (1986) Polygon (map)
Hord and Brooner (1976) 1-Acre plot
Knick et al. (1997) Pixel
Lauver and Whistler (1993) Polygon (grassland)
Martin (1989) 333 cluster for psu, individual pixel for ssu
Martin and Howarth (1989) 333 pixel block (psu), pixel (ssu)
McGwire et al. (1996) Pixel
Riley et al. (1997) Pixel
San Miguel-Ayanz and Biging (1996) 434 pixel block
San Miguel-Ayanz and Biging (1997) 434 pixel block for TM, 636 pixel block for SPOT
Senseman et al. (1995) Pixel
Stenback and Congalton (1990) 333 pixel block
Stoms (1996) Maplet
Todd et al. (1980) 939 cluster for psu, 333 pixel block for ssu
Vujakovic (1987) 232 pixel block
Walsh et al. (1987) 2.5- and 10-acre cells
Warren et al. (1990) Polygon
Wickware and Howarth (1981) Pixel
Zhu et al. (1996) 1 km2

Zhuang et al. (1995) Pixel

a psu5primary sampling unit; ssu5secondary sampling unit.

Confounding of classification and location error is a naturally occurring sampling units such as pixels or poly-
gons, we are neither obligated nor prevented from select-troublesome problem in accuracy assessment, and it is not
ing these units for the assessment. Choosing a samplingclear which sampling unit to choose on the basis of sensi-
unit may require considering issues such as location error,tivity to location error. To avoid location error, the refer-
minimum mapping unit, and how polygon boundaries willence sample is sometimes restricted to polygon interiors
be treated in the assessment. Because the sampling unitor to pixels within homogeneous blocks. In such cases,
is the ultimate basis for the comparison of the map andthe accuracy assessment represents a portion of the map,
reference classifications, whatever sampling unit is chosen,which can be a small proportion of the total area if most
it is essential that this choice be explicitly and clearlypolygons or pixel blocks of homogeneous land cover are
stated and acceptable to users of the thematic map.small. Restricting the assessment to homogeneous areas

is not a recommended strategy because of the optimistic
Sampling Designaccuracy results that typically arise (Hammond and Ver-

byla, 1996). Once boundaries and edges are included in The sampling design is the protocol by which sampling
the sample, location error seems equally problematic units are selected into the sample. Implementing a prob-
whether the sampling unit is a pixel, a polygon, or a larger ability sampling design contributes to a scientifically de-
area. Stehman and Czaplewski (1997) present some meth- fensible accuracy assessment, and Smith (1990) argues
ods for accommodating potential effects of location error for such designs because of their objectivity. Probability
in the analysis. sampling is defined in terms of inclusion probabilities,

In summary, the sampling unit is a structure that de- which represent the probability of including a particular
fines a specified point or area of space. The sampling unit sampling unit in the sample. Inclusion probabilities are
is a structure we impose in the specification of the sam- derived from the set of all possible samples that could
pling design, and it is not determined by the map repre- result from a sampling design protocol, so they represent

what we expect prior to choosing the actual referencesentation of land cover. Even if there are convenient or
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sample. Särndal et al. (1992, Section 2.4) review inclusion equal or optimal allocation usually leads to different in-
clusion probabilities for the sampling units in differentprobabilities in more detail. Probability sampling requires

that all inclusion probabilities be greater than zero, and strata. If polygons are sampled by selecting those polygons
in which randomly chosen point locations fall, larger poly-the inclusion probabilities must be known for those units

selected in the sample. If some sampling units have an gons have a higher probability of being “hit” by a random
point, and therefore have higher inclusion probabilities.inclusion probability of zero, the assessment does not

represent the entire target region of the map. Excluding Unequal inclusion probabilities create no difficulties as
long as they are known and accounted for in the estima-inaccessible areas or heterogeneous edges between poly-

gons is an example of assigning sampling units an inclu- tion formulas, but equal probability designs possess the
advantage of simpler analysis.sion probability of zero. Requiring the inclusion proba-

bilities to be known is necessary so that statistically valid Of the two basic selection protocols, simple random
and systematic, systematic is often easier to implement,(i.e., consistent) estimates can be computed.

Simple random, stratified random, cluster, and sys- particularly when an area frame is employed. Because
systematic sampling produces a spatially well-distributedtematic sampling are all probability sampling designs.

When using such designs in practice, the inclusion prob- sample, it usually results in better precision relative to
simple random sampling. The choice between simpleabilities do not have to be computed explicitly because

they are already taken into account in the standard esti- random or systematic sampling is also affected by the im-
portance of unbiased variance estimation to assessmentmation formulas. But if a new or nonstandard sampling

protocol is constructed, then the investigators must spec- objectives. Systematic designs, including stratified sys-
tematic unaligned sampling, do not permit unbiased esti-ify the inclusion probabilities. The inclusion probabilities

determine the weight attached to each sampling unit in mation of variance, and the true variance is usually over-
estimated from the sample data. It is critical to recognizethe estimation formulas, and if the inclusion probabilities

are unknown, so are the estimation weights. A good rule that the concern with systematic sampling is not unbi-
ased estimation of the accuracy parameters themselves,to apply when planning an accuracy assessment is that if

the sampling protocol cannot be identified as a standard but rather unbiased estimation of the uncertainty or
variability of these estimates (Stehman, 1992).probability sampling design and the project planners are

unable to specify the nonzero inclusion probabilities, the Stratification is a frequently employed design struc-
ture with geography and mapped land-cover class beingproposed design should be discarded.
two of the common stratification attributes. Geographic
stratification can be used to distribute sampling effortCOMPARISONS OF COMMON PROBABILITY evenly among administrative regions or ecoregions, or toSAMPLING DESIGNS sample accessible areas with higher probability than ex-
pensive, but low-priority, inaccessible regions. StratifyingBasic probability sampling designs are constructed from

simple random and systematic selection protocols, and by mapped land-cover classes may ensure that a speci-
fied sample size is obtained in each mapped class, in-structures imposed on the population such as strata and

clusters. Simple random and systematic selection protocols cluding those rare classes that would not be prevalent in
a simple random or systematic sample without stratifica-may be applied to a population with or without strata or

clusters. Within the class of stratified designs, stratified tion. A disadvantage of stratifying by mapped land-cover
class is that it locks the assessment into the map versionrandom sampling in which a simple random sample is ob-

tained in each stratum is most commonly employed. But a used to form the strata. If this map is subsequently re-
vised or the land-cover classification scheme changed,systematic selection protocol may be employed to sample

within strata, and it is even possible to have some strata the original strata are still valid, but they no longer corre-
spond to the land-cover classes of the revised map. Strat-sampled systematically and others sampled via simple

random sampling, all within the same stratified design. ifying by the mapped land-cover classes requires the map
to be available prior to selecting the sample, and thisThe class of cluster sampling designs includes simple

random or systematic selection of clusters, and also two- may cause a delay between when the imagery is obtained
and when the reference data are collected.stage cluster sampling in which the units within each sam-

pled cluster are themselves sampled. Systematic sampling Cluster sampling employs two sizes of sampling unit.
The clusters themselves are the primary sampling unitsusing a regular grid and stratified systematic unaligned

sampling are options within the class of systematic designs. (psu), and the units making up the cluster are the sec-
ondary sampling units (ssu). A variety of structures haveSimple random, systematic, stratified systematic un-

aligned sampling, and one-stage cluster sampling, with the been used to form clusters. Commonly the cluster is a
block of pixels, for example, a 333 or 535 block, butclusters selected via simple random or systematic sam-

pling, are all equal probability sampling designs. Stratified clusters may also be formed by grouping pixels in a lin-
ear arrangement (Edwards et al., 1998). Another form ofsampling with proportional allocation also results in equal

inclusion probabilities, but stratified sampling with either cluster sampling is to use “cluster plots.” In this ap-
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proach, the cluster consists of a centrally located ssu sur- plots) within each psu is obtained. If field visits are nec-
rounded by other secondary units arranged in some essary, then most of the travel effort is concentrated
specified pattern. For example, the center unit may be within the spatially limited area defined by each psu.
a 100 m2 plot, and four other 100 m2 plots in the cluster Two-stage cluster sampling may also be employed to di-
are located a specified distance from the central unit minish the variance inflation effect a high positive in-
along the four compass directions. The ssu’s are not con- tracluster correlation has on one-stage cluster sampling.
tiguous in this version of cluster sampling. Edwards et al. (1998) and Zhu et al. (1996) provide good

The ssu is the ultimate basis of the comparison be- examples of this design.
tween the map and reference classifications. That is, the
reference classification should be obtained for each ssu Nonprobability Sampling
(usually a pixel) within the psu (the cluster of pixels), and Unfortunately, examples of nonprobability sampling are
the comparison of the map and reference classifications common in accuracy assessment applications. Selecting
is then made for each ssu. This is not always the protocol reference locations by purposeful, convenient, or haphaz-
followed. For example, sometimes a block of homoge- ard procedures does not provide the structure to deter-
neous pixels is used as the selection unit, but only the mine the inclusion probabilities for each sampling unit.
center pixel is used for the assessment. Because the com- Such designs, therefore, are not probability samples. Pur-
parison of the map and reference classifications is based posefully selecting training data for a supervised classifi-
on only the center pixel, the sampling unit is in reality cation is a good example of a nonprobability sample.
just this center pixel, not the block of pixels, so the de- Such samples are acceptable for developing the land-
sign should not be considered cluster sampling. In other cover classification, but often have limited use for accu-
cases, the comparison of the reference and map classifi- racy assessment because the necessary probability foun-
cations is made at the spatial scale of the block of pixels, dation to permit generalization from the sample data to
not on per pixel agreement. That is, the majority land- accuracy of the full population is lacking.
cover class from a mapped 333 block of pixels may be Selecting the reference sample from conveniently
compared to a single reference classification combining in- accessible sites or available aerial photography suffers
formation over all nine reference pixels in the block. This from the same problem. It is virtually impossible to as-
is not truly a cluster sampling design because the sampling sert with any confidence that these convenient sourcesunit is not a pixel within a cluster, but rather the 333

of data have the same attributes as the entire region. Weblock of pixels. The map and reference comparison is not
may assume this to be the case, but this assumption can-on a per pixel basis, as is required to define a pixel sam-
not be scientifically defended. Readily accessible loca-pling unit, but on a per block basis, making the block the
tions or available aerial photography may represent asampling unit. Regarding the 333 pixel cluster as the sam-
valid subarea of the mapped region, but it is not statisti-pling unit would be appropriate if a 333 spatial smoother
cally justified to infer accuracy of the entire region fromhad been applied to the entire map.
this subset. Stratified probability sampling based on mapsCluster sampling is motivated by the potential reduc-
of accessibility zones can diminish the pragmatic prob-tion in the sampling cost per ssu (Moisen et al., 1994).
lems of inaccessibility without having to resort to non-For example, it is less expensive to sample all nine pixels
probability sampling and the associated problems withwithin a psu defined as 333 block than it is to sample
defending untestable assumptions.nine pixels located at random throughout the study area.

Nonprobability sampling also results from purposefulThe cost reduction achieved by cluster sampling must be
selection of flight lines for collecting reference data usingsufficiently large to compensate for the loss of information
videography. Even when a subsample of video frames isper sampling unit (ssu) attributable to the intracluster spa-
used for the actual reference data, if the original flighttial correlation among ssu’s. Moisen et al. (1994) provide
lines were not selected according to a probability sam-guidelines illustrating combinations of cluster size and in-
pling protocol, the design cannot be classified as a proba-tracluster correlation favorable to employing clusters in ac-
bility sample of the full region, although it may serve as acuracy assessment. A disadvantage of cluster sampling is
probability sample of the subregion covered by availablethat the standard error formulae are more complex than
videography. It is possible to obtain useful informationthose for simple random sampling because it is necessary
from nonprobability samples, but the limitations of suchto account for the lack of independence among the sec-
data should be recognized.ondary sampling units within a cluster (Czaplewski, 1994;

Stehman, 1997a).
Two-stage cluster sampling is often used to provide RESPONSE DESIGN

spatial control over the sample to reduce costs. In this
The response design is the protocol for determining thedesign, large psu’s, for example aerial photographs or
reference land-cover classification of a sampling unit.1:24,000 quad maps, are selected at the first stage of

sampling, and then a subsample of the ssu’s (e.g., 1 km2 Conceptually it is useful to separate the response design
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into two components, the evaluation protocol, which con- usually just be the polygon itself. For example, if the
sampling unit is defined by the boundary of a mappedsists of the procedures used to collect information contrib-

uting to the reference classification determination, and the land-cover polygon, this same boundary may define the
support region in the evaluation protocol. Whatever sup-labeling protocol, which assigns a land-cover classification

to the sampling unit based on the information obtained port region is specified, the eventual reference classifica-
tion applies to the sampling unit, not the spatial sup-from the evaluation protocol. The resulting reference clas-

sification must have high accuracy for a valid assessment port region.
Once the support region has been identified, numer-(Congalton, 1991). Congalton and Green (1993), Ham-

mond and Verbyla (1996), and Verbyla and Hammond ous options are available to determine the reference clas-
sification. In some cases, the evaluator may visually scan(1995) describe some of the difficulties inherent in ob-

taining accurate reference classifications. the support region and record qualitative observations
contributing to an eventual classification of the samplingWe emphasize again that the sampling unit serves as

the basic unit of comparison between the map classifica- unit. In other cases, the evaluation protocol may specify
recording species composition, canopy closure, or distri-tion and the reference classification. Although pixel and

polygon sampling units are often assumed to consist of a bution of tree sizes, or require other quantitative data
needed to distinguish among land-cover classes or tosingle land-cover class, this homogeneity of land-cover

within the sampling unit is an appealing, but not neces- characterize the land cover of the sampling unit. The
evaluation protocol should conform to the users’ conceptsary feature. The response design can accommodate sam-

pling units possessing homogeneous or heterogeneous of error-free classification; any compromises should be
agreeable to users.land cover. Because of the possibility that any areal sam-

pling unit, even a small pixel, may consist of more than The evaluation protocol may include sampling within
the areal unit. This subsampling within the response de-one land-cover type, assessments based on areal units are

always to some extent non-site-specific. The larger the sign contributes to the land-cover classification recorded
on a sampling unit, but it is not part of the structuresampling unit, the more the assessment takes on this non-

site-specific character. Merchant et al. (1993) present an required for the sampling design and analysis compo-
nents. Line transects, quadrats, or gridded point samplesexcellent discussion of issues related to non-site-specific

assessments, particularly as they apply to AVHRR pixels. are candidate response design sampling methods for esti-
mating quantitative characteristics that contribute to the
land-cover classification of a sampling unit. The responseEvaluation Protocol
design sampling also provides information on within-pixelThe first step in developing the response design is to
or within-polygon heterogeneity. This information maychoose the spatial support region on which the reference
be relevant to the subsequent labeling protocol, or toland-cover evaluation will be based. Atkinson and Curran
characterize heterogeneity within a particular land-cover(1995, p. 768) define spatial support as “the size, geome-
class. However, the primary objective of the response de-try and orientation of the space on which an observation
sign is to obtain information pertinent to identifying ais defined.” For example, if the sampling unit is a point,
reference land-cover label for each sampling unit.the evaluation need not be limited only to what the eval-
Ground data are sometimes collected for objectives otheruator observes at that point location. Rather, the evalua-
than land-cover determination. Curran and Williamsontion may be based on a more general landscape view en-
(1986), McGwire et al. (1993), and Steven (1987) discusscompassing a larger surrounding area, say 100 m2, 1 ha,
issues related to quantitative characterization of groundor 1 km2. The response design also includes specifying
plots for features such as reflectance ratios, green leafthe area and shape of the support region, both possibly
area index, and biomass.depending on the type of land cover. Linear features

such as utility corridors or stream riparian zones may be
Labeling Protocolevaluated differently from forest stands or agricultural

fields. The evaluation protocol may allow support regions The labeling protocol assigns the reference classification
(or classifications) to the sampling unit based on the in-from different sampling units to overlap.

A spatial support region defined for an areal sam- formation obtained from the evaluation protocol. At the
most basic level, the reference sampling unit is labeledpling unit may or may not be the areal unit itself. For

example, a 30 m pixel may be assigned a support region as one and only one land-cover class. This primary class
labeling suffers from the potential problem that a sam-of 1 ha, whereas a 1 km2 AVHRR pixel may be assigned

a support region matching the size of the pixel. Fisher pling unit may consist of several different land-cover
classes, or represent a transition or mixed class not easily(1997) discusses some of the difficulties in defining the

support area of a pixel, and these same issues apply to identified as a single cover type. Because it is not always
possible or desirable to label the sampling unit as a sin-both large and small pixels and fixed-area plot sampling

units. The spatial support of a polygon sampling unit will gle land-cover class, the labeling protocol may specify re-
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cording both a primary and secondary land-cover class In accuracy assessment, as is typical of most sampling in-
vestigations, the attributes measured on a sampling unit(cf. Edwards et al., 1998).
are decided by the subject matter specialists. Thus theSimilar concerns lead to the “fuzzy” classification ap-
response design requires input from scientists and ana-proach in which the evaluation protocol provides a quali-
lysts having a clear understanding of the land-cover clas-tative assessment of class membership for each possible
sification scheme being used in the mapping project. Be-land-cover category (Gopal and Woodcock, 1994). For
cause of the interpretive nature inherent in determiningexample, a linguistic scale employed in a fuzzy classifica-
land-cover classification, the response design may alsotion may range from “absolutely wrong” to “absolutely
require a reliability or quality control component to eval-right.” Once the fuzzy evaluation has been obtained, a
uate the repeatability and even the accuracy of the refer-labeling protocol must still be applied. Gopal and Wood-
ence land-cover classifications themselves.cock (1994) define RIGHT and MAX operators as two

The land-cover map is not always the final productoptions for assigning a label. The RIGHT operator as-
from the users’ perspectives. These maps are often inputsigns the label of any land-cover class that scored above
to predictive models within geographic information sys-a certain level in the fuzzy evaluation, so that it is possi-
tems. Accuracy assessment of model predictions is an-ble that several land-cover classes would be assigned to
other important objective: How well do model predic-a sampling unit. The MAX operator assigns the label of
tions based on mapped data agree with predictions basedthe land-cover class having the highest evaluation score.
on reference data? It is entirely possible that a map withThe information from a fuzzy evaluation protocol could
poor thematic accuracy can produce acceptably accuratealso be used to assign primary and secondary land-cover
model predictions if the model is not sensitive to theclasses to the sample units.
types of categorical confusion within the map. When fea-If the evaluation protocol generates quantitative
sible, the response design should also accommodate col-land-cover data, such as area proportions for each land-
lecting data necessary to evaluate important predictioncover class present in an areal sampling unit or spatial
models and other analyses in which users will incorpo-support region, a quantitative labeling protocol becomes
rate the land-cover mapping information. Map usersan option. That is, the reference classification for a sam-
must determine if the protocols for the reference classifi-pling unit may be a vector of area proportions, for exam-
cations conform to their needs. For example, if a user’sple, 0.2 Old Growth Forest, 0.3 Forest (not Old
intended analyses presume quantitative field protocols,Growth), and 0.5 Non-Forest. This protocol is one way
but qualitative field observations are used for the refer-the response design can be implemented to accommo-
ence protocol, then the accuracy assessment will notdate heterogeneity of land cover within a sampling unit.
present a relevant evaluation of data quality for that us-The information obtained from a quantitative labeling
er’s needs.protocol can also be summarized to provide primary and/

or secondary land-cover classes. For the example pro-
vided, the primary label would be Non-Forest, and the ANALYSIS AND ESTIMATION
secondary label would be Forest.

The analysis and estimation protocols applied to the ref-
erence sample data constitute the third main componentSelecting a Response Design
of an accuracy assessment. An error matrix (Table 2) ef-The response design is chosen depending on the proce-
fectively summarizes the key information obtained fromdure for assessing agreement (e.g., primary, fuzzy, or

quantitative), the sampling unit, and the information
needed to ascertain the reference land-cover classifica- Table 2. Population Error Matrix for a Land-Cover Scheme
tion. Features of the mapping process such as the classi- of q Classesa

fication scheme, minimum mapping unit, and spatial
Referencescale also influence the response design choice. Probabil-

1 2 … qity sampling may be employed within the response de-
1 p11 p12 … p1q p11sign itself to ensure objectivity, and to distinguish among

Map 2 p21 p22 … p2q p21land-cover classes defined by quantitative characteristics.
A A A … A ABut if the true land cover of the sampling unit can be
q pq1 pq2 … pqq pq1obtained better by nonprobability sampling methods,

then that option may be exercised in the response design p11 p12 … p1q

component. Because the response design addresses the a Notes: 1) pij is the proportion of area in mapped land-cover class i
fundamental question of how to characterize the land and reference land-cover class j; 2) pi15o

q

j51
pij is the proportion of area

cover of a parcel of ground, it is selected in adherence
mapped in land-cover class i; and 3) p1j5o

q

i51
pij is the true proportion ofwith prevailing conventions of land-cover classification

and the requirements of those using the thematic map. area in land-cover class j.
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the sampling and response designs. The error matrix rep- Pc5o
q

k51
pkk, (1)

resents a contingency table in which the diagonal entries
represent correct classifications, or agreement between which represents the probability that a randomly
the map and reference data, and the off-diagonal entries selected point location is classified correctly by
represent misclassifications, or lack of agreement be- the map.
tween the map and reference data. Typically, the error 2. User’s accuracy for land-cover class i, the condi-matrix summarizes results comparing the primary refer-

tional probability that a randomly selected pointence class label to the map land-cover class for the sam-
classified as category i by the map is classified aspling unit, and the results presented in this section focus
category i by the reference data,on this situation. However, error matrices can also be

constructed in which other labeling schemes are used in PUi5pii/pi1. (2)
the response design. For example, agreement could be

3. Producer’s accuracy for land-cover class j, the con-defined as a match between the map classification and
ditional probability that a randomly selected pointeither the primary or secondary class. Gopal and Wood-
classified as category j by the reference data iscock (1994) describe methods to summarize results for a
classified as category j by the map,fuzzy classification, and these methods are illustrated, for

example, in Knick et al. (1997). Zhu et al. (1996) demon- PAj5pjj/p1j. (3)
strate how a quantitative reference labeling scheme can

4. Probability of a commission error, which is thebe displayed and summarized.
conditional probability that a randomly selectedIn Table 2, the column labels represent the refer-
point classified as category i by the map is classi-ence classifications, and the row labels represent the map
fied as category k by the reference data,classifications. The cell proportions, pij form the basis of

the error matrix summary. These proportions may be de- pik/pi1. (4)
rived from pixel or polygon counts, or measurement of

5. Probability of an omission error, which is the con-areas, depending on the user’s preference. If the assess-
ditional probability that a randomly selected pointment is based on equal area pixels, then pij is the same
classified as category j by the reference data isfor counts and areas. A polygon-based assessment results
classified as category k by the map,in a difference between pij for polygon counts and pij for

polygon areas. For simplicity, our discussion will focus pkj/p1j. (5)
on pij as representing proportion of area, with pij inter-
preted as the proportion of area classified as land-cover Estimating Accuracy Parameters
category i by the map and category j by the reference

Obtaining p̂ij is the first step in the analysis protocol. The
data. The row sum, pi15o

q

k51
pik, is the proportion of area probability sampling character of the sampling design is

critical here because estimating p̂ij must incorporate themapped as land-cover class i, and the column sum,
known inclusion probabilities for the design used. For

p1j5o
q

k51
pkj, is the true proportion of area in land-cover example, for a simple random sample of n pixels from N

pixels in a map, p̂ij5nij /n, where nij is the number of ref-class j (q5number of land-cover classes). In practice, the
erence sample pixels classified as map category i and ref-pij must be estimated from the sample data. These esti-

mates p̂ij are then used to construct estimates of accu- erence category j. For a stratified random sample based
racy parameters. on the mapped land-cover classes as strata, p̂ij5(nij/

ni1)(Ni1/N), where ni1 and Ni1 are the sample and popu-
Accuracy Parameters lation sizes in stratum i. To estimate other accuracy pa-

rameters, p̂ij is substituted for pij in the formula for theVarious summary measures are derived from the error
matrix to describe accuracy. We focus on population pa- accuracy parameter. For example, substituting p̂ij for pij

rameters which represent well-defined probabilities of in the formula for producer’s accuracy,
either correct classifications or various misclassifications.
Numerous other accuracy parameters not directly inter- PAj5pjj/p1j5pjjYo

q

k51
pkj, (6)

pretable in this probability framework have been pro-
posed, but it is sometimes difficult to interpret how these

leads to the estimated producer’s accuracy,parameters are related to features of the actual map be-
ing assessed (Stehman, 1997b).

P̂Aj5p̂jj/p̂1j5p̂jjYo
q

k51
p̂kj. (7)A core set of accuracy parameters that can be inter-

preted as probabilities defined for the map being as-
sessed includes the following: Because it is easier to combine proportions properly to

estimate parameters of interest, we recommend re-1. Overall proportion of area correctly classified,
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porting the error matrix in terms of proportions (p̂ij) mates are provided, standard errors will be available only
if the sampling design is simple random sampling. Mostrather than counts (nij).
of the estimation formulas needed for accuracy assess-The estimation approach described results in consis-
ment can be programmed into standard spreadsheettent estimators of the parameters of interest (Särndal et
packages. Specialized software exists for estimating pa-al., 1992, Section 5.3; Stehman, 1995). An estimator is de-
rameters and standard errors for sampling designs morefined to be consistent if the estimator is the same as the
complex than simple random sampling [see Lepkowskipopulation parameter when the sample size is increased
and Bowles (1996) for a review], but this software mayto where it matches the population size (Cochran, 1977).
not be readily available or familiar to users. Williams andIn practical terms, consistency ensures that we are esti-
Beach (1995) have developed a general estimation pro-mating the targeted parameter of the population of inter-
gram specifically for accuracy assessment based on theest. Inconsistent estimators arise when the estimation for-
results reported in Czaplewski (1992; 1994; 1998).mulas do not match the sampling design, such as when

simple random sampling formulas are used with an
equally allocated stratified design. Normalizing an error GENERAL RECOMMENDATIONS
matrix also leads to inconsistent estimates. The motivation

Accuracy assessments typically have multiple users andfor normalizing an error matrix is to create a standardiza-
objectives leading to interest in a variety of accuracy pa-tion that allows for comparing error matrices. Rather than
rameters and subregions of the mapped area. In thosenormalizing, employing conditional probabilities based on
rare cases in which the accuracy assessment objectiveseither the row or column marginal proportions (pi1 or p1j)
are limited, specialized designs can be tailored to meetprovides a more interpretable and defensible standardiza-
these few objectives. For example, if the objective is totion. For example, probabilities conditioned on the row
evaluate contract compliance for image classification,marginal proportions represent user’s accuracy and com-
stratified sampling can be employed to provide adequatemission error probabilities; within each row, these condi-
sample sizes in each mapped land-cover class to deter-tional probabilities sum to 1, which may be viewed as a
mine if the map satisfies the contractual accuracy re-standardization eliminating differences among row mar-
quirement specified for each class. But most land-coverginal proportions. Similar characteristics exist for produc-
mapping programs have multiple users, as well as unspeci-er’s accuracy and omission error probabilities, which rep-
fied potential future applications and users. The need toresent probabilities conditioned on the column marginal
satisfy multiple objectives motivates selecting a simple,proportions.
general purpose sampling design. Simplicity is a key cri-Comparisons between two error matrices are readily
terion because simple designs are easier to implementaccomplished using the conditional probabilities repre-
properly in the field and to analyze, and they are moresented by the parameters (2)–(5) presented in the previ-
likely to provide adequate information for a broad varietyous subsection. Normalizing an error matrix may be
of objectives. Simple designs are also easier to under-viewed as an attempt to condition simultaneously on
stand, so the accuracy assessment data are more likely toboth row and column marginal proportions. It is difficult
be used correctly, even by future users who may not beto interpret what the probabilities resulting from such a
familiar with the planning and details of the design.simultaneous conditioning represent in terms of the real A disadvantage of a broadly adequate, simple design

population being assessed. Consequently, describing is that it will be less effective for any single objective
characteristics of the hypothetical population represented relative to a design tailored specifically for that objective.
by a normalized error matrix contributes little interpre- For example, if a rare class is critical to the success of a
tive value to the accuracy assessment. mapping project, a specialized, separate design can be

Variance estimation is an important feature of the added to augment the sample size in the rare class which
analysis component. For estimating each of the parame- will likely not be well represented in a simple, general
ters in Eqs. (2)–(5), a different variance estimator formula sampling design (Aronoff, 1982; Congalton, 1991; Ed-
arises for each different sampling design. We do not cata- wards et al., 1998; Fitzpatrick-Lins, 1981). The supple-
log these many variance estimator formulae here. Stehman mental sample should follow probability sampling proto-
(1995) outlines an approach to variance estimation in ac- cols, and if the augmented sample data are combined
curacy assessment, and the general estimation framework with the original sample, the combined-sample estima-
of Czaplewski (1994; 1998) provides a more detailed tors must still satisfy the consistency criterion. The de-
treatment of variance estimator formulae. tails for treating an augmented sample in a statistically

rigorous manner remain to be documented.
Statistical Software The high cost of obtaining reference data motivates
Most commonly available statistical software and spatial an attempt to increase efficiency, and consequently re-
analysis programs will not compute estimates for the pa- duce costs, by employing design structures such as clus-

ter plots and accessibility strata. What is less recognizedrameters of interest in accuracy assessment, or if esti-
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is that often the estimation part of the sampling strategy sampling design, response design, and estimation and
analysis protocols. A great deal of flexibility is availablecan be used to advantage to reduce variability while in-

curring little or no additional sampling cost. Poststratified in selecting among the options for each of these compo-
nents, and decisions should be based on the strengthsand regression estimators are examples in which addi-

tional sampling is not needed. Initially proposed by Card and weaknesses of each option to meet project objectives
and practical constraints.(1982) for application in accuracy assessment, poststrati-

fication can achieve modest reductions in standard error The sampling design should be a probability sam-
pling design to ensure a rigorous statistical foundation(3–10%, in most cases) for estimating Pc and producer’s

accuracies using information already available in the as- for inference. If a probability sample from the entire
map region is not feasible, then a probability samplesessment (Stehman, 1996b), the only added “cost” being

that associated with using a more complex estimator. Re- from some portion of the region is a better alternative
than foregoing probability sampling entirely. Deviationsgression estimation requires additional information, but

not necessarily additional field sampling, and gains in from probability sampling protocol are sometimes un-
avoidable because of practical constraints. When suchprecision are possible for less cost than would be re-

quired to obtain additional reference sample units (Steh- deviations occur, additional data quality information
should be presented to indicate how these deviationsman, 1996a). Gaining efficiency by employing more so-

phisticated estimators should routinely be considered as may affect the results of the accuracy assessment (Steh-
man and Czaplewski, 1997). Whatever sampling designa practical, cost-saving measure in accuracy assessment.

Czaplewski (1992; 1998) establishes a very general esti- is chosen, the selected sample units should be displayed
geographically so that the spatial distribution of the sam-mation framework based on a multivariate composite es-

timator for using auxiliary information to improve preci- ple is apparent for diagnostic and descriptive purposes.
In the planning and description of the sampling design,sion of accuracy estimates.

If a poor design is implemented, collecting new data it is also critical that the sampling unit and sampling de-
sign be clearly and correctly identified. This is unfortu-is prohibitively expensive, and sometimes impossible if

too much time has passed since the imagery was ob- nately rarely the case (Hammond and Verbyla, 1996).
Too often, ambiguous terminology such as sample “site”tained. Reanalyzing data, even long after the reference

sample has been collected, is relatively inexpensive. Flex- or sample “location” is used to describe the sampling
unit. The terms “representative” and “random” samplingibility afforded by the design for later reanalysis and

sample augmentation is thus a relevant design criterion. are often used, but these terms lack an agreed-upon, un-
ambiguous definition and should be discarded from theSimple designs are more amenable to more complex

analysis techniques such as regression and poststratified lexicon of accuracy assessment. The more rigorous, well-
defined classification of designs as probability and non-estimators and to design modifications such as supple-

menting the sample for rare classes. probability sampling designs should be adopted.
The analysis should focus on accuracy parametersAlthough practical considerations play a prominent

role in accuracy assessment planning, these considera- that represent probabilities of encountering certain kinds
of misclassification errors or correct classifications char-tions should not lead to use of inefficient or incorrect

sampling designs and analyses. Practical limitations do acteristic of the mapped region of interest. Parameters
such as kappa, tau, and other summary measures thatdetermine what realistically can be expected of statistical

methods, and this should focus accuracy assessment cannot be interpreted in this framework should be used
with caution (Stehman, 1997b). The populations of inter-planning on the priority objectives of the mapping proj-

ect. If all objectives cannot be addressed well, the sam- est in accuracy assessment are real, tangible entities, so
the parameters estimated should be characteristics ofpling strategy must be constructed so that critical issues

are addressed adequately. Secondary objectives may, by these real populations. This is ensured by adhering to the
criterion of consistency for the estimators employed innecessity, not receive adequate sampling resources. A

practical accuracy assessment sampling strategy often the assessment, and by focusing on the parameters de-
scribed in the Analysis and Estimation section. Becauserepresents a compromise, with the overall design goal

being adequacy for all critical objectives, not optimality estimates from a normalized error matrix violate the con-
sistency criterion, we discourage users from normalizingfor any single objective.
error matrices prior to estimating accuracy parameters.

If the decision is made that a land-cover mappingSUMMARY project will be accompanied by a statistically defensible
accuracy assessment, a price must be paid to attain theIf scientifically sound management and policy decisions

are to incorporate information available from land-cover statistical support desired for this assessment. While it is
certainly more convenient to use available data or to re-maps, these maps should be accompanied by a statisti-

cally rigorous, defensible accuracy assessment. The pri- strict samples to readily accessible locations or sources,
if the protocols of probability sampling and consistent es-mary components of the accuracy assessment are the
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