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Classification Accuracy for Stratification
with Remotely Sensed Data

Raymond L. Czaplewski and Paul L. Patterson

ABSTRACT.  Tools are developed that help specify the classification accuracy required from
remotely sensed data. These tools are applied during the planning stage of a sample survey
that will use poststratification, prestratification with proportional allocation, or double sam-
pling for stratification. Accuracy standards are developed in terms of an “error matrix,” which
is familiar to remote sensing specialists. In addition, guidance is provided to determine when
new remotely sensed classifications are needed to maintain acceptable levels of statistical
precision with stratification. FOR. SCI. 49(3):402–408.
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OREST SURVEYS often use a simple random or sys-
tematic sample of field plots to characterize forest
conditions over extensive regions. Stratification

with remotely sensed data can improve precision of statis-
tical estimates for areal extent of different land uses and
types of forest cover. For example, the USDA Forest
Service’s Forest Inventory and Analysis (FIA) Program
measures 376,000 1 ha field plots, 125,000 of which are
forested, to characterize the 300 million ha of forest and
woodland ecosystems in the USA (Czaplewski 1999). In
addition, FIA has used double-sampling for stratification
with 9.4 million photo-interpreted plots in the first phase.
Stratification with “wall-to-wall” Landsat satellite data
can replace photo-interpretation for stratification.

The objective of this article is to suggest accuracy
standards for remotely sensed classifications that will be
used in prestratification with proportional allocation or
post-stratification (Cochran 1977, p. 91, 134). Generaliza-
tions are developed that can be applied during the early
stages of survey planning. The gain in statistical effi-
ciency with stratification is approximated for a wide range
of classification accuracies, using metrics that are familiar
to the remote sensing community (e.g., user’s and

producer’s accuracies). All that is required is a target for
statistical precision and assumptions regarding the preva-
lence and rates of change for each category of land use or
forest cover in the study area.

We begin by developing recommendations for two sub-
populations and their corresponding two strata, such as forest
and nonforest. These generalizations are then extended to
three or more subpopulations and their corresponding strata.
Recent changes in land cover or land use reduce accuracy of
older remotely sensed data, and this degrades the gains in
statistical efficiency with stratification. We develop methods
that help determine when new remotely sensed data are
needed to restore efficient stratification.

Statistical Estimators

In this section, we introduce the “error matrix” for re-
motely sensed classifications (e.g., Congalton 1991), and
relate this to a statistical estimator that uses stratification.
Next, the “design effect” is offered as a scalar measure of the
gain in statistical efficiency achieved through a stratified
sampling design. Objectives for gains in statistical efficiency
will be expressed in terms of this design effect, and the design
effect will be incorporated into the error matrix. This allows
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us to make generalizations in terms that are familiar to remote
sensing specialists.

Error Matrix for Remote Sensing
Assume the population is subdivided into m subpopula-

tions, such as forest and nonforest cover (m = 2). Each unit of
the population is in one and only one subpopulation. Our goal
is estimation of the proportion, P(Ai), of each subpopulation
Ai in the population. An estimated proportion is readily
converted into a percentage or an area (e.g., number of
hectares). Let P(Bj) be the proportion of the total population
in stratum Bj. Using the notation of a joint probability,
P(Ai∩Bj) denotes the proportion of the population that is
jointly within subpopulation Ai and remotely sensed stratum
Bj. Using the notation of a conditional probability, P(Ai|Bj) is
the proportion of subpopulation Ai within remotely sensed
stratum Bj, where P(Ai | Bj) = P(Ai∩Bj)/P(Bj). The remote
sensing literature refers to P(Ai | Bi) as “user’s accuracy” for
category i (Congalton 1991). Statistical notation for prob-
abilities is used to avoid introduction of a new mathematical
lexicon for proportions in the error matrix.

Figure 1 gives the mathematical notation for the error
matrix when there are two subpopulations and two strata
(m = 2). The sum of diagonal elements in the first matrix of
Figure 1 is termed “overall accuracy,” and each diagonal
element in the second matrix is termed the “user’s accuracy”
by Congalton (1991).

Simple Random Sampling
With simple random sampling, Cochran (1977, p. 51–52)

gives the estimated proportion of subpopulation Ai and its

variance (see Cochran, eqs. 3.3 and 3.6, respectively). Be-
cause of the relative size of the sample (n) compared to the
total population (N), the term (N–n)/(N–1) can be ignored,
yielding the following simplified approximation:
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Stratification
Consider a simple random sample of field plots. Each

field plot is assigned to one and only one remotely sensed
stratum, and remote sensing measures the exact area of
each stratum. Since the plots are assigned to the stratum
after sampling, this is poststratified sampling. Cochran
(1977, p. 107) gives the estimated proportion of subpopu-
lation Ai in the total population. Poststratification compli-
cates the variance estimator (see Cochran, eq. 5.A.42).
However, ignoring terms of size 1/n2 and assuming N>>n
yields the following simplified approximation:

Figure 1.  The “error matrix,” or “confusion matrix,” describes classification accuracy with remotely
sensed data. The goal is estimation of the prevalence or size of each subpopulation, i.e., P(Ai).
Poststratification uses the distribution of subpopulation proportions in each stratum, i.e., P(Ai|Bi), and
the size of each stratum, i.e., P(Bi) to improve statistical estimates of P(Ai).
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Design Effect
The improvement in statistical efficiency with stratifica-

tion is typically quantified by the ratio of variances with and
without stratification, which is defined as the “design effect”
and denoted by k (Särndal et al. 1992). This scalar index is a
performance measure that compares efficiency of a “com-
plex” sampling design to a familiar benchmark, namely,
simple random sampling. In our case, the design effect is
approximated with Equations (1) and (2) as:
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If stratification greatly improves the estimate (i.e., re-
duces the variance of the estimate compared to simple ran-
dom sampling), then k will approach the value of 0. If
stratification has little beneficial effect, then k will be nearly
equal to 1. In the following sections, the design effect is used
to further simplify the mathematics, reduce the number of a
priori assumptions needed to construct an expected error
matrix, and produce broad generalizations that are useful in
survey planning.

Two Subpopulations

Czaplewski and Patterson (in press) rearrange Equation
(3) for m = 2 into:
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We assume P(Ai | Bi) > P(Ai) to assure that the design
effect remains the positive ratio of two variances.

The “relative classification accuracy” in Equation (4)
helps develop the generalizations that follow. For example,
Czaplewski and Patterson (2001) show that P(Ai) = P(Bi)
when relative accuracies are identical in both strata. This
produces a symmetry in the error matrix that simplifies the
algebra and reduces the number of assumptions. Further-
more, this symmetry forces “user’s accuracy” to equal
“producer’s accuracy” within each category, which reduces
the number of metrics that must be considered by remote
sensing specialists when setting performance standards for
classification accuracy. Figure 2, which is a special case of
the error matrix in Figure 1, incorporates relative classifica-
tion accuracies that are identical in both strata [Equation (5)].

Required Accuracy
Table 1 defines five different levels of design effect k and

the corresponding degree of statistical efficiency at each
level of k. Table 2 gives the classification accuracy required
to achieve these various levels of gain, assuming the error
matrix has the structure given in Figure 2.

For example, assume that the study area is covered with 30%
forest and 70% nonforest. Assume that a “substantial” gain in
statistical efficiency is required to justify the extra expense of
stratification with remotely sensed data. Using Table 1, these
assumptions require that k = 0.50. Given these assumptions and
specifications, and using Table 2, we recommend that classifi-
cation accuracy for the remotely sensed “map” must be at least
79% for forest cover and 91% for nonforest cover. The recom-
mended accuracies in Table 2 simultaneously apply to both
user’s and producer’s accuracy (Congalton 1991) because they

Figure 2.  Special case of an error matrix for two subpopulations and their corresponding strata when
the relative classification accuracy in each stratum is identical [Equation (5)]. These assumptions
permit generalizations that are useful in setting accuracy standards for remotely sensed classifications
(e.g., Table 2).
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Table 1. Definition of five levels of gain in statistical efficiency from stratification.

Design effect
k = VSTR/VSRS

Gain in efficiency
through poststratification

Increase in effective
number of plots*
gained through
stratification

Relative variance of stratified
sampling compared to simple

random sampling
100 ×V VSTR SRS/

Relative standard error† of
stratified sampling compared
to simple random sampling

100 × V VSTR SRS/
.................................................(%) .......................................................

k = 1.00 No Gain None 100 100
k = 0.83 Minimal gain 1.2-fold 83 91
k = 0.67 Moderate gain 1.5-fold 67 82
k = 0.50 Substantial gain 2-fold 50 71
k = 0.25 Excellent gain 4-fold 25 50
* The increase in sample size n that would be required to achieve the same variance without stratification.
† Approximately proportional to the confidence interval.

are based on the special case of the symmetrical error matrix in
Figure 2. If these accuracy standards are met, then Table 1
indicates that there would be a two-fold increase required in the
number of plots in a simple random sample to achieve this same
level of statistical efficiency without remotely sensed data;
stratification with remote sensing would yield an expected 50%
decrease in estimation variance relative to simple random sam-
pling; and the confidence interval for the estimate of forest area
would be only 71% as wide as the interval without remotely
sensed data.

Three or More Subpopulations

The number of cells in an error matrix increases geometri-
cally with the number of remotely sensed strata and their
corresponding subpopulations. Therefore, further assump-
tions are needed to extend generalizations to more complex
classification systems. Later, we will discuss an alternative to
these assumptions.

Consider two subpopulations that have the error matrix in
Figure 2. Next, form a total of three subpopulations by
subdividing subpopulation A1 into two parts. The size of the
first part is τP(A1), 0 < τ <1, and the size of the second part
is (1 – τ)P(A1). For example, start with forest and nonforest
subpopulations. Then, subdivide forest into hardwood and
softwood stands. Assume that the relative classification ac-
curacies [Equation (5)] in each subdivision remain equal.
Under this assumption, absolute accuracies decrease in the
hardwood and softwood strata because their sizes τP(A1) and
(1 – τ)P(A1) are smaller than the total size of entire forested

subpopulation P(A1), as shown in Table 2. Assume the size of
each stratum equals the size of its corresponding subpopula-
tion for each of the three categories (similar to the error
matrix in Figure 2). Finally, assume that misclassification
errors between forest and nonforest are independent of whether
or not the forest is a hardwood or softwood stand. Figure 3
gives the 3 × 3 error matrix under these assumptions.

Next, regroup the softwood forest category with the
nonforest category, leaving two subpopulations: hardwood
forest and nonhardwood forest. The resulting 2 × 2 error
matrix retains the same structure as the error matrix in Figure
2, where the relative classification accuracies for hardwood
and nonhardwood forest equal those for the original forest
and nonforest categories. Previous generalizations, which
apply to two subpopulations, now apply to the hardwood
forest category. Alternatively, hardwood forest could be
grouped with nonforest to produce two categories: softwood
forest and nonsoftwood forest. The resulting error matrix also
has the same structure as Figure 2. The sequential bifurcation
of subpopulations can proceed many times to form numerous
categories, thus producing a “binary-tree” classification sys-
tem. Therefore, the generalizations for two subpopulations in
Table 2 apply to any single category under these assumptions.

As the number of subpopulations increase, the size P(Ai)
of each subpopulation tends to become smaller, and the
accuracy P(Ai | Bi) required for a given design effect de-
creases (see Table 2). Assume the prevalence of each of the
m subpopulations is identical, i.e., P(Ai)=1/m; all strata have
the same relative classification accuracy [Equation (5)]; and

Table 2. User’s and producer’s accuracies required from remotely sensed classifications to achieve given gains in
statistical efficiency with stratification.

Prevalence of
subpopulation in
study area P(Ai)

Excellent gain
k = 0.25

Substantial gain
k = 0.50

Moderate gain
k = 0.67

Minimal gain
k = 0.83

No gain
k = 1.00

............................................................................................................... (%)................................................................................................................
1 87 71 58 41 1
5 87 72 60 44 5

10 88 74 62 47 10
20 89 77 66 53 20
30 91 79 70 59 30
40 92 82 75 64 40
50 93 85 79 70 50
60 95 88 83 76 60
70 96 91 87 82 70
80 97 94 92 88 80
90 99 97 96 94 90
95 99 99 98 97 95
99 100 100 100 99 99
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a remotely sensed stratum corresponds to each subpopulation
(i.e., an m × m error matrix). Figure 4 gives the resulting
accuracy standards for given gains in statistical efficiency as
a function of the number of categories (m) in the classification
system. When there are ten or more categories, classification
accuracy in remotely sensed strata should exceed 40% to
attain even minimal gains in statistical efficiency. Substantial
gains require accuracies exceeding 70% in each stratum. We
offer Table 2 and Figure 4 as approximate guidance for any
classification system, although our derivations strictly apply
to binary-tree systems with the given assumptions.

 Change in Efficiency Over Time

Landscapes change over time through shifts in land use,
land management, succession, and disturbance. Field plots at
time t may be stratified using remotely sensed data that were
acquired many years in the past (i.e., time 0). Some portion
of the total “classification error” is caused by changes in the
landscape between time 0 and t, and not by the accuracy of the
remotely sensed classifications at time 0. To explore the
question “How old can the remotely sensed data become
before their value for stratification becomes seriously de-
graded?,” we introduce a transition model between two
subpopulations.

Assume subpopulation size P(A1)t at time t equals some
fraction ϕ1 of its size at time 0, where 0 < ϕ1 <1. The
transition rate ϕ1 spans an unspecified time interval t, where
exact interval length must be specified for each unique
application. The corresponding transition rate from subpopu-
lation A2 to A1 is ϕ2. Since the remotely sensed data were
acquired only at time 0, the size of each stratum, P(Bi),
remains unchanged between times 0 and t. Assume the
transition rates for every subpopulation are independent of
the remotely sensed strata, and both strata share the same
initial design effect k0 at time 0. Figure 5 gives the error
matrix under these assumptions. Define c as the relative loss
in statistical efficiency caused by transitions among the two
subpopulations, where the design effect at time t is kt = c(1 –
k0) + k0. This definition facilitates generalizations, as shown
in the next paragraph.

There is a broad range of possible transition rates in
various landscapes. Table 3 considers a few special cases
from which useful generalizations are possible. First, assume
losses occur from subpopulation A1(ϕ1 > 0), but not from
subpopulation A2(ϕ2 = 0). For example, let subpopulation A1
represent forestland use, and the stratification is based on 10-
yr-old remotely sensed data. Assume 1% per year of the
forest is converted to another land use, such as agriculture or
urban, and the rate of change over 10 yr is ϕ1 ≈ 0.10. Assume
there are no conversions from urban or agricultural uses back
to forestland use (ϕ2 = 0). If the original forestland occupies
60% of the landscape, then the stratification based on 10-yr-
old remotely sensed data loses only c = 22% of its gain in
statistical efficiency (Table 3). If the original design effect
were k0 = 0.50, the design effect at time t would be kt = 0.22(1
– 0.50) + 0.50 = 0.61. With this definition of c, Table 3 can
quantify the relative loss in statistical efficiency without
specifying the exact value of the original design effect k0.

Although it might be counter-intuitive, the loss in effi-
ciency over time in a steady-state landscape is approximately
twice as fast as this first example. Assume the loss from
subpopulation A1 is exactly offset by the reverse transition
from subpopulation A2, i.e., P(A1) ϕ1 = P(A2) ϕ2 for the error
matrix in Figure 5. In this case, the net change in the size of
each subpopulation is zero. However, classification accuracy
decreases over time because some sites that were correctly

Figure 4.  Accuracy standards at different levels of classification
detail and given assumptions.

Figure 3.  Error matrix for three subpopulations and corresponding strata, assuming relative
classification accuracies are the same for all strata, the stratum sizes equal the subpopulations sizes,
and other assumptions. The first two categories were originally grouped into a single category in
Figure 2.
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Table 3. Relative loss of statistical efficiency (c) caused by changes in the landscape since acquisition of remotely
sensed imagery using error matrix in Figure 5.

Transition rate from subpopulation 1 into subpopulation 2 over
time t, where the reverse conversion rate is zero (ϕ2 = 0%)

Steady-state transition rates between subpopulations
1 and 2 over time t, where ϕP(A1) = ϕP(A2)

Prevalence of
subpopulation
at time 0 ϕ = 1% ϕ = 2% ϕ = 5% ϕ =10% ϕ =1% ϕ =2% ϕ =5% ϕ =10%
.............................................................................................................. (%).................................................................................................................

1 1 2 5 10 2 4 10 19
5 1 2 5 10 2 4 10 20

10 1 2 6 11 2 4 11 21
20 1 2 6 12 2 5 12 23
30 1 3 7 14 3 6 14 27
40 2 3 8 16 3 7 16 31
50 2 4 10 18 4 8 19 36
60 2 5 12 22 5 10 23 44
70 3 6 15 27 7 13 31 56
80 5 9 21 36 10 19 44 75
90 9 17 34 53 19 36 75 100
95 17 29 51 69 36 64 100 100

classified at time 0 have been converted to a different cat-
egory at time t. For example, subpopulation A1 is forest cover
in a steady-state landscape, where clearcutting is the sole
harvesting practice, the average rotation age is 30 yr, and
clearcuts return to forest cover after 3 yr. At any point in time,
approximately 3/30 = 10% of all forested lands exists as
clearcuts, with no detectable forest cover. Therefore, 30% of
the forested acreage at time 0 will be nonstocked clearcuts at
time t, i.e., ϕ1 = 0.10, and an equal number of acres in
clearcuts at time 0 have regenerated into forest cover at time
t, i.e., P(A1).1 = P(A2) ϕ2. Assume the total forest cover is
60% of the landscape. From Table 3, the estimated loss in
statistical efficiency is c = 44%.

Discussion

Remote sensing specialists frequently ask questions such
as “What accuracy is required from remotely sensed prod-
ucts?” and “When do remote sensed images become so old as
to lose their value?” The answer depends on the specific
application; therefore, users of the remotely sensed products
have the responsibility to provide the answer. When the
application is stratification to improve statistical efficiency,
then we can provide some generalities and “rules of thumb”
that help provide useful answers.

Consider the following example. The user needs estimates
of area for each of 30 types of forest conditions and nonforest
cover types. These 30 categories can be accurately identified
on field plots, but this is expensive. A stratified sampling
strategy could reduce costs. Remote sensing could produce a
map of these 30 categories, and each category in the map
could be a stratum for statistical estimates. Unfortunately,
classification accuracy is expected to be 40% or less for this

detailed level of thematic resolution. Based on Figure 4 with
m = 30, a user’s accuracy of 40% is not expected to produce
noticeable gain in statistical efficiency. However, the user
believes that statistical estimates for a few major categories
would remain useful, and the cost of remote sensing would be
justified if the resulting stratification yields a “moderate”
gain in statistical efficiency (i.e., k = 0.67 from Table 1). The
user guesses that the 1,000,000 ha study area has approxi-
mately the following distribution of broad cover types: 600,000
ha of nonforest (60%), 200,000 ha of hardwood forest (20%),
150,000 ha of mixed forest (15%), and 50,000 ha of softwood
forest (5%). Using these guesses and Table 2 (k = 0.67), the
user specifies the following standards for both user’s and
producer’s accuracies with remote sensing: 83% for nonforest,
66% for hardwood forest, 64% for mixed forest, and 60%
softwood forest. Several months later, the remotely sensed
map is delivered, and it is used for stratification. The map
accuracy surpasses the original standards set by the user. At
this final stage of the project, there are sufficient data to use
the precise estimators in Cochran (1977) for stratified de-
signs to produce the required statistical estimates. Ten years
later, new statistical estimates are needed, but the value of the
original remotely sensed map for stratification is unknown.
Of the original 400,000 ha of forest cover, the user guesses
that 40,000 ha have been converted to other land uses (ϕ1 =
0.10) during those 10 yr. The user further assumes that there
has been no reversion of non-forest lands back to forest (ϕ2
= 0), and the transition among different forest types has been
negligible. Using Table 3, the user decides that the loss in
efficiency with the original remotely sensed map will be
about 16%, and the cost of developing a new remotely sensed
map for stratification is not justified. Then, field crews

Figure 5.  The error matrix from Figure 2 that includes transition rates (ϕi) from subpopulation Ai to Aj
between time 0 and t, where remotely sensed data, which are used to specify strata B1 and B are
acquired at time t = 0.
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reclassify the sample of field plots, the original remotely
sensed map is reused for stratification, and new statistics are
generated using estimators from Cochran (1977).

In this example, the user makes certain educated guesses
during the planning stage of a project (e.g., the approxi-
mate prevalence of each land cover category). These
guesses are then used with our tools, which are based on
additional assumptions (e.g., identical relative accura-
cies). As an alternative in the above example, the user
could forgo the assumptions that underlie our tools and
predict each user’s accuracy in the 4x4 error matrix. These
16 additional guesses could be put directly into equations
in Cochran (1977) to predict sampling errors with stratifi-
cation. The user must weigh the risk of this uncertain
information compared to the cost of better information on
which planning decisions are made.

We have not made careful distinctions among different
stratified sampling designs. The approximations used in
Equation (2) obviate the differences between poststratification
and prestratification with proportional allocation. If there is
sufficient sampling intensity at the first phase of double
sampling for stratification, then the effects of sampling error
at that phase are relatively negligible, and recommendations
for stratified sampling will be approximately correct. There-
fore, we offer these tools as a reasonable basis for accuracy
standards, regardless of the specific stratification strategy.

Table 2 shows a strong dependence between accuracy and
prevalence. If a subpopulation is common, then the classifi-
cation accuracy must be very high. If the subpopulation is
rare, then less accuracy is sufficient. This pattern also appears
in Table 3, where changes in a common category over time
quickly degrade effectiveness of old remotely sensed data.
For example, estimates are needed for the area of rare old

growth forest, which might cover only 5% of a study area. In
order to achieve “excellent” gains through stratification,
Table 2 indicates that accuracy for old growth need only be
87%, whereas accuracy for the remaining landscape must be
at least 99%. Therefore, the remote sensing specialist should
strive for perfect classification accuracy in the non-old-
growth stratum, and accept less accuracy in the old-growth
stratum. This stratification, when used with the field sample,
will produce unbiased estimates of old-growth area, even
though the accuracy of remote sensing for the old-growth
stratum is less than the other stratum.

The process for setting objective a priori accuracy stan-
dards for remotely sensed products is difficult. When the
application is stratification for statistical efficiency, the tools
presented here are presented as a potential improvement over
current ad hoc techniques.
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