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1. INTRODUCTION 

No thematic map is perfect. Some pixels or polygons are not accurately 

classified, no matter how well the map is crafted. Therefore, thematic maps 

need metadata that sufficiently characterize the nature and degree of these 

imperfections. To decision-makers, an accuracy assessment helps judge the 

risks of using imperfect geospatial data. To analysts, an accuracy assessment 

helps describe the reliability of the map for geospatial analyses and 

modeling, and the distribution of different types of “true” land cover within 

each mapped category. To producers of thematic maps, an accuracy 

assessment measures the degree of technical success for alternative 

algorithms or techniques. To project managers, an accuracy assessment 

helps determine contract compliance or measure performance of technical 

staff. 

1.1 Random sampling 

There are two general methods to obtain reference data for an accuracy 

assessment: ad hoc sampling and probability sampling. Both methods 

commonly appear in remote sensing projects. However, for the following 

reasons, only probability sampling is considered in this Chapter.  

Ad hoc methods often rely on a sampling plan that selects convenient 

sites in order to minimize cost of reference data. Experts purposively select 

sites believed to be representative of the mapped area. This method can 
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produce an error matrix (e.g., Tables 5-1 to 5-3) at relatively low cost. This 

matrix accurately describes the results for the sampled sites. However, does 

that same error matrix provide a useful assessment of classification accuracy 

for the entire thematic map? The producer of the accuracy assessment would 

argue that this approach is good enough for practical purposes. In some 

benign cases, this can be true. But what if a user of the thematic map is 

skeptical of its accuracy, or what if there are disagreements over 

performance or contract compliance? Furthermore, convenient sampling 

sites are often near roads, which are frequently associated with unique 

landforms, land uses, management histories, and landscape patterns. Are 

such sites truly representative of the entire map? Are the conditions that 

cause misclassification errors similar among convenient and inconvenient 

sampling sites? Other than expert opinion, there is no good way to answer 

these questions. And what if there is a disagreement among the experts? In 

pathological situations, some “experts” might intentionally seek atypical 

sites to discredit the map’s accuracy. It is far easier to discredit the accuracy 

of a map than prove otherwise with ad hoc methods.  

The cost savings offered by ad hoc methods can also be achieved with 

probability sampling. The random sample can be constrained to a sub-

population that is accessed relatively inexpensively (e.g., all portions of the 

thematic map that are less than 500 m from a road). Valid inference is 

limited to this sampled population, but at least the inference is scientifically 

defensible. The remainder of this Chapter considers only probability 

sampling methods. 

1.2 Objectives 

The objective of this Chapter to present simple, statistically valid, and 

cost-effective statistical methods to estimate a contingency table during an 

accuracy assessment. Each row of the contingency table represents a 

category from the thematic map, and each column represents a category 

from the reference data. In the remote sensing literature, the most familiar 

contingency table (e.g., Table 5-1) is the “error matrix” or “confusion 

matrix” (Story and Congalton 1986). However, the contingency table could 

use different classification systems for the reference data and the map. For 

example, the reference data could include categories that can only be reliably 

applied by a field crew, and these data used to characterize the map 

categories in greater thematic detail. Another type of contingency table uses 

“fuzzy-set” categories (Gopal and Woodcock 1994), which cross-classifies 

points based on their thematic categories on the map and categories such as 

“Correct”, “Acceptable”, “Not right” or “Very wrong” (e.g., Table 5-2). 

These contingency tables share most of the same statistical issues, and are 

considered simultaneously in this Chapter. In addition, this Chapter covers 

only simple random sampling of points on the thematic map, and one 
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specialized type of stratified random sampling. An informed non-statistician 

can apply these simple and robust designs with little risk of procedural error. 

Table 5-1. Error matrix based on a simple random sample of 100 points from a 1,000,000-ha 

sample population, which are cross-classified by both the Map Classifier and the Reference 

Classifier.  

  Count of sample points Mapped area (ha) 

  Reference Classifier    

  

Forest 

Old-

growth 

forest 

Non-

forest 
Total 

Estimated 

(100 

sampled 

points) 

Exact (all 

Map 

Objects in 

the GIS) 

Forest 43 1 4 48 480,000 409,346 

Old-

growth 

forest 

2 6 0 8 80,000 41,634 

Non-

forest 
14 3 27 44 440,000 549,020 

M
ap

 C
la

ss
if

ie
r 

Total 59 10 31 100   

Estimated true 

area (ha) 
590,000 100,000 310,000 1,000,000 1,000,000 1,000,000 

Estimated overall accuracy: (43+6+27)/100=76%  

Kappa: [100·(43+6+27)-(59·48+10·8+31·44)]/[1002-(59·48+10·8+31·44)]= 0.58  

  Estimated producer's 

accuracy 

 Estimated user's 

accuracy 

 

Forest 43/59= 73%  43/48= 90%  

Old-growth forest 6/10= 60%  6/8= 75%  

Non-forest 27/31= 87%  27/44= 61%  

 

1.3 Definitions 

. “Map Objects” are either pixels or polygons. Map Objects are modeled 

as internally homogeneous, even though in reality they often include some 

internal heterogeneity, at least at a fine spatial scale. Therefore, problems 

associated with “mixed pixels”, or atypical inclusions within a polygon, are 

not covered in this Chapter. A “Classifier” is defined as a process that 

assigns a Map Object into one, and only one, thematic category, such as 

water, forest or barren classes, within a user-defined classification system. 

The Map Classifier might be a supervised or unsupervised algorithm 

operating on Landsat data, a photo-interpreter using aerial photography for a 

“wall-to-wall” stand map, or a geospatial model (e.g., wildlife habitat 

suitability). The Map Classifier is applied to every Map Object in the map. 

The Reference Classifier is the process that assigns an infinitesimally small 

point on the map into its “true” or “correct” category. This category could 

exactly correspond to the classification system used for the map (e.g., Table 

5-1), a user-defined classification system that differs from the system used 
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for the map, or it could be a fuzzy-set category (e.g., Table 5-2). This point 

on the map is surrounded by a larger pixel or polygon (i.e., a Map Object), 

which serves as a “support region” for application of a classification 

protocol. The Reference Classifier might be a ground crew or an interpreter 

using high-resolution aerial photography. The Reference Classifier is 

considerably more expensive to apply than the Map Classifier. Therefore, 

the Reference Classifier can only be applied to a relatively small sample of 

points (and the Map Objects that form their support regions). 

 

Table 5-2. Simple contingency table in which the Reference Classifier uses fuzzy-set 

categories to assign different degrees of correctness or error to each sample point. 

  Reference Classifier  

 

Correct Acceptable 

Not 

right 

Very 

wrong Row Total 

Forest 43 2 2 1 48 

Old-growth forest 6 0 1 1 8 

M
ap

 

C
la

ss
if

ie
r 

Non-forest 27 10 4 3 44 

 Column Total 76 11 8 5 100 

 

Table 5-1 is an example of a simple error matrix, in which a sample of 

n=100 points is cross-classified by both the Map Classifier and the 

Reference Classifier. In this example, both the Map and Reference 

Classifiers classified 43 points as forest, while only one point is incorrectly 

classified as old-growth forest on the map but classified as forest with the 

reference data. On the other hand, Table 5-2 is a simple example of a fuzzy-

set contingency table, where the Reference Classifier uses linguistic values 

to describe the relative degree of correctness or error to each point. Assume 

this sample of 100 points came from a statistically valid, simple random 

sample of points on the map. Then the counts in Tables 5-1 and 5-2 can be 

directly used to estimate probabilities that any point in the map would be so 

classified by the Map and Reference Classifiers. 

1.4 Accuracy assessment statistics 

The following statistics quantitatively describe classification accuracy 

and other types of metadata for a thematic map.  

– Overall accuracy: What is the probability that any point on the map is 

assigned to exactly the same category by the Map Classifier and the 

Reference Classifier? For example, the overall accuracy in Table 5-1 is 

estimated to be 76 %. 

– Fuzzy-set accuracy: What is the probability that any point on the map 

would be assigned to one or several linguistic categories by the 

Reference Classifier? For example, the probability that the classification 
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of any point on the map is “Correct” or “Acceptable” is estimated to be 

(76 %+11 %)=87 % from Table 5-2.  

– Marginal proportions: What is proportion of the population is classified 

as Category X? Using Table 5-1 as an example, 10 % of the thematic map 

(100,000 ha) is estimated to be truly old-growth forest based on the 

Reference Classifier. Using that same sample of 100 points, the estimated 

proportion of the map classified as old-growth forest is 8 % (80,000 ha). 

– Kappa coefficient of agreement: Kappa is a scalar statistic that quantifies 

the agreement between the Reference and Map Classifiers in a 

multivariate error matrix (Campbell 1996). Values of kappa exceeding 

0.6 are considered good (Czaplewski 1994). However, the analytical 

value of the kappa statistic is questionable (Stehman, 2002), and this 

Chapter treats kappa as merely a conventional descriptive statistic. 

– Conditional probabilities given the Reference Classifier: For any point 

assigned to Category Y by the Reference Classifier, what is the 

probability that this same point would be assigned to Category X by the 

Map Classifier? For example, assume you are standing over a point on 

the ground that is surrounded by old-growth forest (based on the protocol 

used by the Reference Classifier for the support region). Table 5-1 

estimates that there is a 3/10=30 % chance of that same point being 

classified as non-forest on the map (i.e., an “omission error”). 

“Producer’s accuracy” is a special case (Story and Congalton 1986). 

Given that the Reference Classifier assigns the point to category X, what 

is the probability that the point is correctly assigned to category X by the 

Map Classifier? Producer’s accuracy is 60 % in this old-growth forest 

example. 

– Conditional probabilities given the Map Classifier: For any point 

assigned to Category X by the Map Classifier, what is the probability that 

this same point would be assigned to Category Y by the Reference 

Classifier? For example, pick any point on the map that is classified as 

old-growth forest, and then find that same point in the field. Table 5-1 

estimates that there is a (8-6)/8=25 % chance of that point being 

mislabeled as some other map class (i.e., “commission error”). User’s 

accuracy is a special case of this statistic (Story and Congalton 1986), 

which is 75 % in this example. 

2. FIVE STEPS IN AN ACCURACY ASSESSMENT  

Five steps are necessary to produce a successful, yet simple and cost 

effective, accuracy assessment. 

1. Select a probability sample of points for which expensive reference data 

will be collected to compare with classifications of corresponding points 

on the map. 
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2. Define the response design, which is the protocol used to apply the 

Reference Classifier to the support region for each sample point selected 

in Step 1. The response design must produce a “true” classification that is 

acceptable to users of the accuracy assessment. 

3. Use correct statistical methods to estimate accuracy assessment statistics 

with the sample data from Steps 1 and 2. 

4. Use diagnostic statistics to detect potential problems in the execution of 

Steps 1, 2, and 3. 

5. Present the results to both the users and producers of the map in an 

informative and intuitive format. 

The value of the accuracy assessment depends on how well each and every 

step is conducted. 

The general subject of sample surveys is well covered in general 

references, such as Cochran (1977), Särndal et al. (1992), Schreuder et al. 

(1993), Salant and Dillman (1994), Lloyd (1999), and Lohr (1999). In the 

context of accuracy assessments in remote sensing studies, Stehman and 

Czaplewski (1998) and Stehman (2001) discuss the first three steps. 

2.1 Selection of the reference sample 

The sample design specifies how to select the points at which the 

reference data are gathered. The “target population” is the area or region 

represented by the thematic map, while the “sampled population” is the 

portion of the target population that is chosen for sampling. Ideally, the 

target and sampled populations are identical, but practical constraints often 

require selecting a sampled population that is a smaller segment of the target 

population. 

For example, assume the target population is a 4,000,000 ha region 

covered by the thematic map. To reduce the cost of the accuracy assessment, 

the probability sample of reference points will be drawn from only those 

areas within a 500 m “buffer” from any road. A GIS is used to identify all 

portions of the thematic map within the 500 m buffer. In this example, only 

1,000,000 ha of the entire map is within the 500 m buffer. The estimated 

error matrix will validly estimate classification accuracy for that 1,000,000 

ha. Unfortunately, inferences for the remaining 3,000,000 ha of target 

population cannot be scientifically supported with data from this accuracy 

assessment. 

2.1.1 Simple random sampling 

The most straightforward and robust design is a simple random sample of 

n points on the map. Tables 5-1 and 5-2 are examples. Every sample point 

has exactly the same probability of being included in the sample, regardless 
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of the map classification. Therefore, a simple random sample can be drawn 

before the final thematic map is available. 

2.1.2 Stratified random sampling 

There are often rare map categories that are especially important to the 

user. Unfortunately, a simple random sample is expected to allocate only a 

small number of reference samples to any rare category. However, “stratified 

random sampling” can be used to allocate a different sampling intensity to 

each map category based on the importance of that category to the user. 

Usually, stratification improves statistical precision, even when the sample 

size is in each stratum is proportional to the prevalence of each stratum (i.e., 

proportional allocation). 

This Chapter defines a “stratum” as all portions of the thematic map that 

are classified into the same map category on the final thematic map. Rather 

than select a single random sample from the entire sampled population, a 

simple random sample is independently drawn within each category after the 

thematic map is completed. Compared to random sampling, stratified 

random sampling is slightly more complex; however, it remains a feasible 

choice for non-statisticians. Other approaches to stratification can be valid, 

but estimation is more complex, thus requiring the aid of a consulting 

statistician (Czaplewski 2000).  

Table 5-3A is an example of a stratified random sample, in which an 

equal number of sample points is allocated to each stratum, regardless of the 

stratum’s prevalence. However, unlike a simple random sample (e.g., Table 

5-1), raw counts in a stratified sample cannot be directly used to make 

unbiased estimates for statistics that are computed from multiple strata (i.e., 

multiple rows in the error matrix). With stratified random sampling, each 

cell in Table 5-3A must be converted into an estimated joint probability in 

order to consider the full suite of assessment statistics. This conversion has 

been done to produce Table 5-3B. Table 5-8 gives all estimators needed with 

stratified sampling. 

Stratified random sampling has several disadvantages compared to 

simple random sampling. In order to stratify on the mapped categories, the 

final thematic map must be available before reference data are collected. 

This can be several years after the remotely sensed data were originally 

acquired. Therefore, some misclassifications will actually be caused by 

changes in land cover. Furthermore, if changes are made to the thematic map 

after drawing the stratified random sample, then more complex estimators 

are needed (e.g., Czaplewski 2000), which are not covered in this Chapter. 

Alternatively, a simple random sample of reference data can be implemented 

during the earliest phases of a remote sensing study. The next section 

recommends use of an expected error matrix during the planning phase to 

evaluate the expected precision of the accuracy assessment statistics, and 
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this same planning tool can help evaluate the advantages of simple random 

sampling compared to stratified random sampling. 

2.1.3 Sample size 

One of the most fundamental questions in any accuracy assessment is 

“How many points should be sampled?” For a simple random sample, 

Czaplewski and Catts (1992) found relatively little gain in statistical 

precision beyond 500 to 1,000 sample points. Congalton (1991) recommends 

a sample size of 50 for each map category if a stratified random sample is 

used, and map categories are used to define the strata. Some stratified 

random samples allocate half of the total sampling intensity to emulate 

proportional allocation, and the remaining half to improve estimates for rare 

categories. For example, if ni• is the sample size allocated to mapped stratum 

i, n is the total sample size, pi• is the proportion of the sampled population 

mapped as category i, and there are a total of k mapped categories, then 

ni•=[pi•(n/2)+(1/k)(n/2)]. 

 Figure 5-1 and Tables 5-4 to 5-7 help the practitioner chose sample sizes 

in more specific applications. Consider a simple random sample of 100 

points. If each point 

Table 5-3. Error matrix based on a stratified sample of 100 from the population in Table 5-1 

  Count of points from stratified sample 

 A Reference Classifier  
Mapped area (ha) 

  

Forest 

Old-

growth 

forest 

Non-

forest 
Total “Estimated” Exact 

Forest 30 1 3 34  409,346 

Old-

growth 

forest 

9 22 2 33  41,634 

M
ap

 C
la

ss
if

ie
r 

(s
tr

at
a)

 

Non-

forest 
10 2 21 33  549,020 

 Total 49 25 26 100  1,000,000 

        

 B Estimates from stratified sample   

Forest 36.1% 1.2% 3.6% 40.9% 409,346 409,346 

Old-

growth 

forest 

1.1% 2.8% 0.3% 4.2% 41,634 41,634 

M
ap

 C
la

ss
if

ie
r 

Non-

forest 
16.7% 3.3% 35.0% 54.9% 549,020 549,020 

 Total 53.9% 7.3% 38.9% 100.0%   

Estimated true 

area (ha) 
538,912 73,070 388,018 1,000,000 1,000,000 1,000,000 

Estimated overall accuracy: (36.1+2.8+35.0)/100=73.9% 

  Estimated producer's accuracy Estimated user's accuracy  
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  Count of points from stratified sample 

Forest 36.1/53.9= 67.0%  36.1/40.9= 

Old-growth forest 2.8/7.3= 38.4%  2.8/4.2= 

Non-forest 35.0/38.9= 90.0%  35.0/54.9= 

30/34=88.2% 

22/33=66.7% 

21/33=63.6% 

 

is classified into “Correct” or “Incorrect”, then the proportion of correct 

classifications is equivalent to Overall Accuracy. Assume the expected 

Overall Accuracy is 75 %; the 90 % confidence interval from Table 5-5 is 67 

% to 82 %, meaning there is a 5 % chance that the true Overall Accuracy is 

less than 67 %, and another 5 % chance that the true Overall Accuracy is 

greater than 82 %. If the simple random sample were increased to 250 

points, then the confidence interval would shrink to approximately 70 % to 

80 % (Table 5-5).  Likewise, assume old-growth forest is expected to cover 

10 % of the sampled population. The 90 % confidence interval from a simple 

random sample of 100 points would be 6 % to 16 % (Table 5-5), while the 

confidence interval from 250 points would be 7 % to 14 % (Table 5-5). Only 

the user and producer of an accuracy assessment can judge whether the 

increase in statistical precision is worth the extra cost for reference data.  

The prudent practitioner will use the literature and expert judgment to 

construct an expected error matrix during the planning phase of the accuracy 

assessment. Then, the expected confidence intervals for alternate sample 

sizes and sampling designs can be computed with methods that follow in this 

Chapter. This hypothetical exercise will help anticipate the precision of the 

accuracy assessment statistics for various funding levels and sample designs. 

2.1.4 Independence of reference sample 

The sample of reference sites should not include any sites used for 

training or labeling the Map Classifier. In some sense, the Map Classifier is 

optimized to agree with a sample of training or labeling sites; therefore, the 

classification accuracy for that particular sample of sites will likely be 

greater than the accuracy expected at other sites. If training sites are used for 

accuracy assessment, then the metadata should indicate that the estimated 

accuracy is likely an overestimate of the true accuracy. If the training or 

labeling sites will be a subset of the probability sample of reference sites, 

then a simple random sub-sampling procedure should be used to separate the 

sample into two independent groups: reference sites and training sites. This 

assures that the reference sites remain a reliable probability sample. More 

complex sub-sampling procedures could produce reliable results, but a 

consulting statistician should become involved to assure that correct 

statistical estimators are used. 
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Table 5-4. Confidence belts for estimated proportions (p) in an error matrix for 95 % 

confidence coefficient (see Figure 5-1). 

  95% Confidence limits 

p Limit n=10 20 50 100 250 1000 

0% Upper 30.8 16.8 7.1 3.6 1.5 0.4% 

 Lower 0.0 0.0 0.0 0.0 0.0 0.0% 

5% Upper  24.9 15.1 11.3 8.5 6.5% 

 Lower  0.1 0.9 1.6 2.7 3.7% 

10% Upper 44.5 31.7 21.8 17.6 14.4 12.0% 

 Lower 0.3 1.2 3.3 4.9 6.6 8.2% 

15% Upper  37.9 27.9 23.5 20.0 17.4% 

 Lower  3.2 6.5 8.6 10.8 12.8% 

20% Upper 55.6 43.7 33.7 29.2 25.5 22.6% 

 Lower 2.5 5.7 10.0 12.7 15.2 17.6% 

25% Upper  49.1 39.3 34.7 30.8 27.8% 

 Lower  8.7 13.8 16.9 19.8 22.3% 

30% Upper 65.2 54.3 44.6 40.0 36.1 32.9% 

 Lower 6.7 11.9 17.9 21.2 24.4 27.2% 

35% Upper  59.2 49.8 45.2 41.3 38.0% 

 Lower  15.4 22.1 25.7 29.1 32.0% 

40% Upper 73.8 63.9 54.8 50.3 46.4 43.1% 

 Lower 12.2 19.1 26.4 30.3 33.9 36.9% 

45% Upper  68.5 60.7 55.3 51.4 48.1% 

 Lower  23.1 31.8 35.0 38.7 41.9% 

50% Upper 81.3 72.8 64.5 60.2 56.4 53.1% 

 Lower 18.7 27.2 35.5 39.8 43.6 46.9% 

55% Upper  76.9 69.1 65.0 61.3 58.1% 

 Lower  31.5 40.3 44.7 48.6 51.9% 

60% Upper 87.8 80.9 73.6 69.7 66.1 63.1% 

 Lower 26.2 36.1 45.2 49.7 53.6 56.9% 

65% Upper  84.6 77.9 74.3 70.9 68.0% 

 Lower  40.8 50.2 54.8 58.7 62.0% 

70% Upper 93.3 88.1 82.1 78.8 75.6 72.8% 

 Lower 34.8 45.7 55.4 60.0 63.9 67.1% 

75% Upper  91.3 86.2 83.1 80.2 77.7% 

 Lower  50.9 60.7 65.3 69.2 72.2% 

80% Upper 97.5 94.3 90.0 87.3 84.8 82.4% 

 Lower 44.4 56.3 66.3 70.8 74.5 77.4% 

85% Upper  96.8 93.5 91.4 89.2 87.2% 

 Lower  62.1 72.1 76.5 80.0 82.6% 

90% Upper 99.7 98.8 96.7 95.1 93.4 91.8% 

 Lower 55.5 68.3 78.2 82.4 85.6 88.0% 

95% Upper  99.9 99.1 98.4 97.3 96.3% 

 Lower  75.1 84.9 88.7 91.5 93.5% 

100% Upper 100 100 100 100 100 100% 

 Lower 69.2 83.2 92.9 96.4 98.5 99.6% 

 

Table 5-5. Confidence belts for estimated proportions (p) in an error matrix for 90 % 

confidence coefficient (see Figure 5-1).. 
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  90% Confidence limits 

p Limit n=10 20 50 100 250 1000 

0% Upper 25.9 13.9 5.8 3.0 1.2 0.3% 

 Lower 0.0 0.0 0.0 0.0 0.0 0.0% 

5% Upper  21.6 13.4 10.2 7.9 6.3% 

 Lower  0.3 1.2 2.0 3.0 3.9% 

10% Upper 39.4 28.3 19.9 16.4 13.7 11.7% 

 Lower 0.5 1.8 4.0 5.5 7.0 8.5% 

15% Upper  34.4 25.9 22.2 19.2 17.0% 

 Lower  4.2 7.5 9.5 11.4 13.2% 

20% Upper 50.7 40.1 31.6 27.7 24.6 22.2% 

 Lower 3.7 7.1 11.3 13.7 15.9 17.9% 

25% Upper  45.6 37.0 33.1 29.9 27.4% 

 Lower  10.4 15.3 18.0 20.5 22.8% 

30% Upper 60.7 50.8 42.4 38.4 35.1 32.5% 

 Lower 8.7 14.0 19.5 22.5 25.2 27.6% 

35% Upper  55.8 47.6 43.6 40.3 37.6% 

 Lower  17.7 23.8 27.1 30.0 32.5% 

40% Upper 69.6 60.6 52.6 48.7 45.4 42.6% 

 Lower 15.0 21.7 28.3 31.8 34.8 37.4% 

45% Upper  65.3 57.5 53.7 50.4 47.6% 

 Lower  25.9 32.9 36.5 39.7 42.4% 

50% Upper 77.8 69.8 62.4 58.6 55.4 52.6% 

 Lower 22.2 30.2 37.6 41.4 44.6 47.4% 

55% Upper  74.1 67.1 63.5 60.3 57.6% 

 Lower  34.7 42.5 46.3 49.6 52.4% 

60% Upper 85.0 78.3 71.7 68.2 65.2 62.6% 

 Lower 30.4 39.4 47.4 51.3 54.6 57.4% 

65% Upper  82.3 76.2 72.9 70.0 67.5% 

 Lower  44.2 52.4 56.4 59.7 62.4% 

70% Upper 91.3 86.0 80.5 77.5 74.8 72.4% 

 Lower 39.3 49.2 57.6 61.6 64.9 67.5% 

75% Upper  89.6 84.7 82.0 79.5 77.2% 

 Lower  54.4 63.0 66.9 70.1 72.6% 

80% Upper 96.3 92.9 88.7 86.3 84.1 82.1% 

 Lower 49.3 59.9 68.4 72.3 75.4 77.8% 

85% Upper  95.8 92.5 90.5 88.6 86.8% 

 Lower  65.6 74.1 77.8 80.8 83.0% 

90% Upper 99.5 98.2 96.0 94.5 93.0 91.5% 

 Lower 60.6 71.7 80.1 83.6 86.3 88.3% 

95% Upper  99.7 98.8 98.0 97.0 96.1% 

 Lower  78.4 86.6 89.8 92.1 93.7% 

100% Upper 100 100 100 100 100 100% 

 Lower 74.1 86.1 94.2 97.0 98.8 99.7% 

 

Table 5-6. Confidence belts for estimated proportions (p) in an error matrix for 80 % 

confidence coefficient (see Figure 5-1).. 

  80% Confidence limits 

p Limit n=10 20 50 100 250 1000 
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  80% Confidence limits 

0% Upper 20.6 10.9 4.5 2.3 0.9 0.2% 

 Lower 0.0 0.0 0.0 0.0 0.0 0.0% 

5% Upper  18.1 11.6 9.1 7.3 6.0% 

 Lower  0.5 1.6 2.5 3.3 4.1% 

10% Upper 33.7 24.5 17.8 15.0 12.9 11.3% 

 Lower 1.0 2.7 4.9 6.3 7.6 8.8% 

15% Upper  30.4 23.6 20.6 18.3 16.5% 

 Lower  5.6 8.8 10.5 12.1 13.6% 

20% Upper 45.0 36.1 29.1 26.1 23.6 21.7% 

 Lower 5.5 9.0 12.8 14.9 16.7 18.4% 

25% Upper  41.5 34.5 31.4 28.9 26.8% 

 Lower  12.7 17.1 19.4 21.5 23.2% 

30% Upper 55.2 46.7 39.8 36.6 34.0 31.9% 

 Lower 11.6 16.6 21.5 24.0 26.2 28.1% 

35% Upper  51.8 45.0 41.8 39.1 37.0% 

 Lower  20.7 26.0 28.7 31.0 33.0% 

40% Upper 64.6 56.7 50.1 46.9 44.2 42.0% 

 Lower 18.8 24.9 30.6 33.4 35.9 38.0% 

45% Upper  61.5 55.0 51.9 49.2 47.1% 

 Lower  29.3 35.3 38.3 40.8 42.9% 

50% Upper 73.3 66.2 59.9 56.9 54.2 52.1% 

 Lower 26.7 33.8 40.1 43.1 45.8 47.9% 

55% Upper  70.7 64.7 61.7 59.2 57.1% 

 Lower  38.5 45.0 48.1 50.8 52.9% 

60% Upper 81.2 75.1 69.4 66.6 64.1 62.0% 

 Lower 35.4 43.3 49.9 53.1 55.8 58.0% 

65% Upper  79.3 74.0 71.3 69.0 67.0% 

 Lower  48.2 55.0 58.2 60.9 63.0% 

70% Upper 88.4 83.4 78.5 76.0 73.8 71.9% 

 Lower 44.8 53.3 60.2 63.4 66.0 68.1% 

75% Upper  87.3 82.9 80.6 78.5 76.8% 

 Lower  58.5 65.5 68.6 71.1 73.2% 

80% Upper 94.5 91.0 87.2 85.1 83.3 81.6% 

 Lower 55.0 63.9 70.9 73.9 76.4 78.3% 

85% Upper  94.4 91.2 89.5 87.9 86.4% 

 Lower  69.6 76.4 79.4 81.7 83.5% 

90% Upper 99.0 97.3 95.1 93.7 92.4 91.2% 

 Lower 66.3 75.5 82.2 85.0 87.1 88.7% 

95% Upper  99.5 98.4 97.5 96.7 95.9% 

 Lower  81.9 88.4 90.9 92.7 94.0% 

100% Upper 100 100 100 100 100 100% 

 Lower 79.4 89.1 95.5 97.7 99.1 99.8% 

 

Table 5-7. Confidence belts for estimated proportions (p) in an error matrix for 50 % 

confidence coefficient (see Figure 5-1).. 

  50% Confidence limits 

p Limit n=10 20 50 100 250 1000 

0% Upper 12.9 6.7 2.7 1.4 0.6 0.1% 
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  50% Confidence limits 

 Lower 0.0 0.0 0.0 0.0 0.0 0.0% 

5% Upper  12.9 8.8 7.3 6.3 5.5% 

 Lower  1.4 2.7 3.4 4.0 4.5% 

10% Upper 24.7 18.7 14.5 12.8 11.6 10.7% 

 Lower 2.8 4.8 6.8 7.8 8.6 9.3% 

15% Upper  24.2 19.9 18.2 16.8 15.8% 

 Lower  8.7 11.2 12.4 13.4 14.2% 

20% Upper 35.5 29.6 25.2 23.4 22.0 20.9% 

 Lower 9.6 12.8 15.7 17.0 18.2 19.1% 

25% Upper  34.8 30.5 28.6 27.1 26.0% 

 Lower  17.1 20.3 21.8 23.0 24.0% 

30% Upper 45.8 40.0 35.6 33.7 32.2 31.0% 

 Lower 17.6 21.6 25.0 26.6 27.9 29.0% 

35% Upper  45.1 40.7 38.8 37.3 36.1% 

 Lower  26.1 29.7 31.4 32.8 33.9% 

40% Upper 55.5 50.1 45.8 43.9 42.3 41.1% 

 Lower 26.1 30.7 34.5 36.3 37.7 38.9% 

45% Upper  55.0 50.8 48.9 47.3 46.1% 

 Lower  35.4 39.4 41.2 42.7 43.9% 

50% Upper 64.9 59.8 55.7 53.9 52.3 51.1% 

 Lower 35.1 40.2 44.3 46.1 47.7 48.9% 

55% Upper  64.6 60.6 58.8 57.3 56.1% 

 Lower  45.0 49.2 51.1 52.7 53.9% 

60% Upper 73.9 69.3 65.5 63.7 62.3 61.1% 

 Lower 44.5 49.9 54.2 56.1 57.7 58.9% 

65% Upper  73.9 70.3 68.6 67.2 66.1% 

 Lower  54.9 59.3 61.2 62.7 63.9% 

70% Upper 82.4 78.4 75.0 73.4 72.1 71.0% 

 Lower 54.2 60.0 64.4 66.3 67.8 69.0% 

75% Upper  82.9 79.7 78.2 77.0 76.0% 

 Lower  65.2 69.5 71.4 72.9 74.0% 

80% Upper 90.4 87.2 84.3 83.0 81.8 80.9% 

 Lower 64.5 70.4 74.8 76.6 78.0 79.1% 

85% Upper  91.3 88.8 87.6 86.6 85.8% 

 Lower  75.8 80.1 81.8 83.2 84.2% 

90% Upper 97.2 95.2 93.2 92.2 91.4 90.7% 

 Lower 75.3 81.3 85.5 87.2 88.4 89.3% 

95% Upper  98.6 97.3 96.6 96.0 95.5% 

 Lower  87.1 91.2 92.7 93.7 94.5% 

100% Upper 100 100 100 100 100 100% 

 Lower 87.1 93.3 97.3 98.6 99.4 99.9% 

 

2.2 Response design 

The response design specifies how to determine the reference 

classification at a given sample point. The first step is to select the “spatial 

support region” for which the reference classification is made (Stehman and 
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Czaplewski 1998). The support region for a pixel map is discussed first, 

followed by consideration of a polygon map. 

2.2.1 Pixel map 

Assume the Map Object is a 30 m pixel. The support region might be a 

30 m square area that surrounds the sample point, even though the true 

“boundaries” of the target pixel on the map are not well known in the field 

or on an aerial photograph. Or the support area could be a circle with 50 m 

radius centered on the sample point. Regardless, the objective is to 

determine, as accurately as possible, the correct reference classification of 

the target pixel. This is accomplished within a support region that is well 

defined on the ground or an aerial photograph.  

Misregistration of sample points to the thematic map can bias the 

accuracy assessment statistics. The classification on the map at the intended 

sample point might be correct, but misregistration causes the reference 

classification to be compared to a different, nearby pixel, which might not 

have the same classification on the map. A larger support region can 

partially compensate for misregistration between the map and the sample 

point. However, if the support region becomes too large, then the reference 

classifier may not well represent the true classification of the single map 

pixel that surrounds the sample point. The support region should be similar 

to the spatial scale of the Map Object. 

Some studies lower the spatial resolution of the map near a sample point 

so that the sampled pixel will likely have the same map classification as the 

intended pixel. For example, assume the map consists of unique 

classifications of individual pixels (i.e., a moving window is not used to 

spatially filter classifications of adjacent pixels). However, during the 

accuracy assessment, a 3x3 block of pixels is formed around each sample 

point used for reference data, and some rule is used to assign a single map 

category to this block of nine potentially heterogeneous map pixels. This can 

mitigate affects of registration error, and it is possible to compare a reference 

classification for the sample point to the classification of this surrounding 

block of pixels. Regrettably, this process assesses the accuracy of an 

imaginary thematic map to which the same filtering rule was applied to all 

pixels, not the individual-pixel map that was actually produced. The 

accuracy of the unfiltered map might be similar to the accuracy of the 

filtered map, but this is speculative. If registration error is significant, then 

perhaps the entire map should be subjected to the same filtering rule. At least 

the map being assessed is the same map being delivered.  

Boundaries between adjacent forest stands and other types of land cover 

are often more heterogeneous than interiors of stands. Therefore, the effect 

of registration error can be greatest near stand edges. Some studies move the 

sample point away from edges into conditions that are more homogeneous. 
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This can be useful for developing training data in a digital classification. 

However, this same practice can reduce the scope of the accuracy 

assessment because some parts of the thematic map are excluded from the 

target population. Edge conditions can be very prevalent in detailed thematic 

maps for diverse landscapes. If the producer of the accuracy assessment 

avoids boundary conditions, such areas should be identified for the entire 

map with a GIS procedure. The extent and mapped composition of the 

excluded zone can be tabulated and reported in the assessment 

documentation, and the user of the assessment can judge the value of an 

assessment that is limited to interior conditions. 

Alternative methods are available to mitigate the effect of registration 

errors on the quality of the accuracy assessment. In addition to producing the 

reference classification, the field crew or photo-interpreter can record data 

that indicate the likelihood of misregistration error: 

1. Distance from the sample point to a stand boundary or other edge 

condition. The frequency of misclassification errors can be compared 

with the distance from an edge to gain insights into the nature of 

misregistration and misclassification errors. 

2. Classification of stands based on internal heterogeneity relative to the 

scale of the pixel (e.g., dense and uniform fine-grained canopy, frequent 

gaps with coarse-grained canopy). If the apparent misclassification error 

is remarkably higher in heterogeneous stands, then misregistration error 

might be a significant problem. 

2.2.2 Polygon map 

Assume a Map Object is a 10 ha forest stand delineated on a thematic 

map through image segmentation or photo-interpretation. The entire stand is 

classified into one and only one category on the map. 

The support area is the entire polygon that surrounds a sample point. The 

Reference Classifier is applied to the entire polygon from the map, not a 

portion of the polygon in the immediate vicinity of the sample point. It is 

important to use the polygon boundaries on the map when applying the 

Reference Classifier, and not use a special polygon delineation procedure 

that is only applied to each sample point. Otherwise, the analysis will not 

assess the thematic map being evaluated. Rather, it will assess an imaginary 

map that would have been produced if the special delineation procedure used 

for the accuracy assessment were applied to the entire thematic map.  

2.2.3 Labeling Protocol for Reference Data 

The next part of the Response Design is specification of the labeling 

protocol for the support region around each sample point. This could be 
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photo-interpretation with higher-resolution imagery, qualitative observations 

by a field crew, or sub-sampling and physical measurements by a field crew.  

The labeling protocol needs to consider the size and configuration of the 

support region (as discussed above). If the support region is large (e.g., a 

polygon), then inexpensive methods might be necessary, such as photo 

interpretation or low-intensity stand examinations. If the support region is 

small (e.g., 1 ha or smaller), then more expensive classifications using tree 

measurements might be feasible. The advantage of the latter is more precise 

and repeatable reference classifications of forest conditions. The value of the 

accuracy assessment depends upon the credibility of the labeling protocol to 

the user of the assessment. 

The quality of reference data also depends on compatibility of 

definitions. For example, there are a variety of definitions for forest and old-

growth forest, and the response design must use definitions acceptable to 

users of the assessment. Otherwise, the investment in the accuracy 

assessment might yield little practical value. However, there can be 

advantages with a more detailed classification system for the reference data. 

For example, assume that the reference data separates “shrubby wetlands” 

from “forested wetlands”, but the map groups both types of wetland into a 

single category called “wooded wetlands”. The reference data statistically 

estimate the proportion of wooded wetlands that are actually shrubby and 

forested woodlands, even though these detailed categories are not separated 

on the map. 

The quality of reference data is often a compromise between the ideal 

and the feasible. For example, interpretation of aerial photography is an 

inexpensive alternative to field classifications. Photo-interpretation is 

acceptable if the resolution of the photography is sufficient relative to the 

thematic classification system, the photography is available for the entire 

sampled population, the acquisition dates reasonably coincide with the 

remotely sensed imagery used to produce the thematic map, and these 

materials are acceptable to the user of the accuracy assessment 

There are often variations among photo-interpreters when classifying the 

land cover for a reference point. A similar problem occurs with field crews 

who produce “ocular” classifications that are not based on physical 

measurements. To partially mitigate this source of uncertainty with the 

reference data, multiple interpreters can classify the same reference points, 

and a majority rule engaged to select the classification used in the accuracy 

assessment. Sample points that have different reference classifications 

among interpreters can be inspected more closely, and perhaps a different 

protocol used to determine a more reliable reference classification. 

Secondary classifications of the sample point can also provide useful 

reference data. For example, a sample point in a forest with diverse 

conditions could be classified by an interpreter (in the field or from an aerial 

photograph) as a pine stand, but the interpreter could also record that the 
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stand might nearly meet the definition of a mixed pine/hardwood stand. 

Some assessments consider the map classification to be correct if it agrees 

with either the primary or secondary reference classification. This approach 

can be acceptable if well documented and apparent to users of the accuracy 

assessment. However, it is prudent to publish a complementary assessment, 

in which only the primary classification is used as reference data. This 

allows different users to choose the assessment that best meets their 

standards, and broadens the potential applications of the error matrix, such 

as calibration of areal estimates for misclassification bias (Czaplewski 

1992). 

Fuzzy-set classifications (e.g., Gopal and Woodcock 1994) are another 

type of reference protocol. An interpreter classifies each sample plot into 

categories such as “Correct”, “Acceptable”, “Not right” or “Very wrong”. 

An interpreter needs to know the map classification before making the 

reference classification into a fuzzy set. This could influence the reference 

interpretation, perhaps leading to biased estimates of classification accuracy. 

Metadata should document the quality of the reference data. If multiple 

interpreters are used to collect reference data, a then a summary of the 

variability among interpreters provides useful information for quantitative 

characterization. In addition, interpreters can classify each sample point 

based on their own confidence in the interpretation, for example: “Confident 

that the interpretation is correct”, “Uncertain classification”, or “Nearly a 

guess”. Such information may aid in a detailed analysis of the accuracy 

assessment data. 

2.3 Analysis 

The analysis design specifies how to mathematically combine the data 

collected in Steps 1 and 2 to accurately infer accuracy assessment statistics, 

which are listed in the beginning of this Chapter, for the sampled population. 

Stehman and Czaplewski (1998) provide general guidance and key 

references. This Chapter only considers the two simple designs that can be 

reliably analyzed by an informed user: simple random point sampling, and 

stratified random point sampling based on map categories as strata. Table 5-

8 provides the estimators for accuracy assessment statistics and their 

variances for these two designs. 

The analysis must be compatible with the statistical design. Otherwise, 

estimates can be biased and misleading. For example, consider the stratified 

random sample described in Table 5-3. If these data were incorrectly 

analyzed as though they came from a simple random sample, then the biased 

estimate of producer’s accuracy for old-growth would be 22/25=88.0 % 

(Table 5-3A) rather than the unbiased estimate of 2.8/7.3=38.4 %  
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Table 5-8. Estimators for simple random sampling and stratified random sampling, where 

each map category is a stratum. 

Sampling estimation symbols, descriptions, and equations 

Symbol Description 

i Row subscript, which designates the Map Classifier in the error matrix, 

and stratum i in stratified random sampling 

j Column subscript, which designates the Reference Classifier in the error 

matrix 

nij Number of sample points in row i and column j 

ni• Total number of sample points in row i 

n Total number of sample points 

ηk “Effective” sample size for estimate k, which is used to approximate the 

confidence interval with certain estimates 

A Total area of sampled population (known exactly from GIS) 

A•j Total area of sampled population in class i had all Map Objects been 

classified with the Reference Classifier (estimated from accuracy 

assessment sample) 

Ai• Total area of sampled population in map class i (known exactly from GIS) 

pij Proportion of sampled population classified as category i by the Map 

Classifier and category j by the Reference Classifier 

pi=j Proportion of sampled population in which the Map and Reference 

Classifiers agree (i.e., overall accuracy) 

pi• Proportion of sampled population classified as category i by the Map 

Classifier 

p•j Proportion of sampled population classified as category j by the 

Reference Classifier 

pj=Y|i=X 
Proportion of sampled population in reference category class Y given that 

the map classification is category X. For X=Y, p(j=X|i=X) equals “user’s 

accuracy.” 

pi=X|j=Y 
Proportion of sampled population in map class X given that the reference 

classification is category Y. For X=Y, p(i=Y|j=Y) equals “producer’s 

accuracy.” 

var(p) Variance of the estimated proportion p 

Simple Random Sample 
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Sampling estimation symbols, descriptions, and equations 
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Effective sample size for each of the above estimators 
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Conversion of proportions to areas for each of the above estimators 
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Cohen’s kappa coefficient of agreement 

See Hudson & Ramm (1987), Czaplewski (1994), Campbell (1996), Stehman (1996) 

 

in Table 5-3B. Likewise, the biased estimate for the true area of old-growth 

would be (25/100)·1000000=250,000 ha from Table 5-3A, whereas the 

unbiased estimate from Table 5-3B is 73,070 ha. Table 5-8 compares the 

estimators for accuracy assessment statistics for both sampling designs.  

Often overlooked is the effect of random sampling error on estimated 

accuracy statistics. Any sample estimate includes uncertainty because 

inference is made for the entire population based on a very small sample of 

that population. Sometimes this uncertainty can be large. For example, 

Tables 5-1 and 5-3B provide different estimates for the same sampled 

population. The extent of old-growth forest in the sampled population that is 

actually mapped as old-growth (i.e., producer’s accuracy) is estimated to be 

60.0 % from Table 5-1 and 38.4 % from Table 5-3B. Likewise, the true total 

area of old-growth forest in the sampled population is estimated at 100,000 

ha with Table 5-1 and 73,070 ha with Table 5-3B. All of these are unbiased 
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because estimates from the two different sampling designs would converge 

on the same true value given a sufficiently large sample size. The differences 

among estimates are caused by different degrees of random sampling error. 

The magnitude of sampling error can be objectively estimated from 

“variance statistics” (Table 5-8) and communicated as confidence intervals 

Tables 5-4 to 5-8). 

2.3.1 Confidence Intervals for Accuracy Assessment Statistics 

Confidence intervals are important to interpretation of statistics from any 

probability sample. For example, the 90 % confidence interval for overall 

accuracy in Table 5-1 is 68 % to 83 % (i.e., there is a 5 % chance that the 

true accuracy is less than 68 %, and another 5 % chance that the true 

accuracy is greater than 83 %). If a similar estimate were obtained with a 

sample size of 20 points, then the 90 % confidence interval would be 54 % 

to 90 % (Table 5-5). If an overall accuracy of 70 % is required from the 

sampled portion of the map, then a sample size of 20 points is insufficient to 

determine success with much confidence. Another example is the estimated 

area of old-growth forest in Table 5-3B, which is 7 % or 70,000 ha. From 

Table 5-8, the estimated variance is var(p•2)=0.000672, which gives an 

effective sample size of η•j =101 (Table 5-8). The approximate 90 % 

confidence interval is 3 % to 13 % of the sampled population (interpolated 

from Table 5-5), which equals 30,000 ha to 130,000 ha. If a similar estimate 

were made from a stratified random sample of 1000 points, then the 90 % 

confidence interval would be 6 % to 9 % or 60,000 ha to 90,000 ha. If 

confidence intervals are ignored, then there is a high risk of misinterpreting 

the results of an accuracy assessment. 

2.3.2 Confidence Coefficient 

Figure 5-1 and Tables 5-4 to 5-7 give confidence intervals for the 95 %, 

90 %, 80 % and 50 % confidence coefficients. The choice of the confidence 

coefficient depends on the risks of incorrect inference to the user of the 

thematic map. If the user needs to be relatively certain that the true value is 

within the confidence interval, then the 95 % level would be a good choice. 

There is only a 2.5 % chance that the true value is less than the lower bound 

of the confidence interval, and another 2.5 % chance that the true value 

exceeds the upper bound of the interval. If more risk is acceptable, then the 

50 % level could be used; there would be a 25 % chance that the true value 

is less than the lower bound of the confidence interval, and another 25 % 

chance that the true value exceeds the upper bound of the interval. For 

example, assume a mapped stratum is sampled with 50 points; and assume 

that the estimate of user’s accuracy is 90 % (i.e., 45 of the 50 points are 

classified as forest with the reference data). The confidence interval at the 95 
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% level for the estimate of user’s accuracy would be 78.2 % to 96.7 % 

(Table 5-4), while the confidence interval for the same estimate at the 50 % 

level would be 85.5 % to 93.2 % (Table 5-7). 

 

2.3.3 Computation of Confidence Intervals 

Confidence intervals can be interpolated from Tables 5-4 to 5-7. 

However, these functions are non-linear, and interpolations can be 

inaccurate, especially for sample sizes that vary considerably from those in 

the tables. Alternatively, several confidence interval calculators for 

proportions (i.e., the binomial distribution) are available on the Internet. 

Table 5-8 provides approximate methods to estimate confidence intervals 

using an “effective sample size” (ηe) with Tables 5-4 to 5-7. This procedure 

will yield the exact interval, except for any statistic that is a ratio of two 

estimates (e.g., producer’s accuracy). In this latter case, the confidence 

interval computation requires a Taylor-series approximation for the 

estimated variance, plus the beta-binomial distribution and specialized 

software for a numerical solution. In this case, use of an effective sample 

size with the binomial distribution is a convenient approximation. The 

effective sample size can be a non-integer, and is rounded to the nearest 

integer value. 

 

I suggest using the following figure, which is more concise than previous ones. I 

originally envisioned the reader using the figure to interpolate confidence intervals for 

their own applications. That’s why I made them big. However, I later added tables 5-4 to 

5-7 to make the interpolations more accurate. Now, the purpose of the figure is to give 

reader a visualization of the tradeoffs between confidence intervals, sample size and 

confidence coefficient.  

 

Suggest this figure be moved into Section 2.1.3 . 

 

 

 
 

  

Figure 5-1. Confidence belts for estimated proportions in the cells and margins of an error 

matrix. The confidence coefficient is the probability that the true (but known) value is 

within the confidence belt. The effective sample size is denoted as n (see Table 5-8). Use 

Tables 5-4 to 5-7 to make more precise interpolations. 
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2.3.4 Cells that Equal Zero and Perfect Accuracy 

Through random sampling error, a cell in the error matrix, usually 

representing a classification error, can have a value of zero. The true value is 

likely small, but greater than zero. Tables 5-4 to 5-7 include confidence 

intervals that cover such unobserved cross-classifications. For example, in 

Table 5-1, there were no cases among the n=100 sample points in which the 

map classification is old-growth forest and the reference classification is 

non-forest. Therefore, the estimated proportion of the map that is classified 

as old-growth forest and is truly non-forest is 0. However, from Table 5-5, 

the 90 % confidence interval for this estimate is 0 % to 3 %, or up to 30,000 

ha; this means that there is an estimated 10 % chance that the true number of 

hectares so cross-classified exceeds 30,000 ha. A similar situation arises 

when all sample points are correctly classified, which is most likely 

observed with producer’s or user’s accuracy for rare category. For example, 

assume that the producer’s accuracy is estimated at 100 % with an effective 

sample size of ηe=10. From Table 5-5, the approximate 90 % confidence 

interval would be 74.1 % to 100 %, meaning that there is a 10 % chance that 

the true producer’s accuracy for that category is less than 74.1 %. See Lloyd 

(1999) for a more detailed summary of these issues. 

2.4 Quality assurance 

In addition to the usual care required during data collection and 

management, other steps can help assure the quality of an accuracy 

assessment. One very useful diagnostic tool is estimation of known values 

with the sample of reference points and the selected analysis design (i.e., 

Steps 1 and 3 above). If the sample estimates do not reasonably agree with 

the known values, then a procedural error is likely. For example, the 

sampled area of the map labeled as non-forest in Table 5-1 is exactly 

549,020 ha, which is determined through a tally of all Map Objects in the 

GIS or image processing system. The same area estimated from the 100 

sample points is 440,000 ha, with a 95 % confidence interval of 341,000 ha 

to 543,000 ha (interpolated with Table 5-5). This confidence interval does 

not cover the known true value; there is less than a 5 % chance that the true 

value (549,020 ha) is outside the bounds of the 95 % confidence interval 

(i.e., more than 543,000 ha or less than 341,000 ha). In one out of every 20 

accuracy assessments, an unfortunate, but valid, random sample of points 

could cause this degree of apparent discrepancy. However, this discrepancy 

remains weak evidence for a potential procedural error. For example, the 

sampled population used to draw the sample might be defined differently 

than the sampled population used to tally the area statistics in Table 5-1. 
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Displaying the location of all sample points on a map base might reveal 

geographic areas that were unknowingly omitted from the sampled 

population. Alternatively, a stratified random sample might have been 

analyzed as though it was a simple random sample, or the thematic map 

might have been modified after the stratified sample was drawn. Whenever 

possible, diagnostic tests should be conducted before gathering expensive 

reference data in Step 2 to detect procedural errors in Steps 1 and 3. 

In the case of stratified random sampling, the thematic map is used to 

define strata, and different comparisons must be used to detect discrepancies. 

For example, the stratified sample of points could be used to estimate the 

known areas of different soil types, elevation zones, or administrative areas 

in a GIS database. 

2.5 Interpretation of results 

The investment in a valid accuracy assessment has little value unless the 

results are effectively communicated to the user. This Chapter has already 

presented examples of informative statistics and their interpretations. The 

producer of an accuracy assessment should provide similar interpretations 

for their own error matrix. Stacked bar charts can provide a visual display of 

a large error matrix, and such displays can provide insights. The full error 

matrix or fuzzy-set contingency table should be published as metadata, thus 

maximizing options for alternative interpretations. 

The terms “Producer’s Accuracy” and “User’s Accuracy” are prevalent 

in today’s remote sensing literature, but these terms are somewhat 

misleading. Both types of statistics are important to both the producer of a 

remotely sensed map and a user of that map. These and other conditional 

probabilities are more useful statistics than widely recognized. For example, 

Table 5-1 estimates that only 60 % of the old-growth forest, as defined in 

Step 2, is labeled as old-growth forest on the map; an estimated 40 % of the 

old-growth forest truly exists in the sampled population, but it is mislabeled 

as something else on the map, and its location is unknown on the map. As 

another example, Table 5-1 estimates that the old-growth forest category on 

the map is truly composed of 75 % old-growth forest and 25 % other types 

of forest. Therefore, the conditional probabilities from the error matrix 

document the composition of each thematic category as metadata. 

Marginal proportions are also important metadata. For example, Table 5-

3B estimates that the true extent of old-growth forest is 73,070 ha within the 

sampled population, with a 90 % confidence interval of 33,000 ha to 

126,000 ha. However, only 41,634 ha are mapped as old-growth forest, and 

only 75 % of that mapped area is estimated to be truly old-growth forest in 

the sampled population. Therefore, analyses with the thematic map will 

likely underestimate attributes associated with old-growth forest. Both 

misclassification error and random sampling error cause these differences 



138 Chapter 5 

 

Czaplewski, Raymond L. 2003. Chapter 5: Accuracy assessment of maps of forest 

condition: statistical design and methodological considerations, pp. 115-140. Remote 

Sensing of Forest Environments: Concepts and Case Studies. (Michael A. Wulder 

and Steven E. Franklin, Eds.) Kluwer Academic Publishers, Boston. 515p 

between the map and estimates of the true exist conditions. Czaplewski 

(1992) discusses these “discrepancies” in more detail.  

3. CONCLUDING REMARKS 

There is a large body of remote sensing literature devoted to accuracy 

assessments. However, this chapter is limited to a few techniques that are 

simple and robust. The goal is to provide methods that can be applied by 

professionals who have no training in sample survey statistics. Large 

mapping projects often use elements that are more complex (e.g., cluster 

plots, two-phase and two-stage sampling, alternative stratification materials, 

multiple sampling frames) to reduce costs and improve efficiency (Stehman 

and Czaplewski 1998; Czaplewski 2000). However, complex designs require 

consultation with a statistician knowledgeable in sample surveys. Otherwise, 

there is high risk of using invalid methods that produce unreliable and biased 

estimates of accuracy assessment statistics. The bias can be large and can 

lead to unwise decisions. 

Too often, the number of sample sites for reference data is inadequate for 

sufficiently precise estimates of accuracy assessment statistics. For example, 

assume the true user’s accuracy for old-growth forest is 75 %. 

Unfortunately, this true value is never known in real-world applications, and 

an imperfect estimate from a sample is typically the best available 

information. With an effective sample size of 20 reference sites, there is 

about one chance in four that the estimated accuracy will be less than 65 %, 

even though the true accuracy is 75 %. However, with a sample of 50 

reference sites, there is only about one chance in 10 that the estimated 

accuracy will be less than 65%. A closely related issue is precision of area 

estimates. For example, assume old-growth forest truly covers 120,000 ha of 

a 1,000,000 ha sampled population. With an effective sample size of 20 

reference sites, there is about one chance in four that the extent of old-

growth forest will be estimated at 50,000 ha or less. However, with a sample 

of 50 reference sites, the probability of this degree of underestimation 

decreases to one in 10. This chapter recommends that a hypothetical, 

although realistic, error matrix be constructed during the early planning 

phase of the accuracy assessment. If precision of hypothetical assessment 

statistics appears inadequate, then the number of reference sites should be 

increased, or the accuracy assessment should be omitted. There is no real 

value in expending scarce resources on an unreliable assessment.  

The best data that can be realistically produced are imperfect estimates of 

classification accuracies and the true area of different forest conditions, and 

an imperfect map of where those conditions are located. The goal of image 

classification and accuracy assessment is to minimize these imperfections, 
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and reduce the risk of mis-informed decisions, within a reasonable budget. 

This Chapter provides methods that can help achieve this goal. 
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