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INTRODUCTION 

Consider the following example of an accuracy assessment. Landsat data are used to 
build a thematic map of land cover for a multicounty region. The map classifier (e.g., a 
supervised classification algorithm) assigns each pixel into one category of land cover. The 
classification system includes 12 different types of for~st and land cover: black spruce, 
balsam fir;' white-cedar, other softwoods, aspen, birch, other hardwoods, urban, wetland, 
water, pasture, and agriculture. The accuracy of the map must be known by a user of the 
map to conduct credible analyses. 

In concept, each and every pixel can be classified with two separate classifiers: (1) the 
map classifier, and (2) a field crew. I consider the classification by the field crew to be 
"error-free" because it is treated as the "true" classification by the user of the map. An 
accuracy assessment compares the agreement of these two classifiers for the entire the­
matic map. First, I will discuss the "true" error-matrix, in which each and every pixel in the 
map is classified by classifiers (1) and (2). Then, I will discuss an estimate of the true 
error-matrix based on a sample of pixels. 

The True Error-Matrix 

The accuracy assessment in this example uses a 12 by 12 contingency table, called an 
"error-matrix" in remote sensing terminology (Congalton, 1991). By convention, each col­
umn of the error-matrix represents one if the 12 categories on the map, and each row of the 
error-matrix represents one of the 12 categories determined by the field crew. Each of the 
144 cells of the error-matrix represents the proportion of all pixels in the map that are cross­
classified into the corresponding column (i.e., map categories) and row (i.e., true catego­
ries). The diagonal of the error-matrix represents the proportion of all pixels for which 
there is agreement between the map and error-free classifiers, i.e., correct classifications. 
Scalar statistics, such as kappa and the total proportion of correctly classified pixels, con-
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80 Accuracy Assessments and Areal Estimates 

cis ely describe the degree of overall agreement between the two classifiers as represented 
by the 144 cells in this error-matrix. 

The total proportion of pixels classified as a certain category in the map equals the sum 
of the 12 cells within the corresponding column of this error-matrix. The column margin of 
the error-matrix represents the total proportion of pixels in each category within the the­
mati~ map, which corresponds to area statistics that would be produced from this map by a 
geographic information system. Therow margin represents the total proportion of pixels in 
each category as determined by the error-free classifier (i.e., classifications made by field 
crew). The difference between the proportions in the row and column margins is called 
misclassification bias (Czaplewski, 1992a). Thematic maps often overestimate the areal 
extent of rare categories. 

The Estimated Error-Matrix 

Although it is practical for the map classifier to assign each and every pixel in the entire 
map into one of the 12 thematic categories, it is generally impractical for a field crew to 
classify every pixel. Therefore, the accuracy assessment requires a sample of pixels that are 
cross-classified by both the map classifier and the error-free classifier. A proper probability 
sample is sufficient to estimate the error-matrix and make inferences about the true 
error-matrix. As the sample size increases, the estimated error-matrix will more closely 
match the truc error-matrix. 

Simple random sampling of individual pixels is the simplest statistical design for esti­
mation of the error-matrix, and most commercial statistical software can produce valid 
estimates with this design. However, simple random sampling is usually among the most 
expensive approaches. More complex sampling designs can reduce ·costs. 

Travel costs for the field crew can be reduced by seJecting clusters of pixels that are near 
each other. Assuming spatial autocorrelation of classification errors, pixels within the same 
cluster can no longer be considered independent. Most commercial software systems are 
not designed to correctly estimate an error-matrix with cluster plots. 

The cost of reference data can be further reduced by photo-interpretation or reference 
sites, and classifying a small subset of those sites by field crews. However, photo-interpre­
tation is subject to classification errors, which confounds the assessments of map accuracy 
(Congalton and Green, 1993). For many years, forest inventories have used double-sam­
pling methods to improve efficiencies offield surveys with photo-interpretation. However, 
these univariate methods are insufficient to estimate many of the accuracy assessment sta­
tistics that are derived from transformations of cells in a multivariate error-matrix. 

The following section derives a multivariate estimator for the error-matrix that can ac­
commodate double sampling with cluster plots. Poststratification treats all those pixels 
classified as a single mapped category as a stratum. The independence among strata im­
proves efficiency. If statistical estimators designed for simple random sampling are applied 
to reference data from this complex sampling design, then the assessment will be biased 
and can easily lead to false conclusions (Stehman-and Czaplewski, 1998). The objective is 
to present rigorous derivation of statistical methods for implementation by statisticians 
who serve users of spatial data. Also, we have implemented these same methods in user­
friendly software that we call ACAS (ACcuracy ASsessment software), 
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METHODS 

This section will describe the estimation problem using formal statistical terminolpgy 
and notation. Next, subpopulations and parameter matrices are defined .. Then, I present 
multivariate sample-survey estimators that use homogeneous sample units, such as inde­
pendent pixels. These estimators are generalized to deal with clusters of sample units. Next, 
I introduce the multivariate composite estimator, which I use to combine two independent 
vector estimates: (1) the estimate from the Phase-1 sample, which includes the imperfect 
(photo-interpreted) reference classifications, but does not include the error-free classifica­
tions (field crew); and (2) the estimate from Phase-2, which includes both field classifica­
tions and photo-interpreted classifications. The combination of these two independent 
estimates produces an estimated error-matrix that uses field classifications as the definition 
of truth, while using photo-interpreted data to improve efficiency. Then, I present methods 
to estimate the margin of this error-matrix, which provides unbiased and consistent esti­
mates of areal extent for each thematic category. Finally, I present multivariate methods 
that transform this error-matrix into accuracy assessment statistics, such as kappa statistics 
and total proportion of correct classifications. I also derive variance estimat?rs for these 
statistics. 

Description of the Statistical Problem 

Consider a thematic map that is comprised of many map units (e.g., pixels or polygons), 
each of which is imperfectly classified into one of k mutually exclusive categories of land 
cover by an inexpensive, but fallible, classifier (e.g., remotely sensed data). An "error-free" 
reference .-~las~ifier determines the true category for a pr-obability sample o( map units or 
control points (Arbia, 1993). This sample serves as the basis of statistical inference to 
assess the entire map. 

A kxk contingency table is the basis for most accuracy assessments. The rows represent 
. "error-free" reference classifications, and the columns will represent the imperfect classifi­
cations on the map. The ijth element of the contingency table is the estimated joint prob­
ability that any map unit is labeled as category j on the map and is truly category l. 

An assessment of classification accuracy utilizes various scalar statistics computed from 
this contingency table, as reviewed by Bishop et al. (1975), Fleiss (1981), and Congaiton 
(1991). The total probability of correct classification is the sum of the diagonal elements of 
the contingency table. Conditional probabilities of correct classification (e.g., accuracy 
given that the mapped or error-free classification is a certain category) are the joint prob­
abilities on the diagonal divided by their corresponding row or column marginal probabil­
ity (Agresti, 1990, p. 9; Green et al., 1993). Weighted, unweighted, and conditional kappa 
statistics are additional assessment statistics that help (Czaplewski, 1994). One margin of 
this contingency table provides unbiased estimates of areal extent (Van Deusen, 1994), 
expressed as proportions of the population. The other margin corresponds to the census, or 
complete enumeration, of map units, all of which are categorized with the map classifier. 

Classifications in the field are typically considered "error-free" reference data. How­
-ever, field observations are expensive. Photo-interpretation is a less expensive source of 
reference data, but photo-interpretation errors confound the assessment (Congalton and 
Green, 1993). The combination of photo-interpretations with field classifications can im-
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prove ·precision of the assessment statistics and areal estimates using multivariate two­
phase sampling. 

A thematic map represents a census of all map units, each of which is classified with the 
map classifier. The kx 1 column margin of the kxk contingency table can be fixed as a 
vector of known constants from the census. This reduces the uncertainty in estimates of the 
I? elements within the contingency table and the k elements of the row margin, which 
correspond to the estimated true proportion of each category. 

Czaplewski (1992b) suggested the multivariate composite estimator to produce the de­
sired kxk contingency table. This uses methods from stochastic processes (Maybeck, 1979, 
p. 26). The composite estimator combines vector sample estimates from both the Phase-1 
photointerpreted sample and the Phase-2 field samples, and fixes one margin of the contin­
gency table through the census of map units and their classifications on the map. Williamson 
and Haber (1994) review many closely related problems with cross-classified data, but 
none of the multiple-sample approaches consider margins fixed through a census. The ef­
fect of such complex designs can be substantial on tests of hypothesis and estimated confi­
dence intervals (Holt et ai., 1980;Rao and Thomas, 1989). 

An imperfect but inexpensive map classifier (e.g., digital classification ofrem~tely sensed 
imagery) assigns a map unit (e.g., a 0.5-ha plot or a 0.1-ha map pixel) to one and only one 
of k mutually exclusive categories, where k typically ranges between 2 and 30 categories. 
The population consists of all N map units on the thematic map, where N is known exactly. 
The true category for any map unit could be determined with an expensive, error-free refer­
ence classifier (e.g., field data) that uses the same k categories as the map classifier. An 
assessment of the accuracy of the map classifier requires the kxk contingency table Z. The 
ijth element of Z is the joint probability that any map unit, in the population is classified as 
category Ion the map and is tru!y category I. -

An imperfect classifier (e.g., manual interpretation of aerial photographs) is also avail­
able. This imperfect reference classifier will not always agree with the error-free reference 
classifier. This imperfect reference classifier uses ky different categories, which can differ 
from the k categories used by the map and error-free reference classifiers. 

The inexpensive map classifier is applied to all N map units in the population or thematic 
map (e.g., N equals 106 to 108 units). The expensive, but imperfect, reference classifier C'an 
be applied to a small sample of map units (e.g., ny equals 103 to 104 units). The more 
expensive, error-free reference classifier is applied to an even smaller sample of map units 
(e.g., nx equals 102 to 103 units). 

The reference data consist of two independent probability samples of map units within 
the same subpopulation (defined in the next section). The first sample uses map units that 
are categorized with both the imperfect reference classifier and the map classifier, which is 
analogous to a first-phase sample. The second sample, which uses the same type of map 
units, is categorized with all three classifiers: the map, the imperfect reference, and the 
error-free reference classifiers. This is analogous to a second-phase sample. Each primary 
sample unit can be an individual map unit, or a cluster of map units. Assume' there is 
negligible locational error (registration error) in location of a map unit in the field (Arbia, 
1993, p. 343). The multivariate composite estimator, which is presented in a following 
section, combines these two samples into a single, more efficient multivariate estimate of 
the contingency table. 
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Definitions: Subpopulations and Parameter Matrices 
, 

Since the map classification is known for each map unit, the entire population of N map 
units can be segregated into k subpopulations. The map classification, denoted as category 
m, is the same for all map units in subpopulation M = m. The number of map units in each 
sub population (NM=m) is known exactly. Later, independent estimates of k conditional clas­
sification probabilities will be made separately for each of the k subpopulations, then trans­
formed and merged into the required kxk contingency table. 

Let zM=m be a kx 1 parameter vector for the subpopulation of map units that are assigned 
to category m by the map classifier. The ith element of zM=m equals the proportion of map 
units in this subpopulation that the error-free reference classifier would assign to category 
1. The sum of all elements in zM=m is exactly 1, and all elements occur in the interval 
between 0 and 1. The mth column of the kxk contingency table Z equals zM=m times the 
prevalence of the mth subpopulation in the total population: 

Z [ ( NM=l) (NM=m) (NM=k)] = zM=l ~ ... zM=m -N-- ... zM=k ~ (1) 

Next, let YM=m be a kyx1 parameter vector for the subpopulation that the map classifier 
assigned to category m. The ith element of YM=m equals the proportion of all NM=m map units 
in subpopulation M = m that are assigned to category 1, I E {I, ,ky }, by the imperfect 
reference classifier. The sum of all elements of YM=m equals exactly 1. Furthermore, let the 
kyxl measurement vector yp represent the classification outcome for an individual map 
unit, denoted by subscript p; if t~e imperfect reference classifier ~signs the pth map unit to 
category -f,' then the ith element of y p equals 1 and all other elements equal 0 ~ 

Finally, let XM=m be a kxky parameter matrix for subpopulation M = m. The ijth element 
of XM=m is the proportion of map units in this subpopulation that the error-free reference 
classifier would assign to category I and the imperfect reference classifier would assign to 
category j. Using the notation of Molina (1989) and Christensen (1991, p. 3), define the Vee 
as the vectorization operator that stacks columns of a matrix. Let xM=m = Vee(XM=m), wqere 
xM=m is the equivalent (kky)x1 vector that contains the same pa;ameters as XM=m' Rear­
rangement of the kxky matrix (XM=m) into a (k!y)xl stacked vector (xM=m) facilitates com­
putation of the (kky)x(kky) covariance matrix VXM=m for the estimate of xM=m' In addition, 
let the (kk)xl measurement vector xp represent the joint classification of a single map unit 
p. If the error-free reference classifier assigns the pth map unit to category I and the imper­
fect reference classifier assigns it to category j, then the [(l-l)k+j]th element of xp equals 1, 
and all other elements equal O. 

Subpopulation vectors zM=m and YM=m are linear transformations of xM=m: 

YM=rn = Hy xM=m (2) 

(3) 
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Hy and Hz are appropriately structured matrices of zeros and ones, examples of which 
follow. ~y has dimensions kyx(kky), and Hz has dimensions kx(kky). These transformations 
will be exploited by the multivariate composite estimator in a following section. 

The following is a simple example. The map and error-free reference classifiers assign 
map units into k = 3 categories: forest (F), nonforest (N), and water (W). The imperfect 
reference classifier uses ky = two categories: vegetated (V) and barren (B). Let' (XM=m)ij 
represent 'the ijth element of matrix XM=m; for example, (XM=N)FV is the proportion of map 
units in the subpopulation assigned to the nonforest (N) category by the map classifier that 
would be classified as forest (F) by the error-free reference classifier and vegetated (V) by 
the imperfect reference classifier. In this example, 
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Assume that the pth map unit is classified as nonforest (N) by the map classifier, barren 
by the imperfect reference classifier (B), and water by the error-free classifier (W). Then 
this map unit is a member of subpopulation M = N, and its measurement vectors are: . 

o 
o 
o 

Yp = [~] xp = 0 

Estimates from Homogeneous Sample Units 

o 
1 

(7) 

First, consider a simple random sample that has a fixed sample size of fly I M.=m map units 
from subpopulation M = m. Let Sy I M=m represent the set of fly I M=m subscripts (P) for the 
map units in this sample. Each map unit in this sample was classified with the map classi­
fier to determine its subpopulation, and with the imperfect reference classifier (e.g., 
photo-interpretation). From the previous section, vector YM=m contains the proportions of 
map units in this subpopulation that would be classified into each of ky categories by the 
imperfect reference classifier, and measurement vector Yp contains the results of the imper­
fect reference classifier for the pth map unit (e.g., Equation 7). The vector sample mean 
provides-an efficient and asymptotically unbiased estimate of YM=m in Equation 2: 

YM=m = 1 [ L ypJ = YM=m + eylM=m 
llylM=m pEsylM=m 

(8) 

where ey I M=m is the kyxl vector of random sampling errors, and E[ ey I M=m] = 0 for a large 
ny I M=m' Equation 8 can be biased for small ny I M=m because zero elements are treated as 
structural zeros even though they might be sampling zeros (Bishop et al., 1975, Chapters 5 
and 12); a structural zero has a probability exactly equal to zero, while a sampling zero 
element represents a rare event that was not observed in the sample (Bishop et al., 1975, p. 
177). Assuming sampling with replacement, the multinomial distribution provides an esti­
mated covariance matrix for these sampling errors (E[ ey I M=me~ I M=m] = V y I M=m): 

= 
Diag(YM=m) - YM=mYM=m 

(9) 

-where Diag(y M=m) is the kyxky matrix with vector y M=m on the diagonal and all other ele­
ments equal zero (Agresti 1990, p. 423). Sincethe sampling fraction is usually small for 
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thematic maps (ny I M=ml NM=m < 0.01), the multinomial distribution will often be a reason­
able approximation for sampling without replacement. 

A second, independent sample of nx I M=m map units is taken from the same SUbpoplila­
tion (M = m). Sx I M=m is the set of subscripts (P) for the map units in this second sample. In 
addition to being classified by the map classifier and the imperfect reference classifier, 
each map unit in this sample is also classified with the error-free classifier, and the results 
are represented by measurement vector xp (e.g., Equation 7). This provides a sample esti­
mat~ of xM=m and its multinomial covariance matrix for sampling errors: 

XM=m = ~ n xp L.J = xM=m + exiM=m 
peSl\IM=m xlM=m 

Diag(xM=m) - XM=mxM=m 

nYIM=m 

(10) 

(11) 

It is assumed with the multivariate composite estimator that the sampling errors' ey I M=m and 
ex I M=m are independent. 

Estimates from Clusters of Sample Units 

Now consider a cluster of map units as the primary sample unit. Let subscript c denote 
the cth cluster, and Sc I M=m represent the set of Nc I M=m sub~cripts for those map units (P) that 
make up -Gluster plot c and are members of subpopulation M = ·m. A map nnit can be a 
member of only one cJuster, but more than one subpopulation may occur in a single cluster. 
The measurement vectors for the cth cluster are: 

Yc = ~ Yp 
L.; N _ 

peSclM=m elM-m 
(12) 

(13) 

The ith element of y c equals the proportion of category I in the cth cluster, and the sum of all 
elements in Yc equals 1. The [(l-l)k+j]th element of Xc equals the proportion of the cth 
cluster that is assigned to category I by the error-free reference classifier and category j by 
the imperfect reference classifier. 

The sample mean vectors remain efficient and asymptotically unbiased estimates of y 
and x: 
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L Yc 
YM=m = n _ 

CESy\M=m YIM-m 
= Y M=m + eylM=m (14) 

L Xc 
xM=m n _ 

CESx\M=m xlM-m 
= X M=m + exlM=m (15) 

where Sy I M=m represents the set of subscripts for the sample of ny I M=m clusters in subpopu­
lation M = m that are measured with the imperfect reference classifier alone, and Sx I M=m 

represents the set of subscripts for sample of the nx I M=m clusters in the same subpopulation 
that are measured with both the imperfect and error-free reference classifiers. However, the 
multinomial distribution (Equations 9 and 11) should not be used for the sampling error 
covariance matrices V y and V x because sampling errors for map units within ,the same 
cluster are not likely to be independent. The sample covariance matrix, which is an asymp­
totically unbiased moment estimator, is an alternative: 

(16) 

(17) 

Multivariate Composite Estimator 

The multivariate composite estimator (Maybeck, 1979, p. 217) combines independent 
vector estimates Y M=m (Equations 8 or 14) and XM=m (Equations 10 or 15) into a more 
efficient (kky) x 1 vector estimate x M=mly,x for subpopulation M = m: 

(18) 

where I is the (kJs,)x(kky) identity matrix, Hy is given in Equations} and 5, and KM=m is 
defined below. The covariance matrix for this composite estimate (VxIM=m,y,x) is: 

(20) 

" " 
Covariance matrices VxlM=m and VYIM=m are given in Equations 11 and 17, and 9 and 16, 

. respectively. Equation 19, which is called the "Joseph form" in the Kalman filter, is more 
numerically reliable than the equivalent expression in Equation 20 (Maybeck, 1979,. p. 
237). 
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KM=m in Equations 18, 19, and 20 is a (kky)xky matrix that places optimal weight on each 
element of the two vector estimates in Equation 18 using the minimum variance criterion. 
KM=m is termed the gain matrix in the Kalman filter. It is analogous to the weight in the 
univariate composite estimator (e.g., see Green and Strawderman, 1986.; Gregoire and 
Walters, 1988), which is inversely proportional to the variances of two a priori scalar esti­
mates. The gain matrix KM=m for this subpopulation is: 

(21) 

The bracketed term in Equation 21 is a singular covariance matrix. Therefore, Equation 21 
uses the generalized inverse for a symmetric matrix (Graybill, 1969, pp. 113-115). 

The (kky)x1 composite estimate xM=mly,x for subpopulation "1 = m (Equation 18) is the 
basis for the mth column in the estimated kxk contingency table Z, and is related to the kx 1 
vector zM=m(NM=mlN) in Equation 1. Estimate ZM=m is a vector of proportions that sums to 
exactly 1, and it represents the estimated conditional probabilities of a map unit being 
assigned to anyone of the k categories by the error-free reference classifier, g~yen that the 
map unit is assigned to category m by the map classifier. ZM=m is a linear transfonnation of 
xM=mly,x (Equations 3 and 6), with its corresponding kxk covariance matrix VzIM=m: 

(22) 

(23) 

The multivariate composite estimator (Equations 18 to 23) is applied k different times, 
once for each map category m; th"en, vector estimates ZM=m are concatenated to form the 
estimated kxk contingency table Z (Equation 1). 

Let VecCl) be the 12xl vectorized version of Z: 

ZM=l (N M=l I N) 

Vec(Z) = zM=m (N M=m IN) 
(24) 

ZM=k (N M=k I N) 

Assume that sampling errors for each subpopulation M = m are independent of the sam­
pling errors for all ot~er subpopulations by design. In this case~ the estimation errQr covari­
ance matrix for Vec(Z) is the 12xk?- matrix with submatrices VzIM=m (Equation 23) on the 
diagonal, and all other elements equal 0: 
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This covariance matrix will be used to estimate standard errors of statistics that are func­
tions of the estimated contingency table Z. 

The multivariate compositE- estimator cannot always be used to estimate ZM=m for sub­
population M = m (Equations 18, 22, and 24). If the error-free classifier assigns all sample 
units in this subpopulation to only one category, say I, then the ith element of ZM=m equals 
exactly 1, and VxlM=m = O. Alternatively, the sample estimate YM=m might not exist for this 
subpopulation; the association between the imperfect and error-free classific~tions might 
be very poor; or the imperfect classifier might assign all sample units in this sUbpopulation. 
to only one category. If these situations occur, and the sample estimate with the error-free 
reference classifications (Equations 10 or 15) exists for this subpopulation, then Equations 
22 and" 23 for the composite estimator can be replaced by ZM=m = Hz XM=m and VzIM=m 
= Hz VxlM=m H'z (see Equations 10, 11, 15, and 17), and used in Equations 24 and 25 to 
estimate the mth column of the contingency table. (This approach also satisfies situations in 
which Y M=m does not exist by design because the imperf~ct reference classifier is omitted. 
This pernfits estimation of the c-ontingency table with heterogeneous cluster plots rather 
than the typical homogeneous plots, which are classified into one and only one category by 
each classifier.) If the sample estimate XM=m does not exist, then no estimate for subpopu­
lation M = m is possible, and the mth column of the contingency table will be missing. 

The multivariate composite estimator is vulnerable to numerical errors. This problem is 
common whenever random errors for one vector estimate are much greater than random 
errors for another, e.g., det(Hy VxlM=m H'y) » det(VyIM=m), which can occur when sample 
sizes nxlM=m and nxlM=m are very different in Equations 8 to 17. Results should always be 
scrutinized for symptoms of numerical problems, such as: vectors of estimated proportions 
that do not sum to 1; corresponding covariance matrices that do not sum to 0; negative 
elements on the diagonal of any covariance matrix; or asymmetric covariance matrices. 
Solutions include the following: 

07congalton.p65 

• All computational routines (e.g., generalized inverse) should use maximal numerical 
precision and be robust "to numerical problems. 

• The "Joseph form" for VxIM=m,y,x in Equation 19 should be used rather than Equation 
20 because the former is better conditioned and more numerically reliable (Maybeck, 
1979, p. 237). 

• Matrix dimensions can be reduced by eliminating rows of zeros and their correspond­
ing columns in (Hy VxlM=mH'y + VyIM=m) in Equation 21, although this requires careful 
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bookkeeping in order to expand the resulting composite estimate (xM=mly,x in Equation 
18).back to the original structure of xM=m. 

• Composite estimation algorithms that use square roots of the covariance matrices often 
solve stubborn numerical problems (Maybeck, 1979, pp. 377-391). 

Validation methods are especially important in composite estimation with remotely sensed 
data, where logistic and technological difficulties often breed subtle procedural aberra­
tions. Maybeck (1979, p. 229) shows that the vector of residual differences (HyXM=m -
YM=m) has an expected covariance matrix (Hy VxlM=m H'y + VyIM=m)' Each element of this 
residual vector for each subpopulation m should be tested for bias, assuming the estimation 
errors are normally distributed withzero mean and variance on the diagonal of the esti­
mated covariance matrix. Several suspiciously large residuals indicate potential procedural 
errors. However, off-diagonal elements of the covariance matrix are not necessarily zero, 
and these separate tests are not mutually independent for the same subpopulation. There­
fore, multiple residuals for a subpopulation can be standardized so that they are expected to 
be independent and identically distributed. First, the dimensions of the residual vector and 
its covariance matrix are reduced to achieve full rank, then standardized residuals (rM=m) 
are computed with the Cholesky square root of its covariance matrix: ., 

(26) 

where E(rM=m] = 0 and E(rM=mr'M=m] = I. If all sampling and estimation assumptions are 
valid, the.I!,the_ standardized residuals from all subpopulations can be pooled, and their 
pooled mean and variance have expected values of 0 and 1, respectively. These expecta­
tions are validated with a i-test for 0 mean with variance 1, and a X2 test for variance equal 
to 1 (see Hoel, 1984, pp. 140-143, 281-284, 298-300). If the validation tests cast doubt 
upon these expectations, then possible procedural problems should be investigated. 

Estimates of Areal Extent 

Environmental evaluations and forecasting models often require statistical tabulation of 
the area occupied by each cover category. These areal estimates are available through enu­
meration of map units that are classified into the k categories by the imperfect map classi­
fier. However, misclassification can make this enumeration a biased estimate of the true 
areal extent, especially for rare cover types (Czaplewski, 1992a). Czaplewski and Catts 
(1992) and Walsh and Burk (1993) reviewed the literature that considers calibration for 
misclassification bias. However, they did not discuss unbiased areal estimates that use the 
row margin of the estimated contingency table Z (Equation 24). The ijth element of Z, 
denoted by Zjj' is the proportion of map units in the populatio"n that are classified as cat­
egory j by. the map classifier and truly are category I; therefore, the proportion of map units 
that are truly category I (pj) equals: 
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To estimate the true areal extent of each category in the absence of misclassification, the 
estimated contingency table (Z) is substituted for the unknown true matrix in Equation 27, 
which provides an asymptotically unbiased estimator (Molina C., 1989, p. 122). Sinceesti­
mation errors for elements of Z are independent between sub populations, which are de­
fined by the imperfect map classifier and denoted by subscriptj in Equation 27, the variance 
for Pi., denot~d Vp(, is simply the sum of the variances for each Zij on the diagonal of 
covariance matrix VVec(z) in Equation 25. 

Matrix algebra provides a concise formulation for areal estimates and their covariance 
matrix. Let the kx 1 vector PI represent the estimated true proportions of each of the k 
categories, i.e., the row margin of Z; PI is a linear transformation of Z: 

(28) 

where DPr is the following k?-xk matrix of zeros and ones: 

I 

I 
D = Pi· (29) 

I 

I is the kxk identity matrix. The covariance matrix for random estimation errors in PI is the 
corresponding linear transformation of the k?-xk?- covariance matrix for Vec(i) in Equation 
25: .....-

v = D' V ~ D 
Pi· Pi· Vec(Z) Pi· (30) 

Environmental evaluations can require confidence intervals for areal estimates. CO!lfi­
dence intervals often use the normal distribution with an estimated mean and variance. 
However, the normal distribution is unrealistic for proportions that are near 0 or 1, where 
the binomial distribution is a more reasonable assumption. The parameters of the binomial 
distribution are the number of independent trials (n) and the estimated probability of suc­
cess (p), with estimated variance Vp = p(l- p)/n. The number of trials (n), in the context 
of a parameter of the binomial distribution, does not pertain to composite estimates; how­
ever, the composite estimator does provide estimates p and Vp. Based on the method of 
moments approach that Brier (1980) used with cluster sampling for the Dirichlet-multino­
mial distribution, p and Vp provide an estimate of parameter n for the binomial distribu­
tion: 

n = 
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The approximate cqnfidence boun-ds (PLO and Pup) for P may be estimated as follows 
(Rothman, 1986, p. 167). Let a represent an arbitrary confidence level, e.g., a = 0.95, and 
P(K ~ pn) represent the probability that (pn) or more successes are observed out of n 
Bernoulli trials, where (pn) and n are rounded to the nearest integer. The lower confidence 
bound is the probability of success (PLO) with the binomial distribution for which P(K ~ 
pn) = (1-0:)/2, and the upper bound is the PUP for which P(K ~ pn) = (l-a)/2. Solution is 
by bisection. Confidence intervals so computed are always bounded by 0 and 1. Except 
when p is near 0 or 1, these confidence intervals are approximately equal to intervals that 
assume a normal distribution for a sufficiently large sample size. 

Accuracy Assessment Statistics and Variances 

The most common statistic used to assess accuracy is the total proportion of correctly 
classified map units (Po), called overall accuracy by Congalton (1991). Once the contin­
gency table is estimated (Equations 22 and 24), the estimated overall accuracy (Po) simply 
equals the sum of the diagonal elements of Z. The variance for the overall accuracy statis­
tic Vp© is the sum of the dia~onal elements of VVec(Z) (Equations 23 and 25.) that corre­
spond to diagonal elements of Z. This is expressed in matrix algebra as a prelude to fonnulae 
for more' complex accuracy statistics: 

(32) 

VA = d' V A d 
Po Po Vec(Z) Po (33) 

.0;.. 

where dpc is the I2x1 vector in which the [(l-I)k+i]th elements equal 1 (l = 1,2, ... ~k), and all 
other elements equal O. Confidence intervals are approximated with Po, Vpc' and the bino­
mial assumption (Equation 31). 

The expected probabilities of correct classification for a category through chance agree­
ment equals the product·of the row and column margins for that category in the contin­
gency table. This hypothesis is the basis for Cohen's kappa test, which is commonly applied 
in remote sensing studies (Congalton, 1991). The column margin for Z is known exactly 
through the census of map units, each of which is categorized by the map classifier. Let kx1 
vector p.j represent the column margin of Z, in which the ith element equals the constant 
NM=lN (Equation 1). The estimated expected accuracy under chance agreement p© is the 
product of the fixed", column (p.) and the estimated row margin (PI. in Equation 28), with 
covariance matrix VA : 

Pc 

(34) 

VA = d' V A d 
Pc Pc Vec(Z) Pc (35) 

(36) 
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This suggests a test of hypothesis that the overall classification accuracy is no greater than 
that expected by chance, i.e., the difference between the observed overall accuracy (Po in 
Equation 32) and chance accuracy (Pc in Equation 34) equals zero: 

(37) 

(38) 

The nonnal distribution with mean 0 and variance VPo - Pc provides an approximate prob­
ability that the null hypothesis is true, although the limiting distribution of this statistic has 
not been established. Czaplewski (1994) provides a Taylor series approximation for cova­
riance matrix VVec(Z) in Equation 38 that is more compatible with the null hypothesis in 
this test. ':, 

Some land cover types are very accurately categorized by a map classifier, while others 
are less successfully classified. The overall accuracy statistic does not isolate differences 
among individual categories. However, conditional probabilities of correct classification 
concisely and intuitively describe these differences (e.g., Fleiss, 1981, p. 214). Green et al. 
(1993) and Stehman (1996) developed variance estimators for these statistics when pre­
stratification is based on the remotely sensed classification, there is simple random sam­
pling within strata, and sample qnits are homogeneous s(} that the multinomial distribution 
applies. The f~llowing two paragraphs provide more general results for estini"ates of condi­
tional probabilities from double sampling. 

Consider the conditional probability of correct classification given that the map classi­
fier assigns a map unit to category M = m. This is also called "user's accuracy" in the 
remote sensing and quality control literatures (Congalton, 1991). The vector ZM=m in Equa­
tion 22 is the transfonned composite estimate of the conditional probabilities given that..the 
map classifier assigned the map unit to the mth category (i.e., subpopulation M = m). There­
fore, user's accuracy for category m is simply the mth element of ZM=m, with an estimated 
variance equal to the mth diagonal element of VzIM=m in Equation 23. The confidence 
interval for user's accuracy for the mth category is approximated with the binomial distri­
bution (Equation 31). 

The conditional probability of correct classification, given that the error-free reference 
classification is category m, is called "producer's accuracy" (Congalton, 1991). The kx1 
vector of p~oducer's accuracies, P(lll')' equals the kx1 diagonal of the kxk contingency 
table, diag(Z), divided by its row margin (Equation 28). The covariance matrix for producer's 
accuracies is more difficult to estimate than the covariance matrix for user' s a~curacies 
because estimation errors among rows of ZM=m are not independent (Equation 25). 
Czaplewski (1994) derives a Taylor series approximation for this situation. First, define the 
·kxk matrix Hp(I')' in which all off-diagonal elements are zero, and all diagonal elements 
equal the iith element of Z divided by the squared inverse of the ith element of PI., IE 
{ 1"" ,k}, in Equation 28. Next, define the kxk matrix G j , I E {1,··· ,k }, in which all elements 
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are zero except the iith element, which equals the inverse of the ith element of (PI)' Finally, 
define the kxk matrix D (III,) as: 

G1 Hp(i-) 

D(ilio) = Gm Hp(io) 
(39) 

Gk Hp(io) 

The approximate kxk covariance matrix fur the kx 1 vector of estimated producer's accura­
cies (p(lll-)) equals: 

VA = D'(OIO )V A D(OI') 
P(ilio ) 11

0 Vec(Z) 11
0 (40) 

Czaplewski (1994) provides examples of the matrix in Equation 40. The confidence inter­
vals for elements of P(l11-) (producer's accur~cies) are approximated with their correspond­
ing diagonal elements of covariance matrix VP(lII-) and the binomial distribution (Equation 
31). In addition, Czaplewski (1994) formulates a test of the hypothesis that individual user's 
and producer's accuracies do not differ from what is expected by chance. 

The varj~nc~s in Equations 35, and 38, and the covariance matrix for user'_s accuracies, 
assume that the column margin p.j is a vector of known constants. This is true when" the 
map classifier is applied to an members of the population, i.e., the column margin of Z is 
fixed through a census of all pixels. However, these equations do not apply to more general 
situations, which are considered by Czaplewski (1994). 

The coefficient of agreement (kappa) also quantifies overall accuracy in a contingency 
table Z relative to that expected by chance (Cohen, 1960, 1968). This statistic is commonly 
used in remote sensing (Congalton, 1991). It is sometimes weighted to consider partial 
agreement. Let W represent the kxk ~atrix of constants in which the ijth element (wij)is the 
weight or "partial credit" chosen by the user for the agreement when a map unit is classified 
as category j by the imperfect map classifier and category I by the error-free reference 
classifier. The unweighted kappa statistic is merely a special case of the weighted kappa, in 
which W = I, the identity matrix. Let Polw = l'[W*Z]l represent the weighted overall 
accuracy observed in the sample, and PClw = l'[W*CPIoP~j)]l (see Equations 28 and 34) 
represent the corresponding accuracy expected by chance, where 1 is the kx 1 vector of l' s 
and * represents element-by-element multiplication (Le., the ijth element of A *B is aijbi). 

The estimated weighted kappa statistic (Kw) is: .. ; 
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Cohen derived a variance approximation for kappa in the special case of simple random 
sampling, where each unit is classified into one and only one category, and Stehman (1996, 
1997) has developed variance approximations for stratified random sampling. However, 
these do not apply to the multivariate composite estimator. Czaplewski (1994) derives a 
Taylor-series variance approximation for the weighted kappa statistic (kw) in the more gen­
eral case, where the contingency table Z is estimated with any appropriate method that 
provides covariance matrix VYec(Z) (e.g., Equation 25). First, define the kxl vectors 
Wi' = (W p) from Equation 34, and w.j = (W'PrJ from Equation 28, and A?xl vector dk: 

Vee(W) 

(1-Pclw) (42) 

where Vee(W) is the A?x 1 vector version of the kxk weighting matrix W, and the Vee 
operator is defined for xM=m in Equation 2; Czaplewski (1994) provides examples. Next, 
the approximate variance of Kw is estimated as: 

(43) 

The estimated kappa and its variance (Equations 41 and 43) are used with the normal distri­
bution to estimate confidence intervals and test hypotheses. Czaplewski (1994) derives 
other variance approximations for the weighted and unweighted kappa statistics under the 
null hypothesis of chance agreement, and the conditional kappa statistics (Light, 1971) for 
the rows and columns of the contingency table. 

Equations 30, 33, 35, 40, and 43 represent variance estimators for areal extent and statis­
tics that assess accuracy of classifications on the map. They are formulated as vector opera­
tors on the covariance matrix VYec(Z)' which is highly partitioned (Equation 25) because of 
the assumed independence of sampling errors among subpopulations. This partitioned struc­
ture can reduce numerical errors and matrix dimensions. Let the following represent this 
general structure: 

VI 0 0 DI 

k 

[Di ... D~ ... Die] 0 Vrn 0 Drn = LD~VrnDrn 
m=l (44) 

0 0 Vk Dk 
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The left-hand side of Equation 44 contains a /?xfi2 covariance matrix; however, the right­
hand sid~ contains kxk covariance matrices. This is very important for detailed classifica­
tion systems. For example, if the number of categories is k = 20, then the covariance matrix 
on the left-hand side has dimensions 8000x8000, while those on the right-hand side have 
dimensions 400x400. 

DISCUSSION 

Classification systems frequently have detailed categories to meet the needs of particu­
lar analyses, but accuracy of map classifiers is typically poor for detailed classification 
systems. The classifier often confuses certain similar categories, and the number of similar 
categories increases as the classification system becomes more detailed. While increased 
thematic resolution provides more information about spatial patterns, increased resolution 
makes modeling of those patterns more difficult (Costanza and Maxwell, 1994). Therefore, 
the map analyst must often simplify the classification system to attain maps that have rea­
sonable classification accuracy. Statistical assessment of classification accuracy naturally 
leads to more informed decisions regarding these simplifications. Conditional R:fobabilities 
of correct classification (user's and producer's accuracies for each category) help strike a 
compromise between analysts' applications and the classification errors that are endemic 
to thematic mapping. These compromises are facilitated with user-friendly software, cop­
ies of which are available from the author. Other software systems are capable of generat­
ing the necessary estimates, especially systems with a matrix language and a library of 
linear algebra routines. 

Occasionally, random errors severely distort estimates of accuracy. Gains in efficiency 
from the imperfect reference classifier (e.g., photo-interpretation) reduce risk- of incorrect 
evaluations of map reliability. For this reason, reasonable confidence intervals and vari­
ance estimates for accuracy statistics are crucial for prudent use of thematic maps. Esti­
mates of classification accuracy improve as registration accuracy increases, as sample sizes 
for estimates YM=m and XM=m increase (Equations 8 to 17), and as accuracy of the imper­
fect reference classifier increases. The latter might improve with reductions inclassifica­
tion detail (ky in Equation 2). All these components affect the cost and reliability of estimatiHg 
areal extent and accuracy assessments of thematic maps. 

Spatial analyses with geographic information systems often generate areal estimates 
from a small portion of a thematic map, but these estimates can include substantial 
misclassification. Multivariate calibration methods can correct for this bias (Tenenbein, 
1972; Czaplewski and Catts, 1992; Walsh and Burk, 1993) with a transformation of the 
contingency table (Z from Equations 1 and 24). However, the calibrated areal estimates do 
not identify the spatial location of classification errors. Also, the calibration model as­
sumes that misclassification probabilities are the same for all portions of the thematic map, 
which might not be reasonable for small-area estimates. For example, mountain shadows 
often increase classification errors with multispectral satellite data. The contingency table 
incorporates this source' of error in proportion to the amount of shadow within the entire 
map. However, a portion of the map can have a very different proportion of sh'adow, and 
thus, very different misclassification probabilities. Bauer et al. (1994) propose a solution to 
this problem, in which a univariate composite method combines predictions from local and 
global calibration models. 
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The multivariate composite approach can be expanded to multiway contingency tables. 
This permits hierarchicalloglinear models, and related logit models, and associated meth­
ods for systematic testing of hypotheses, similar to analysis of variance for continuous data 
(Rao and Thomas, 1989; Molina C., 1989). Such methods permit testing hypotheses related 
to causes of classification errors, and possibly other hypotheses. However, the methods 
used in this chapter avoid logarithmic transformations for estimation because 
retransformation bias is very problematic, especially for proportions near zero. 

The methods presented here include cluster sampling without the imperfect reference 
classifier as a special case. This efficient estimator is an alternative to the univariate meth­
ods of Stehman (1997). In addition, the difference between the realized overall accuracy 
and the overall accuracy expected by chance alone (Equation 37) is a· new indicator of 
classification accuracy; Equation 38 provides the variance estimator for this statistic under 
prestratification. Czaplewski (1994) derives their variance estimators. These statistics pro­
vide a more reasonable null hypothesis (Stehman, in press), and are more easily interpreted 
than Cohen's kappa and partial kappa statistics. 

The methods proposed above also apply to situations where the imperfect reference 
classifier is not photo-interpretation. For example, the imperfect reference data might rep-,. 
resent sample units from a different monitoring program, where inconsistencies' in protocol 
and definitions cause "imperfect" classifications, or the imperfect reference data might 
come from an old survey, where recent changes in land cover cause previous classifications 
to be imperfect. Lastly, the reference classifications might be considered imperfect if they 
come from plots that are not well registered between the satellite images and their field 
locations. The cost of accurate registration could be restricted to a subs ample of "error­
free" plots. 

The methods in this chapter assume each sample unit lias the same configuration for the 
map classifier, the imperfect reference classifier, and error-free reference classifier, which 
is similar to sample units fn a two-phase sampling design. A cluster of pixels in a 1-ha field 
plot is an example. However, photo-interpretation of larger sample units often adds little 
marginal cost (Czaplewski and Catts, 1988; Bauer et aI., 1994), as in a two-staging sample 
design. The multi variate composite estimator can accommodate two-stage designs, but re­
quires a different formulation from that considered here. 

The composite estimator assumes independence of sampling errors among subpopula­
tions. This assumption is suspect for poststratification by subpopulation of a simple ran­
dom sample because sample sizes for each subpopulation are not fixed by design. This 
assumption is also suspect if a cluster plot contains map units from more than one subpopu­
lation. Practical considerations make simple random sampling and heterogeneous cluster 
plots important options in assessing accuracy. Although the independence assumption is 
not strictly required by the composite estimator (Czaplewski, 1992a), the independence 
assumption does reduce numerical problems (e.g., Equation 44). The bootstrap estimator 
exploits the numerical advantages of this independence assumption, and accounts for de­
pendent sampling errors through resampling. However, bootstrap variance estim':ltes might 
require hours of computation time, compared with seconds for composite variance esti­
mates. Therefore, the composite estimator can provide reasonable preliminary estimates, 
-especially when assessments of accuracy are used to help simplify the classification sys­
tem, while final estimates are made with bootstrap methods. 
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The composite estimator (Z from Equations 18 to 24) is the unbiased minimum variance 
estimator if Y M=m and x M=m ar~ unbias~d and the covariance matrices V x and V yare known. 
However, only the estimates Vx and Vy are uJually known; the composite estim~toI're­
mains unbiased, but will be sUboptimal. Since Z is asymptotically unbiased, and the statis­
tics used to estimate areal extent and assess accuracy are functions of the J(2 estimates in Z, 
these estimates will also be asymptotically unbiased (Molina C., 1989, p. 122; Sarndal et 
ai., 1992, p. 168). However, vector estimates YM=m and XM=m in Equations 8 to 17 can be 
biased for small sample sizes because each zero element in Y M=m and x M=m is treated as 
though the true probability is exactly zero (Bishop et al., 1975, p. 177). A zero element 
might represent a rare event that was not observed in the sample (sampling zero), even 
though the true probability of the event exceeds zero. This can bias the composite estima­
tor. Deficiencies in sampling design and measurement protocols can introduce additional 
biases. The verification techniques described earlier in the Methods section should always 
be used to detect subtle inconsistencies in the data collection, processing, and estimation 
processes. 

A reference classifier is rarely free of all classification error. Errors are introduced into 
reference data by errors in locating sample plots on the ground and on the remotely sensed 
imagery, changes in plot condition over time, measurement and recording'Jerrors, and 
within-plot sampling errors. However, aC'curacy assessments treat the highest resolution 
reference data as though they were perfect. The term "error-free reference classifier" em­
phasizes this assumption to the user of an accuracy assessment. The user should thoroughly 
understand how the reference data were gathered, and condition.their interpretation of the 
accuracy assessment based on this understanding. 

CONCLUSIONS 

The contingency table is- sufficient for assessing accuracy and estimating the area of 
different categories of land cover, while maintaining compatibility between these two ob­
jectives. The multivariate composite estimator provides efficient estimates of the contin­
gency table because it combines multiple sources of data with an asymptotically unbiased, 
minimum variance approach. The multivariate composite estimator is a relatively simple 
method, which permits use of more complex sampling designs and sample units. With 
statistical methods presented in this chapter, the complexity of the sampling design and 
estimation method might no longer be a major problem. Rather, the remaining problems 
might be more pragmatic, such as designing sample units that can be accurately registered 
to different types of imagery, confidently located in the field, and classified with objective 
and repeatable measurements in the field. 

Classification systems for remote sensing are often very detailed to meet analytical needs, 
but classification accuracy can be low. Accuracy increases if similar categories of land 
cover are combined (i.e., collapsing classification system). A statistically reliable assess­
ment of accuracy can help the analyst decide how to best compromise classification detail 
without sacrificing the objectives of a specific analysis. This interaction between analysts 
and their geographic data is extremely important (Goodchild and Gopal, 1989). The com­
posite estimator quickly provides the analyst with an approximate description of the conse­
quences of potential compromises. 
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