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Abstract:  A model for spatial prediction of landslide hazard was applied to a watershed affected 
by landslide events that occurred during the winter of 1995-96, following heavy rains, and 
snowmelt.  Digital elevation data with 22.86 m x 22.86 m resolution was used for deriving 
topographic attributes used for modeling.  The model is based on the combination of logistic 
regression and principal component analysis (PCA) of road related landslides and assumes that 
the meteorologic factors which caused failures in the past will cause failures in the future.  This 
model was intended to provide forest land managers with additional information on landslide 
hazards associated with roads.  The advantage of the model is that it allows rapid assessment of 
spatial correlation of the topographic attributes on large areas.  A Geographic Information 
Systems derived map using the principal component analysis model delineates areas with 
relatively high probabilities of failure in the basin.   
 

INTRODUCTION 
 
Forest roads play a key role in the vitality of any managed forest area.  These roads provide 
access to the forest for multiple purposes including timber harvesting, recreation and fire 
suppression.  Without forest roads, millions of acres of forest lands are unreachable.  Beside 
providing many positive benefits, roads can have negative impacts as well.  Concern about 
erosion and landslide failure from roads is high especially in highly dissected mountainous 
topography such as the Clearwater Basin in Idaho.  Damage from landslides is a critical issue 
concerning fish habitat and water quality.  Concerns about landslide failure have created a need 
for developing quantitative hazard models and prediction of landslide hazard.   
 
In the literature there are various approaches for developing quantitative hazard models for 
prediction of landslide hazard (Carrara et al., 1991; Montgomery and Dietrich, 1994; Mark and 
Ellen, 1995, Gorsevski et al.  2000a, Gorsevski et al.  2000b).  They are mostly based on the 
combination of Geographic Information Systems (GIS) and either an infinite slope stability 
model (Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Okimura and Ichikawa, 1995) or 
statistical models, which link environmental attributes based on spatial correlation (Carrara et al., 
1991, 1995; Chung et.  al., 1995, 1999; Mark and Ellen, 1995; Chung and Fabbri, 1999). 
 
Multivariate methods combined with GIS have been applied since the early 1980s (Carrara et al., 
1983, 1991, 1992, 1995).  The strategy of sampling in these applications was based either on a 
large-grid basis or in morphometric units.  In either case the presence or absence of landslides 
were represented in a binary manner.  All attributes believed to be relevant were sampled.  These 
data sets were used to construct a model by applying multiple regression or deterministic 
analysis.   
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More recently Gorsevski et al.  (2000a) applied logistic regression for spatial prediction of 
landslide hazard.  A Receiver Operator Characteristic curve (Williams et al., 1999) was used to 
assist in the interpretation of the logistic regression results. 
 
The approach taken in this paper uses a high resolution digital elevation model (DEM), a 
combination of logistic regression and Principal Component Analysis (PCA), and GIS.  The 
DEM provides a representation of the topography of the study area and allows topographic 
attributes to be determined.  The logistic regression analysis models the probability that an 
individual grid pixel will contain a landslide.  The PCA identifies the most significant 
topographic variables that influence its occurrence.  Although interpretation of the most 
significant topographic variables is difficult when PCA is applied, it can help to better screen the 
data and transform a set of correlated variables into a new set of uncorrelated variables called 
principal components.  The principle components are also used for locating and identifying 
abnormalities in the data, and to check assumptions that may be required for certain statistical 
analysis to be valid.  The principle components are used directly into the model for a backward 
elimination logistic regression.  A table was derived from the logistic regression showing the 
classification of the landslides hazard.  The classification table can be used as a tool for deciding 
a proper thresholds for hazard classification.   
 
Although there are several solutions for categorizing ranges of probabilities, for this study area 
we used a scatterplot derived from the results of the logistic regression.  The scatterplot shows a 
range of different outcomes based on the correctly identified landslides and non-landslide pixels 
from the classification table.  From the scatterplot or the classification table we chose the 
influential point, which is the optimal combination for maximizing  the correctly identified pixels 
from both groups.  Departing from this influential point in one direction would classify better 
one of the binary groups, and misclassify in the other direction.  Errors in one direction might be 
more serious than errors in the other direction.  Managers can choose the level of risk they are 
prepared to accept based on the scatterplot or the classification table.   
 

METHODS 
 
In this paper we focused on the 85.9 km2 Silver Creek watershed (Figure1) located northwest of 
Headquarters, Idaho in the North Fork of the Clearwater River Basin.  The topography is highly 
dissected with elevations ranging from 485 m to 1635 m and slopes vary between 0 and 48 
degrees.  Precipitation averages about 980 mm annually.  The density of roads is 5.5 km of road 
per square kilometer.  A total of  81 road related landslides were inventoried by both photo 
interpretation and field inventory.  The landslide triggering mechanism in the winter of 1995-96 
was a combination of heavy rains and snowmelt.   
 
DEM data with 22.86 m x 22.86 m resolution was used for deriving the topographic attributes.  
The original data for developing the DEM was collected on 38.1 x 76.2 m grid, then resampled 
to 22.86 m x 22.86 m.  Topographic attributes included slope, elevation, aspect, profile curvature 
(slope profile curvature of a surface at each pixel center), tangent curvature (curvature of line 
formed by intersection of surface with plane normal to flow line), plan curvature (contour 
curvature), flow path (distance from watershed divide to the point of interest), and contributing 
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area.  The topographic attributes were generated from a DEM using TAPES-G software (Gallant 
et al., 1996).  The parent material coverage was supplied by Potlatch Corporation.   
 

 
Figure 1.  Distribution of Landslides and Road Network Over the Silver Creek Watershed 
 
The topographic attributes of 15 percent of the roaded, non-landslide pixels in the watershed 
(24,372) were randomly sampled.  All of the road-containing landslide pixels (81) were selected.  
These data sets were combined for further analysis. 
 
PCA were used to screen the combined data, to produce a smaller set of uncorrelated variables, 
to determine the dimensionality of the space in which the data fall, and to determine the number 
of principal components to be used.  The dimensionality of the space in which the data lies was 
decided by scree plot and accounting of at least 80% of the total variability in the original 
topographic attributes.  Following the PCA, logistic regression with a backward elimination 
procedure was applied to the principal components.  Backward elimination procedure helped to 
remove those principal components that were not statistically significant.  After the logistic 
regression equation was derived, intermediate maps were generated for each of the principle 
components to assist in deriving the final landslide hazard map using the logistic regression 
equation. 
 

RESULTS 
 
A total of 25 original topographic attributes were reduced to 15 new, uncorrelated variables 
(principal components) by applying PCA.  The backward elimination procedure used with the 
logistic regression produced six variables that were statistically significant at 95% significance 
level.  The backward elimination method resulted in the equation shown in Table 1. 
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Log (p/(1-p)) =  -7.0732 – PRIN1 * 1.0975  - PRIN2 * 0.6742 + PRIN3 * 0.2430  - PRIN4 * 0.3946  - 
PRIN5 * 0.5033 – PRIN6 * 0.5839  
 
p – probability of landslide hazard  
PRIN1 – first principle component (slope and schist) 
PRIN2 – second principle component (elevation and basalt) 
PRIN3 – third principle component (east and northeast) 
PRIN4 – fourth principle component (south, southeast and quartzite) 
PRIN5 – fifth principle component (northeast, north, granite and quartzite) 
PRIN6 – sixth principle component (north, gneiss, quartzite, and alluvium) 
 
Table 1.  Logistic Regression Equation for Predicting Landslide Hazard 
 
Interpreting the principle components with high confidence is difficult.  Upon examination of the 
normalized eigenvectors, the elements with the largest absolute value suggested that the first 
principal component (PRIN1) in the logistic regression has a strong relationship with slope and 
the parent material schist.  The variables that tend to have strong relationship with the second 
principal component (PRIN2) are elevation and the parent material basalt.  The variables that 
tend to have strong relationship with the third principal component (PRIN3) are the east and 
northeast aspect.  The fourth principal component (PRIN4) has a strong relationship with south 
and southeast aspect and quartzite parent material.  The fifth principal component (PRIN5) has a 
strong relationship with northeast and north aspect and granite and quartzite parent material.  
Finally, the sixth  principal component (PRIN6) has a strong relationship with north aspect and 
the following parent materials gneiss, quartzite, and alluvium.  Except for the third principal 
component (PRIN3) variable, all other variables in the logistic regression have negative 
coefficients.  When interpreting the logit coefficients, caution should be taken, because the logit 
model assumes a nonlinear relationship between the probability and the explanatory variables 
(Allison, 1999).  For example, the estimated coefficient for the second principle component 
(PRIN2) is –0.6742.  If our interpretation that the second principal component (PRIN2) have 
strong relationship with elevation and basalt is correct, then the risk of landslide hazard 
decreases with higher elevation for basalt.   
 
The scatterplot which show the trade off between correctly identified landslides and non-
landslides is shown in Figure 2.  We chose an influence point of 67 for the landslides pixels, and 
20,132 for non-landslide pixels.  This point corresponded to a probability value of 0.005 from 
equation 1.  Our selection of the influence point was determined by the desire to set the 
probability of making an error equal for both landslides and non-landslides. 
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Figure 2.  Scatterplot From the Correctly Identified Pixels From the Classification Table 
 
Probability lower than the threshold (0.005) were mapped as Low Hazard, and probability higher 
than (0.005) were mapped as High Hazard.  The resulting map is shown in Figure 3.  It appears 
that 82.7% of the landslide pixels and 82.6% of the non-landslide pixels were correctly identified 
by the model. 
 

 
Figure 3.  Predicted Landslide Hazard Assuming a Road in Each Pixel 
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DISCUSSION 
 
The landslide hazard map presented in Figure 3 represents the road-related landslide hazard 
assuming that each pixel contained a road.  While this is not the case, it presents, at a glance, the 
hazard associated with having a road in each pixel.  The same analysis method presented in this 
paper, but using non-road containing pixels could be used to generate a similar map.  That map 
would present the inherent hazard under the assumption of no roads.  Comparison of the two 
maps would reveal risk reductions associated with road removal. 
 
Our analysis did not include any attributes related to road construction technique which has been 
identified as important (Sessions et al., 1987).  A further refinement of the proposed model 
would include this important attribute. 
 

CONCLUSION 
 
We developed a landslide hazard map of a 85.9 km2 basin using a combination of logistic 
regression and principal component methods.  Landscape characteristics were derived from a 
DEM.  The map showed high and low risk areas for road placement.  This tool can be used by 
land managers to focus limited resources toward the prevention of future landslides.  The next 
step in our analysis is to include an attribute reflecting the road construction technique. 
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