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ABSTRACT. Many anadromous salmonid stocks in the
Pacific Northwest are at their lowest recorded levels, which
has raised questions regarding their long-term persistence un-
der current conditions. There are a number of factors, such
as freshwater spawning and rearing habitat, that could po-
tentially influence their numbers. Therefore, we used the
latest advances in information-theoretic methods in a two-
stage modeling process to investigate relationships between
landscape-level habitat attributes and maximum recruitment
of 25 index stocks of chinook salmon (Onocorhynchus tshawy-
tscha) in the Columbia River basin. Our first-stage model
selection results indicated that the Ricker-type, stock re-
cruitment model with a constant Ricker a, i.e., recruits-
per-spawner at low numbers of fish) across stocks was the
only plausible one given these data, which contrasted with
previous unpublished findings. Our second-stage results re-
vealed that maximum recruitment of chinook salmon had a
strongly negative relationship with percentage of surrounding
subwatersheds categorized as predominantly containing U.S.
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Forest Service and private moderate-high impact managed for-
est. That is, our model predicted that average maximum re-
cruitment of chinook salmon would decrease by at least 247
fish for every increase of 33% in surrounding subwatersheds
categorized as predominantly containing U.S. Forest Service
and privately managed forest. Conversely, mean annual air
temperature had a positive relationship with salmon maxi-
mum recruitment, with an average increase of at least 179
fish for every increase in 2◦C mean annual air temperature.

KEY WORDS: Akaike’s Information Criterion, Chinook
salmon, model averaging, Oncorhynchus tshawytscha, Ricker
model, stock-recruitment.

Introduction. Many anadromous salmonid populations in the Pa-
cific Northwest have dramatically declined from previously recorded
levels, presumably because of degradation or loss of freshwater spawn-
ing and rearing habitats, restricted upstream access and increased
downstream passage mortality due to hydroelectric dams, commercial
overfishing, and negative impacts from non-native and hatchery fish-
eries (Nehlsen et al. [1991]). Therefore, long-term persistence for a
number of these stocks is doubtful under present conditions (e.g., see
Emlen [1995], Ratner et al. [1997]). Although the need for remedial
measures is clear, it is unclear which factors to focus these measures
on. That is, complexity of the life history pattern of these anadro-
mous fishes, as well as variability in this pattern among different stocks
(Nehlsen et al. [1991]), adds to the uncertainty associated with attempt-
ing to identify limiting factors that most influence stock size and persis-
tence. For instance, there are a wide range of potential environmental
conditions that anadromous fishes experience during their freshwater
occupancy period; attempting to tease out the more influential of these
factors is complex and difficult (Bisson et al. [1992]). Efforts to prop-
erly restore anadromous salmonid stocks to previously high levels will
require a broadscale approach that incorporates landscape patterns and
processes (Schlosser [1991]), which adds further sources of uncertainty.

Quality and condition of freshwater habitats may affect productivity
in salmonids (Hunt [1969], Scarnecchia and Bergersen [1987], Heggenes
and Borgstrom [1991]), which in turn would affect their long-term per-
sistence. However, to our knowledge, relationships between large-scale
habitat/land management attributes and productivity in anadromous
salmon stocks have never been rigorously quantified in the published
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literature, particularly at the spatial scale of the Columbia River basin.
Previous broadscale assessments of salmonid stocks in this region have
been mostly limited to compiling available status/risk information (e.g.,
Nehlsen et al. [1991], Frissell [1993], Huntington et al. [1996]) or using
GIS data to evaluate and map potential salmon freshwater habitat
(Lunetta et al. [1997]; western Washington State only). Conversely,
Lee et al. [1997] attempted to rigorously quantify linkages between
population status of fish species (based on empirical data and status
calls from experts) and landscape-level habitat variables. Schaller et
al. [1999] modeled productivity and survival rates of spring-summer
chinook salmon within the Columbia River basin.

Here, we applied the latest advances in information-theoretic mod-
eling (Burnham and Anderson [1998]) to existing data sets to in-
vestigate potential relationships between various landscape-level at-
tributes and estimates of maximum recruitment of 25 index stocks
of spring/summer chinook salmon within the Columbia River Basin.
Because this information-theoretic approach is probably unfamiliar to
most ecologists and other natural resource professionals, an important
objective of this paper is to describe and illustrate this modeling pro-
cedure. Note that the information-theoretic approach has general rel-
evance to statistical modeling situations well beyond the application
described herein.

2. Modeling approach. We employed a two-step modeling
process to evaluate relationships between landscape-level attributes
and fish productivity in 25 index stocks of spring-summer chinook
salmon within the Columbia River basin (Figure 1). The first set
of models were Ricker-type, stock-recruitment models (Ricker [1975]).
Parameter estimates from these models were used in a response variable
for a second set of second-stage models, which contained landscape-
level predictor variables (Table 1). In the following, we describe our
methodological approaches for each modeling step, including the latest
information-theoretic (Akaike [1973], Burnham and Anderson [1998])
model selection and model-averaging techniques that we adapted for
our needs.

2.1 Developing a set of candidate models. A crucial step in
the modeling process is the construction of a set of candidate models
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FIGURE 1. Location of 25 index stocks of spring/summer chinook salmon
in the Columbia River basin that provided stock-recruitment data used in our
analyses. Stocks are categorized by region, where the stippled area contains
lower Columbia stocks (A E), the cross-hatched area contains mid-Columbia
stocks (F H) and the gray area contains snake stocks (I Y). Main stem dams
are shown as triangles, with Bonneville Dam and Lower Granite Dam labeled
to illustrate water transit time (WTT).

that are ecologically meaningful (Lebreton et al. [1992], Burnham and
Anderson [1998]). Based on results from Deriso et al. [1996], we used a
stock-recruitment, regression model with stock-specific Ricker a values
as a base model from which we derived other candidate models (see
Section 2.4 Stock-recruitment models). For the landscape-level habi-
tat models, we adopted the more general approach recommended by
Burnham and Anderson [1998], i.e., we developed a global linear re-
gression model containing various class, physiographic and geophysical
and anthropogenic landscape-level variables (Table 1) that may have
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TABLE 1. Category, name and description of landscape-level variables

initially included in a set of linear regression models attempting to pre-

dict maximum recruitment of 25 index stocks of spring/summer chinook

salmon in their spawning/rearing area within the Columbia River basin.

Category Variable Name Description

Class

REGION Variable subdividing the Columbia River basin

into three sections: lower Columbia (LC),

mid-Columbia (MC) and Snake (SN). Each

index stock, as denoted by stream name or

section, was categorized based on these

subdivisions (Figure 1).

Physiographic

& Geophysical

WPPRECIP ∗Weighted mean annual precipitation (mm)

(PRISM model; Daly et al. [1994])

WMTEMP Weighted mean annual air temperature (◦C)
WELEV Weighted mean elevation (m)

WERO Weighted surface erosion index

Anthropogenic

WGEODENS Weighted geometric mean road density (km/km2)

MNG FOR Weighted percent of subwatersheds containing a

spawning/rearing area that were predominantly

categorized as U.S. Forest Service and private

forests with moderate to high impact practices

(i.e., logging and grazing; see text for details)

MNG FW Weighted percent of subwatersheds containing a

spawning/rearing area that were predominantly

categorized as U.S. Forest Service managed

wilderness areas (see text for details)

Area

ST LNGTH Kilometers (km) of perennial and intermittent

streams within the spawning/rearing area of

each index stock of spring/summer chinook salmon

Note: The term “weighted” indicates that the variable was weighted by spatial

areas of the subwatersheds where the spawning/rearing area of a particular stock

occurred, i.e., if the spawning/rearing area (ST LNGTH) stretched over more than

one subwatershed.
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had important influences on maximum recruitment of spring/summer
chinook salmon in their spawning/rearing areas. Because of the paucity
of data (n = 25 observations) and hence the danger of over-fitting the
model, we only used a relatively small number of predictor variables to
construct the global model. From this set of predictors we generated a
subset of models that contained various combinations of variables we
deemed ecologically relevant based on results from Lee et al. [1997], our
knowledge of the species and system, and consultations with subject
experts familiar with the study area.

2.2 Model selection. We used the small sample adjustment of AIC
(Akaike [1973]) to rank models and assess their relative plausibility
given the data. AIC is an extension of likelihood theory and is derived
from the Kullback-Leibler distance of information theory (Kullback
and Leibler [1951], Kullback [1997]), which is a measure of how much
information is lost when a model is used to approximate reality (Cover
and Thomas [1991], Burnham and Anderson [1998]). AIC is defined as

(1) AIC = n ln
(
RSS
n

)
+ 2k,

where n is the number of observations, RSS is the residual sum of
squares (also called error sum of squares, SSE) and k is the num-
ber of estimable parameters in the model. Equivalently, AIC =
−2 ln(L(θ̂|data)) + 2k, where ln(L(θ̂|data)) is the maximized log-
likelihood over the unknown model parameters (θ) given the data
(Buckland et al. [1997], Burnham and Anderson [1998]). When n/k <
40, Burnham and Anderson [1998] recommended Hurvich and Tsai’s
[1989] small sample adjustment to AIC,

(2) AICc = AIC +
2k(k + 1)
n − k − 1

.

Note that AICc converges to AIC as the number of observations
increases relative to the number of estimable parameters in the model.
In other words, as n increases relative to k in the second term in
equation (2), the denominator increases relative to the numerator and
the whole term approaches zero. For large n/k ratios, the second term
essentially drops out, leaving only the AIC term. Hence, AICc can
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be routinely used in place of AIC because its adjustment to AIC is
necessary for smaller n/k ratios, whereas it is essentially equivalent to
AIC for larger n/k ratios.

AIC and its derivatives operate on the principle of parsimony (Box
and Jenkins [1970]), i.e., the highest ranking models are those that best
fit the data with the fewest parameters. The principle of parsimony
states that there is an ideal point in the balance between increasing
the number of parameters to decrease bias and decreasing the number
of parameters to increase precision. This bias/precision trade-off can
be seen in the AIC formula (equation (1)) where the first term rewards
a better-fitting model (i.e., leading to lower bias) and the second term
penalizes an over-parameterized model (i.e., leading to higher precision)
(Burnham and Anderson [1998]). The smaller the sum of these two
terms (or the smaller the AIC), the better fitting the model. However,
AIC (or AICc) is a relative ranking statistic. Therefore, AIC values
should be interpreted in terms of the magnitude of their differences
among candidate models rather than the magnitude of any particular
value. A simple method of model ranking is to order the relative
differences among AIC values by subtracting the lowest value from
all other values (these differences are called ∆AIC values) and then
recording these ∆AIC values and their associated models from low
(i.e., 0) to high (Burnham and Anderson [1998]). One can interpret
the relative plausibility of each model for a particular data set by
calculating the Akaike weights (see below). Note that AIC values are
specific to the data set that was used to compute them, and hence those
computed from different data sets are not comparable.

We interpreted the relative plausibility of each candidate model for
a specific data set by its Akaike weight, wi (Burnham and Anderson
[1998]). This weight is calculated as

(3) wi =
e(−∆AICci/2)∑R

j=1 e(−∆AICcj/2)
,

where ∆AICci is the ∆AICc value for the ith model in a set of R
candidate models, Buckland et al. [1997]. Thus, the wi sum to 1. Note
that there may be more than one model that is reasonably plausible
for a particular set of data, especially if the data set is small.
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2.3 Model-based inference. We incorporated model selection un-
certainty into model inference as generally described by Burnham and
Anderson [1998]. We did not select a single model from a candidate
set and treat it as the “true” model unless its Akaike weight was at
least eight times larger than the next highest weight (our modification).
That is, we viewed the predictor variables contained in models whose
Akaike weights were more than one-eighth of the largest Akaike weight
as forming a composite model whose parameter estimates were com-
puted based on the ∆AICc-weighted average of estimates from relevant
models. Following from likelihood-based inference (Edwards [1992],
Royall [1997]), Akaike weights correspond to strength of evidence of
one model versus another, i.e., L(Mi | data)/L(MB | data), where Mi

refers to the ith model and MB refers to the “best” model (Burnham
and Anderson [1998, pp. 128 129]). Our strength of evidence metric,
1/8, was recommended by Royall [1997] as a general cutoff point.

We computed model-averaged estimates of regression coefficients for
relevant predictor variables via

(4) ˆ̄β =
R∑

i=1

wiβ̂i,

where β̂i is the estimator of a regression coefficient for a specific predic-
tor variable in model i and wi is the Akaike weight that is calculated
from the ∆AICc values for the R candidate models containing a specific
predictor variable (Buckland et al. [1997]). For example, say 3 of the
8 candidate models contained predictor X1, which appeared in at least
one model with wi greater than one-eighth of the maximum wi. The wi

used in the model selection process for assessing the plausibility of each
model would be based on ∆AICc values from all 8 models, whereas the
wi used in model inference for estimating the overall regression coeffi-
cient (i.e., ˆ̄β) for X1 would only be based on ∆AICc values calculated
from the R = 3 models containing X1. Thus the wi always were scaled
so that they summed to 1.

Variance estimators for regression coefficients also were calculated
based on model averaging. There were two sources of uncertainty
associated with each model parameter estimate: the variance based
on a particular model (called conditional variance) and the variance
due to uncertainty in the selection from a set of models (Buckland et
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al. [1997]). The overall variance, called unconditional variance, v̂ar (β̂);
Buckland et al. [1997]) is calculated as

(5) v̂ar (β̂) =
[ R∑

i=1

wi

√
v̂ar (β̂i | Mi) + (β̂i − ˆ̄β)2

]2

,

where v̂ar (β̂i | Mi) is the conditional variance (i.e., the square of the
standard error for the regression coefficient in regression output) of
model i and (β̂i− ˆ̄β)2 is the variance component due to model selection
uncertainty. The wi were computed based on the R models as described
above. Technically, estimators should have been perfectly correlated
for equation (5) to be used so that there would be no covariance
term (Buckland et al. [1997]); however, based on extensive simulations,
reasonable results can be obtained for a correlation between 0.5 and
1 (K.P. Burnham, CO Cooperative Fish and Wildlife Research Unit,
Fort Collins, CO, [pers. comm.]).

2.4 Stock-recruitment models. A commonly used approach to
modeling the relationship between fishery stock size (spawners) and
number of recruits is the Ricker model (Ricker [1975]). One form of
this model (Ricker [1975, p.283]) is

(6) R = Sea−bS ,

where R is number of recruits, S is number of spawners, ea (where a
is Ricker a) is the slope of the Ricker curve near 0, (Figure 2a) and
the inverse of b (i.e., Ricker b) is the maximum level of recruitment
(Figure 2b). A natural logarithm transformation often is applied to
equation (6) for ease of use, which yields lnR = lnS + a − bS.

Deriso et al. [1996] evaluated a set of Ricker-type models modified
from equation (6) to develop a simple stock-recruitment model for es-
timating factors affecting survival of 13 index stocks of spring/summer
chinook salmon in the Columbia River basin. They modified the basic
Ricker model by adding various combinations of covariates represent-
ing in-river passage mortality of salmon traveling to the ocean and
individual stream random effects. Estimates of spawners and recruits
were generated by Beamesderfer et al. [1998] using run reconstruction
methods (Starr and Hilborn [1988]). Numbers of spawners were esti-
mated from redd counts, counts of live fish, and carcass counts, whereas
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FIGURE 2 Effects of different Ricker a (slope near 0) and Ricker b (peak of
curve) values on the Ricker stock-recruitment curve. (a) illustrates the effect
of a constant Ricker b (b=−.005) and different values of Ricker a (open circle:
a = 1; filled circle: a = 1.5; and triangle: a = 2) on the Ricker curve. (b)
displays a constant Ricker a (a=1.5, which translates into 200 spawners) and
different values of Ricker b (open circle: b=0.005; filled circle: b=0.00375; and
triangle: b=0.0025).
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numbers of recruits were returning fish measured to the mouth of the
Columbia River (Beamesderfer et al. [1998], Schaller et al. [1999]). Most
of the influences of hatchery fish on these spawner-recruit estimates for
each stock were assumed to be removed (Beamesderfer et al. [1998]).

Based on an AIC selection criterion, the best approximating model
chosen by Deriso et al. [1996] was the one with no spawner measurement
error and stock-specific Ricker a values,

(7) lnRt,i = lnSt,i + ai + δt − biSt,i − mt + εt,i,

where Rt,i was the Columbia River observed spawning returns (recruit-
ment) for stock i during year t, St,i was the observed spawners for stock
i during year t, ai was the Ricker a parameter for stock i, bi was the
Ricker b parameter for stock i, δt was the year-effect parameter for year
t, mt was the in-river passage mortality during year t and εt,i was the
multiplicative residual error (assumed to be distributed as N(0, σ2

ε);
Deriso et al. [1996]). In this model, Ricker a contains the density-
independent sources of mortality for the various salmon life stages (fry
through adult), whereas the inverse of Ricker b reflects the maximum re-
cruitment of different spawning and rearing areas (Deriso et al. [1996]).
Note that equation (7) is the loge-transformed version of equation (6)
with additional subscripts for year t and stock i as well as δt, mt and
εt,i terms.

The year-effect parameter in equation (7) accounted for mortality fac-
tors affecting all stocks such as regional changes in terrestrial climate
and large changes in survival rates of chinook salmon in the marine en-
vironment; ocean conditions were assumed to be constant across stocks.
Although chinook salmon may spawn at ages 3, 4 or 5 years, Deriso et
al. [1996] assumed that inter-annual variation in ocean mortality was
limited to their first 2 years of life in the ocean (i.e., ocean survival
after age 4 is assumed constant).

As defined by Deriso et al. [1996], in-river passage mortality was
the sum of two components, d · X and µt. The first component
was a combination of the number of dams encountered by chinook
salmon during downstream migration (d), which differed depending
on year, and the dam passage mortality for each of these dams (X).
During recording years 1952 1969, d was the actual number of dams
encountered between the spawning/rearing area and the lowest dam in
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the system (Bonneville Dam, Figure 1) inclusive (range = 1 9 dams),
whereas during 1970 1990 it was the number of dams between John
Day Dam and Bonneville Dam, i.e., 3. Splitting time intervals in this
way was done because Deriso et al.’s [1996] original emphasis was on
estimation of passage mortality of the Snake River stocks (Figure 1)
since 1970.

The second component of in-river passage mortality was the net dam
passage mortality, µt, from both the mid-Columbia and Snake River
stocks to the John Day Dam during 1970 1990 (Deriso et al. [1996]).
This net mortality included effects of dam passage across all life stages
of chinook salmon. For example, in-river passage mortality through
1969 was based on the actual number of dams encountered by chinook
salmon from each stock during downstream migration (i.e., 1 9 dams),
whereas after 1969 it was based on the number of dams encountered
between John Day Dam and Bonneville Dam (i.e., 3) plus the net dam
passage mortality from the mid-Columbia and Snake River stocks to
the John Day Dam. Note that the first component of in-river passage
mortality, d · X, assumed passage mortality was proportional to the
number of dams encountered during downstream migration (Deriso et
al. [1996]). Other models containing passage mortalities differing by
year and dam were considered in other candidate models by Deriso et
al. [1996], but results indicated that they were implausible relative to
the model form of equation (7) containing the (d ·X)+µ representation
of in-river passage mortality.

Two factors led us to revisit modeling results of Deriso et al. [1996].
First, spawner-recruit data from the John Day Middle Fork during
1959 1973 had an unusually large influence upon parameter estimates,
including ai, generated by the model in equation (7) (R. Hinrichsen,
University of Washington, Seattle, WA [pers. comm]). Therefore, we
needed to remove the pre-1974 data from John Day Middle Fork and
refit at least some of the Ricker-type models considered by Deriso
et al. [1996] to see if equation (7) still would be chosen as the best
approximating model. Second, Beamesderfer et al. [1998] and R.
Beamesderfer (Oregon Dept. of Fish and Wildlife, Portland, OR [pers.
comm.]) provided spawner-recruit data for an additional 12 stocks
(compared to 13 stocks available to Deriso et al. [1996]), which afforded
us the opportunity to more rigorously evaluate the relative importance
of the Ricker-type models. Consequently, we considered a set of 8
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candidate Ricker-type models, including equation (7), and 7 others
that differed from equation (7) by the Ricker a term and the in-river
passage mortality term (Table 2; R. Deriso, Inter-American Tropical
Tuna Commission, San Diego, CA [pers. comm.]). We considered two
separate parameterizations of in-river passage mortality: 1) (d ·X)+µt

described above and 2) number of days, on average, required for water
to pass from the head of lower Granite Dam reservoir to Bonneville
Dam (Figure 1) during salmon spring migration (water transit time;
Deriso et al. [1996]).

2.5 Landscape-level habitat models. Landscape-level data for
physiographic, geophysical and anthropogenic variables (Table 1) were
developed from variables at the subwatershed level of spatial scale,
which averaged about 7,800 ha within the Columbia River basin,
obtained from the Interior Columbia Basic Ecosystem Management
Project (Lee et al. [1997]). Because spawning/rearing areas typically
occurred in more than 1 subwatershed, landscape-level variables were a
weighted average based on spatial area of relevant subwatersheds. We
did not have data on amount of spawning/rearing habitat within each
subwatershed so we had to assume they shared equal amounts of this
habitat.

The two variables used to index land management practices (i.e.,
MNG FOR and MNG FW; Table 1) were generated from management
cluster variables from Lee et al. [1997, pp. 1130, 1132], in which they
assigned each subwatershed a predominant category from results of a
cluster analysis of variables representing land-type classification, man-
agement classification, ownership, percent grazed and percent wilder-
ness. We further pooled Lee et al.’s [1997] forest management categories
into a single category, U.S. Forest Service and private forests with mod-
erate to high impact management practices (i.e., logging and grazing;
referred to as managed forests). We then calculated a percentage of
each category (i.e., managed forests and wilderness areas), contained
in a spawning/rearing area as defined by the spatial areas of the rel-
evant subwatersheds. For instance, say the spawning/rearing area for
a stock was contained in 2 subwatersheds, one of which was twice as
large as the other, with the larger one categorized as managed forest
and the other as wilderness. In this case, the managed forest vari-
able, MNG FOR, would be assigned 67% and the wilderness variable,
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TABLE 2. Formula, number and name, and description of Ricker-type models

composing the candidate set that were fitted with spawner-recruit data from 25

index stocks of spring/summer chinook salmon in the Columbia River basin.

Model Formula Model Number and Name Description

lnRt,i=lnSt,i+ai+δt (1) Stock-specific Ricker a Same as equation (7); in-river

−biSt,i−mt+εt,i passage mortality (mt) is the

sum of two terms: 1) actual

number of dams encountered (d)

times the passage mortality for

each dam (X) and 2) net dam

passage mortality from both

mid-Columbia and Snake River

stocks (µt).

lnRt,i=β0+lnSt,i+δt (2) Common Ricker a Same as Model (1) except

−biSt,i−mt+εt,i Ricker a is assumed to be

the same across all stocks, and

is contained in the intercept

term, β0.

lnRt,i=lnSt,i+ai+δt (3) Stock-specific Ricker a, Same as Model (1) except

−biSt,i−m∗
t +εt,i common µt the net dam passage

mortality (µ∗
t ) within

the in-river passage mortality

term (m∗
t ) is assumed to be

the same for the mid-Columbia

and Snake regions

lnRt,i=β0+lnSt,i+δt (4) Common Ricker a, Same as Model (3) except

−biSt,i−m∗
t +εt,i common µt Ricker a is assumed to be

the same across stocks and is

contained in the intercept

term, β0.

lnRt,i=lnSt,i+ai (5) Stock-specific Ricker a, Same as Model (1) except

+δt −biSt,i REGION∗WTT the in-river passage

−REGION∗WTT+εt,i mortality term (mt) is

replaced by the interaction

between REGION and water

transit time (WTT)
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TABLE 2. (Continued)

Model Formula Model Number and Name Description

lnRt,i=β0+lnSt,i (6) Common Ricker a, Same as Model (5) except

+δt −biSt,i REGION∗WTT Ricker a is assumed to be

−REGION∗WTT+εt,i the same across stocks and

is contained in the intercept

term, β0

lnRt,i=lnSt,i+ai+δt (7) Stock-specific Ricker a, Same as Model (1) except

−biSt,i−WTT+εt,i common WTT the in-river passage

mortality term (mt) is replaced

by water transit time (WTT)

lnRt,i=β0+lnSt,i+δt (8) Common Ricker a, Same as Model (7) except

−biSt,i−WTT+εt,i common WTT Ricker a is assumed to be the

same across stocks and is

contained in the intercept

term, β0.

Note: Water transit time (WTT) is the number of days, on average, required
for water to pass from the head of lower Granite Dam reservoir to Bonneville
Dam during salmon spring migration (Deriso et al. [1996], Figure 1). REGION
is described in Table 1; all other terms in the equations are defined in the text.

MNG FW, would be assigned 33%. Thus, these two variables repre-
sented a weighted percentage of categorical variables, which themselves
were based on a predominant category for each subwatershed generated
from a mixture of land-type classification, management classification,
ownership, percent grazed and percent wilderness. Further, a third
variable, not included in our analyses because of its linear dependence
with MNG FOR and MNG FW (i.e., all 3 summed to 1) contained
private and Bureau of Land Management rangeland and U.S. Forest
Service moderate impact (grazed) forest and rangeland.

Because the stock-recruitment model containing common â values
was the only plausible model given the data (see Section 3) we used
the inverse of b̂i (which is maximum recruitment) instead of âi as a
response variable in the second-stage, landscape-level habitat models.
We also attempted to use the coefficient of variation of b̂i as the
response variable in a second set of second-stage models to account for
the variability in b̂i among index stocks; however, model diagnostics
(see below) revealed a poorly fitting model and typical transformations
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would have changed the model form so as to make results biologically
uninterpretable. Therefore, we limited our second-stage models to
those with point estimates of maximum recruitment as the response
variable.

For the second stage of modeling, we constructed a global linear re-
gression model containing various physiographic, geophysical and an-
thropogenic landscape variables (Table 1) that may have had important
influences on maximum recruitment of chinook salmon in their spawn-
ing/rearing areas. Choice of predictors was guided by results reported
in Lee et al. [1997], our knowledge of the species and system, and con-
sultations with experts familiar with the study area. We also included
a class variable, REGION (Table 1, Figure 1), as a predictor based
upon preliminary modeling results of the 25 index stocks by I. Parnell
(ESSA Technologies, Ltd., Vancouver, BC [pers. comm.]) in which âi

was the response variable. Further, we included a covariate containing
kilometers of perennial and intermittent streams (ST LNGTH; Table 1)
within the spawning/rearing area for each index stock to account for
areal differences among stocks. Scaling b̂i directly (i.e., dividing by
ST LNGTH) yielded a global model with severe heteroscedasticity as
well as severe non-normality.

Variance inflation factors, studentized residual plots, and normal
probability plots were generated by SAS PROC REG (SAS Institute,
Inc. [1990]) to check for any serious departures from the model as-
sumptions of linear regression. Predictor variables with variance in-
flation factors of 10 or more (Neter et al. [1985]) were dropped from
the models. If there were no serious departures from underlying model
assumptions, SAS PROC GENMOD and SAS programming code (SAS
Institute, Inc. [1996]) were used to fit each habitat model and to gen-
erate ∆AICc values, Akaike weights, estimated regression coefficients
and estimated standard errors.

We assessed statistical significance of a given predictor variable by
whether the 95% confidence interval for its regression coefficient con-
tained 0. When computing the 95% confidence intervals, we multiplied
the estimated regression coefficients and standard errors of continu-
ous variables by a scalar (c), which was based upon the sample stan-
dard deviation of each predictor and rounded to the nearest unit (i.e.,
c · β̂i ± c · tn−1,1−α/2 · ŜE(β̂i)); modified from Hosmer and Lemeshow
[1989]. This made the magnitude of change in average maximum
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recruitment more biologically meaningful and interpretable, i.e., rather
than based on a single unit change. For instance, a change of 225
mm in mean annual precipitation is more biologically meaningful than
a change of 1 mm. Because the true parameter can occur anywhere
within the 95% confidence interval, given it is within the interval, we
used the value at either the lower bound (positive coefficient) or the
upper bound (negative coefficient) to judge biological importance of
statistically significant predictors.

3. Results. In the first stage of modeling, the stock-recruitment
model containing a common Ricker a was the only plausible model in
our set of candidate models for our data. This was true regardless
of inclusion or exclusion of pre-1974 spawner-recruitment data from
John Day Middle Fork (Table 3). Therefore, we treated b̂i from this
model as the best estimate, i.e., no model-averaging was necessary.
Ricker a estimates were similar between common Ricker a models both
with (â[ŜE] = 1.74[0.39]) and without (â[ŜE] = 1.85[0.39]) pre-1974
John Day Middle Fork data. Further, a scatter plot of b̂i from both
models closely followed a straight-line relationship, which indicated
estimates were similar in size and ordering. Thus, we used estimates
from the common Ricker a model with pre-1974 John Day Middle
Fork data included for generating the response variable for the second-
stage landscape models. Interestingly, the stock-recruitment model
containing stock-specific ai (equation (7)) was highly implausible in
both cases. Also notable was inclusion of a dam effect in lieu of water
transit time to estimate in-river passage mortality. Note that inclusion
of a dam effect in this model indicated that this effect was removed
from the b̂i used as the response variable in the second stage of models.

In the second stage of modeling, mean elevation exhibited high
multicollinearity (variance inflation factor = 13) and hence was dropped
from all models. Residual and normal probability plots generated
for the global model with mean elevation removed did not reveal
any serious violations of assumptions underlying the linear regression
model; hence, we assumed a linear regression model was appropriate
for all subsets of the global model (Burnham and Anderson [1998]).
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TABLE 3. Model description, AICc values, ∆AICc values, and Akaike weights (wi)

for two sets of Ricker-type models generated with and without spawner-recruit-

ment data of spring/summer chinook salmon from pre-1974 John Day Middle

Fork. Akaike weights represent relative plausibility of each model given the data.

With pre-1974 John Day Without pre-1974 John Day

Middle Fork Data Middle Fork Data

Model AICc ∆AICc wi AICc ∆AICc wi

Common Ricker a 2011.78 0 0.96 1970.60 0 > 0.99

Stock-specific Ricker a,

common µt 2018.13 6.35 0.04 1984.57 13.97 < 0.01

Common Ricker a,

common µt 2028.79 17.01 < 0.01 1985.76 15.16 < 0.01

Stock-specific Ricker a 2031.50 19.72 < 0.01 1995.81 25.21 < 0.01

Common Ricker a,

REGION∗WTT 2201.90 190.12 < 0.01 2162.65 192.05 < 0.01

Stock-specific Ricker a,

REGION∗WTT 2222.94 211.16 < 0.01 2187.12 216.52 < 0.01

Common Ricker a,

common WTT 2252.84 241.06 < 0.01 2208.92 238.32 < 0.01

Stock-specific Ricker a,

common WTT 2257.81 246.03 < 0.01 2213.34 242.74 < 0.01

In the candidate set of landscape attribute models, the one composed
of the weighted percent of subwatersheds containing a spawning/rearing
area that were predominantly categorized as either U.S. Forest Service
(USFS) and private forests with moderate to high impact management
practices percent or USFS managed wilderness was the most plausible
model, given the data (Akaike weight = 0.58; Table 4). However, 3
other models had Akaike weights that were at least one-eighth of 0.58.
Therefore, we applied model averaging to produce a composite model,
which displayed a reasonably strong correlation between observed and
predicted maximum recruitment of spring/summer chinook salmon
(Figure 3). Note, however, that the composite model’s predictive
ability was much more variable and hence less strong at lower observed
maximum recruitment of salmon stocks, especially those below 500
fish. Two of the 9 stocks with observed maximum recruitment below
500 fish were in the lower Columbia region; both of these stocks were
predicted to have about a 4 times larger maximum recruitment than



TABLE 4. Predictor variables, AICc values, ∆AICc values, Akaike weights (wi) and proportions of largest weight for

the set of candidate models linking maximum recruitment of spring/summer chinook salmon with landscape variables.

Akaike weights represent degree of plausibility of each model given the data. Predictors contained in models whose

proportions of the largest Akaike weight were at least 0.125 (1/8) were included in the composite model, Table 5.

Proportion

of Largest

Predictor Variables AICc ∆AICc wi wi

MNG FOR, MNG FW, ST LNGTH 390.06 0 0.58 1.00

WMTEMP, WGEODENS, ST LNGTH 392.21 2.15 0.20 0.34

WPPRECIP, MNG FOR, MNG FW, ST LNGTH 393.75 3.69 0.09 0.16

WGEODENS, MNG FOR, MNG FW, ST LNGTH 393.75 3.69 0.09 0.16

WPPRECIP, WMTEMP, WERO, WGEODENS,

ST LNGTH 398.28 8.22 0.01 0.02

WPPRECIP, WERO, MNG FOR, ST LNGTH 398.88 8.82 0.01 0.02

ST LNGTH 399.13 9.07 0.01 0.02

WGEODENS, ST LNGTH 399.72 9.66 < 0.01 < 0.01

WPPRECIP, WMTEMP, ST LNGTH 401.68 11.62 < 0.01 < 0.01

WPPRECIP, ST LNGTH 401.74 11.68 < 0.01 < 0.01

WPPRECIP, WERO, WGEODENS, MNG FOR,

ST LNGTH 403.07 13.01 < 0.01 < 0.01

WPPRECIP, WERO, ST LNGTH 404.27 14.21 < 0.01 < 0.01

REGION, ST LNGTH 404.80 14.74 < 0.01 < 0.01

REGION, WPPRECIP, WMTEMP, WERO,

WGEODENS, MNG FOR, MNG FW, ST LNGTH

(Global Model) 405.36 15.30 < 0.01 < 0.01

WPPRECIP, WERO, WGEODENS, ST LNGTH 405.38 15.32 < 0.01 < 0.01

REGION, WGEODENS, ST LNGTH 406.51 16.45 < 0.01 < 0.01
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FIGURE 3. Plot of observed versus predicted values of maximum recruitment
of 25 index stocks of spring/summer chinook in their spawning/rearing areas
within the Columbia River basin.

was observed. The remaining 7 stocks were from the Snake River region
and 5 of these were predicted to be about 1.2 to 3 times larger maximum
recruitment than was observed.

Model-averaged results indicated statistically significant relationships
between estimated maximum recruitment of spring/summer chinook
salmon and mean annual air temperature, weighted percent of sub-
watersheds predominantly categorized as either USFS and privately
managed forests or USFS managed wilderness lands, and length of
streams within the spawning/rearing area (Table 5). However, only
mean annual air temperature, weighted percent of subwatersheds pre-
dominantly categorized as USFS and privately managed forests, and
length of streams within the spawning/rearing area had lower or upper
bounds of a magnitude that could be considered biologically important.
We deemed the average change in maximum recruitment predicted for
weighted percent of USFS managed wilderness lands (i.e., at least 61
fish) to be of marginal importance relative to these other three predic-
tors.

Both mean annual air temperature and length of streams within
the spawning/rearing area were positively related to predicted max-
imum recruitment of spring/summer chinook salmon in their spawn-
ing/rearing areas (Figures 4 and 5). Index stocks in areas with mean
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FIGURE 4. Mean annual air temperature (◦C) and predicted values of
maximum recruitment of 25 index stocks of spring/summer chinook in their
spawning/rearing areas within the Columbia River basin.
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FIGURE 5. Kilometers of perennial and intermittent streams within spawn-
ing/rearing areas and predicted values of maximum recruitment of 25 index
stocks of spring/summer chinook within the Columbia River basin.
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TABLE 5. Model-average results for the composite model linking

maximum recruitment of spring/summer chinook salmon

spawning/rearing areas with various landscape-level variables.

95% Confidence

Interval

Model-Averaged Scaled

Model Regression Regression Lower Upper

Parameter Coefficient (ŜE) Scalar (c) Coefficient Bound Bound

Intercept 1104.63 (703.27)

WPPRECIP -0.15 (0.55) 225 -33.75 -290.10 222.60

WMTEMP 238.32 (71.88) 2 476.64 179.92 773.36

WGEODENS -195.39 (145.05) 1 -195.39 -494.78 104.00

MNG FOR -15.28 (3.77) 33 -504.24 -760.95 -247.53

MNG FW -10.81 (4.33) 33 -356.73 -651.66 - 61.80

ST LNGTH 1.92 (0.39) 250 480.00 278.24 681.76

Note: The scalar (c) was based on the sample standard deviation of the predictor

variable (rounded to the nearest unit) and was applied to make the magnitude of

change in average maximum recruitment more biologically meaningful; the formula

for the 95% confidence interval was c · ˆ̄βi ± c · t24,0.975 · ŜE( ˆ̄βi) (modified from

Hosmer and Lemeshow [1989]). Scalars for MNG FOR and MNG FW were set to

the same value to facilitate comparison between them.

annual air temperatures less than 3◦C tended to have predicted maxi-
mum recruitment of 1000 fish or less, whereas those in areas with tem-
peratures above 5◦C tended to have predicted maximum recruitment
of more than 1000 fish (Figure 4). Our composite model predicted that
average maximum recruitment would increase by at least 179 fish for
every increase in 2◦C mean annual air temperature, whereas it would
increase by at least 278 fish for every increase in 250 km of streams
within the spawning/rearing area (Table 5).

Weighted percent of subwatersheds predominantly categorized as
USFS and privately managed forests was negative related to predicted
maximum recruitment. Predicted maximum recruitment was more
variable at low percentages and less variable at higher percentages
(Figure 6). Further, there was not a strong regional effect, whereas
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FIGURE 6. Weighted percent of surrounding subwatersheds categorized as
predominantly containing U.S. Forest Service and private forests with mod-
erate to high impact management practices and predicted values of maxi-
mum recruitment of 25 index stocks of spring/summer chinook in their spawn-
ing/rearing areas with the Columbia River basin. Letters refer to the lower
Columbia (L), mid-Columbia (M), and Snake (S) regions.

there was one evident in the plot of predictive values for weighted
percent of USFS managed wilderness lands (Figure 7). Our composite
model predicted that average maximum recruitment of spring/summer
chinook in their spawning/rearing areas would decrease by at least 247
fish for every increase in 33% in surrounding subwatersheds categorized
as predominantly containing USFS and privately managed forest.

4. Discussion. In contrast to traditional model selection methods
based on null hypothesis testing (e.g., backward, forward, and stepwise
selection procedures), the information-theoretic approach employed in
this paper has a firm statistical foundation in both likelihood and in-
formation theory (Burnham and Anderson [1998]). Moreover, recent
advances in model averaging allow incorporation of model selection
uncertainty into parameter estimates as well as multi-model inference,
which is useful when no single model is clearly better than all other can-
didate models. Our modeling situation presented additional obstacles
because of its two-stage nature, i.e., output from the stock-recruitment
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FIGURE 7. Weighted percent of surrounding subwatersheds categorized as
predominantly containing U.S. Forest Service managed wilderness areas and
predicted values of maximum recruitment of 25 index stocks of spring/summer
chinook in their spawning/rearing areas with the Columbia River basin. Letters
refer to the lower Columbia (L), mid-Columbia (M), and Snake (S) regions.

models were used as the response variable for the landscape attribute
models. Thus, we applied information-theoretic methods separately to
both sets of models but were unable to account for the uncertainty in
estimates of maximum recruitment. Perhaps a better, but uninvesti-
gated, alternative would have been to compute a single set of model
selection criteria and Akaike weights based on both stages of models;
this could be a topic for future research.

The importance of applying an information-theoretic, model selection
approach to a set of candidate models was particularly evident in
our stock-recruitment model results. That is, the stock-recruitment
model containing a common Ricker a was the only plausible model
for these data. This is somewhat surprising because of the apparent
soundness of the biological rationale for using stock-specific Ricker
a values, being a measure of fish productivity at low stock sizes, to
help discern differences in spawning/rearing habitats across stocks of
chinook salmon that are at their lowest recorded levels. However, there
apparently was not a strong enough signal contained in these ai to
warrant inclusion of an additional 24 parameters into the model.
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Another important result of our analyses was simply that we were
able to detect a signal in the data, which is noteworthy given its
inherent level of noise. This lends support to the idea that, despite the
uncertainty involved, analyses of broadscale data can be worthwhile. It
is not surprising that kilometers of perennial and intermittent streams
in spawning/rearing areas would exhibit a strong positive relationship
with maximum recruitment. One would expect that, on average,
more stream habitat would result in more fish. More notable is the
negative relationship between maximum recruitment of chinook salmon
and weighted percent of surrounding subwatersheds categorized as
predominantly containing USFS and private forests with moderate to
high impact management practices (i.e., managed forests). Because
these results are based on correlative data, our interpretations are
necessarily speculative. Nonetheless, based on findings from previous
studies, it seems reasonable that logging (and associated road building)
and grazing practices could increase fine sediment inputs into nearby
streams (Platts et al. [1989], Myers and Swanson [1995]) and hence
increase stream turbidity and reduce extent and quality of spawning
habitat by filling interstitial spaces in the spawning gravel (Chapman
[1988]). Increased turbidity will decrease penetration of light and has
been linked to decreased primary and secondary production as well as
decreased fish production (Lloyd et al. [1987]).

Timber harvest also could reduce maximum recruitment of chinook
salmon in their spawning/rearing habitats over time by adversely
affecting quantity and quality of large woody debris (Ralph et al. [1994],
Hauer et al. [1999]), which is an important component of salmonid
stream habitat (Lisle [1986], Cederholm et al. [1997]). Although clear-
cutting a forest stand may create an initial pulse of large woody debris
into a nearby stream system (Murphy et al. [1986]), the lack of large
trees for recruitment into the stream as woody debris in the near
future would reduce the long-term habitat quality and hence maximum
recruitment of salmonids (Andrus et al. [1988], Murphy and Koski
[1989], Connolly and Hall [1999]).

In contrast to managed forests, mean annual air temperature was
positively related to maximum recruitment. Increased temperatures
may be associated with increased primary production in streams and
thereby increased food available to young fish rearing in those areas
and increased maximum recruitment.
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Although we deemed it to be of marginal biological importance, the
negative relationship between weighted percent of surrounding sub-
watersheds categorized as predominantly containing wilderness and
maximum recruitment of chinook salmon may seem counterintuitive
and therefore deserves comment. That is, one might expect spawn-
ing/rearing streams within wilderness areas to be essentially unaffected
by human influence and therefore support higher numbers of fish than
streams within managed forests. A possible reason why this may not be
the case is that wilderness areas in the Columbia River basin are typi-
cally located at higher elevations and contain headwater streams with
relatively low productivity. For instance, Scarnecchia and Bergersen
[1987] reported an inverse relationship between elevation and stream
production. Inspection of the plot of percent wilderness area versus
predicted values (Figure 7) reveals an apparent regional effect; higher
percentages of wilderness area are associated with index stocks in the
Snake region. Subwatersheds containing index stocks within the Snake
region have a higher mean elevation (1857m±77 [ŜE]) than those in
either the lower Columbia (1285m±176) or mid-Columbia (1176m±56)
regions. Lower stream productivity is exacerbated further by much re-
duced inputs of nutrients from low numbers of spawning adults, which
are considerably lower than previously recorded levels, particularly in
the Snake region. Salmon carcasses likely played a key role in sup-
porting and maintaining these stream systems historically (Bilby et al.
[1998], Wipfli et al. [1998], Cederholm et al. [1999]). In addition, as
mentioned previously, the correlative nature of the data prohibited us
from drawing conclusions regarding cause and effect relationships be-
tween landscape-level attributes and maximum recruitment of chinook
salmon. Such conclusions would have required field experimentation
or an experimental management approach (Walters [1986]) at a broad
scale. In the case of weighted percent of subwatersheds predominantly
categorized as wilderness, we cannot be sure if the observed negative
relationship is due to this variable or another single or set of variables
correlated with it (e.g., mean elevation). Thus, there is potential for
confounding that cannot be adjusted for due to the nature of the data.

The lower predictive ability of our composite model at lower observed
maximum recruitment values probably indicated that variables other
than those included in this model were important for predicting lower
maximum recruitment of chinook salmon in their spawning/rearing
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areas. Unfortunately, these are also the stocks of greatest interest
because they are the ones whose continued persistence is particularly
in doubt.

When considering our results, one should keep in mind that infer-
ences based on landscape-level variables are obviously scale dependent.
That is, inferences are limited to the scale of our predictor variables.
Localized physiographic, geophysical, and anthropogenic variables that
may be affecting maximum recruitment of chinook salmon may not be
discernible at the landscape scale. For instance, a negative relation-
ship between the managed forest variable and maximum recruitment
of chinook salmon should be interpreted relative to index stocks at the
subwatershed level and across the Columbia River basin rather than
applying it on a finer scale, such as attempting to apply our results to
a particular stream reach.
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