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Comparison of Estimators for Rolling
Samples Using Forest Inventory and
Analysis Data

Devin S. Johnson, Michael S. Williams, and
Raymond L. Czaplewski

ABSTRACT.  The performance of three classes of weighted average estimators is studied for
an annual inventory design similar to the Forest Inventory and Analysis program of the United
States. The first class is based on an ARIMA(0,1,1) time series model. The equal weight, simple
moving average is a member of this class. The second class is based on an ARIMA(0,2,2) time
series model. The final class is based on a locally weighted least-squares regression prediction.
The estimator properties were tested using a simulation population created from Forest
Inventory and Analysis (FIA) data from northeastern Minnesota. Estimates of total volume per
acre, on-growth volume per acre, mortality volume per acre, proportion of sawtimber acreage,
proportion of poletimber acreage, and proportion of sapling acreage were calculated using
several weighted average estimators in each year. These were compared to the simulation
population, for which the true values are known, and an unbiased yearly estimator. When
computing estimates, the ARIMA(0,1,1) based estimators produced the lowest root mean
squared error of each of the three classes. However, in a few years the bias for some variables
was high. The maximum percent increase between the estimator with the lowest root mean
squared error and the simple moving average was 7.31%. Of all the estimators, the simple
moving average performed well in terms of mean square error in virtually every situation. It
tended to be best among the estimators tested if spatial variation was large and change was
relatively small. It was not consistently best in terms of mean square error in the presence of
moderate change and large spatial variation. For. Sci. 49(1):50–63.
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T HE USDA FOREST SERVICE Forest Inventory and
Analysis (FIA) program provides information on
the status and trends of the nation’s forest re-

sources. Historically, surveys were conducted periodi-
cally on a state-by-state basis with the time between
inventories ranging from 6 to 18 yr depending on the
region of the country (Gillespie 1999). In recent years,
however, consumers of this information have been con-
cerned that FIA is not adequately meeting their needs for
current data (Van Deusen et al. 1999). Recent legislation
has directed FIA to switch to an annual, or panel survey,

where a proportion of each state’s inventory is completed
every year.

Under periodic surveys, population statistics were esti-
mated independently from cycle to cycle. Estimates from any
given cycle possessed a high level of precision. Since cycle
lengths were many years apart, previous estimates contained
little information about current conditions. In an annualized
survey, however, previous data are only a few years old, so
they may contain a significant amount of information about
conditions at the time of the present survey. Yearly estimates
will, however, have less precision than the periodic surveys
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due simply to smaller sample measured each year. With this
in mind, it has often been suggested that estimates for current
conditions should take advantage of previous data (Czaplewski
1995, Gillespie 1999, McRoberts 1999, McRoberts and
Hansen 1999, Reams and Van Deusen 1999, Roesch and
Reams 1999, Van Deusen et al. 1999).

There have been several different estimation strategies
proposed that would take advantage of previous data
(Czaplewski 1995 and Reams and Van Deusen 1999). One
estimator of the current population statistic, θt, which appears
often in the literature is the rolling average (RA) given by

ˆ ˆ
,θ θRA t t T h

h

T

t T hw= − +
=

− +∑
1

where θ̂t T h− + , h = 1,…,T is an unbiased estimator of θt T h− + ,
the population characteristic at time t – T + h, and {wt–T+h}
is a set of constants which sum to 1 (McRoberts 1999, Roesch
and Reams 1999). The constant, T, is equal to the number of
years until the entire inventory is completed. If 20% of the
plots selected are sampled each year then T = 5.

The rolling estimator has many advantages. Under the
randomization paradigm described by Eriksson (1995, 2001a),
ˆ

,θRA t  is easy to calculate from inventory data and has a
variance estimator that is relatively easy to calculate from
data as well. The RA estimator will have a lower annual
variation than any one of the yearly estimators. This fact may
appeal to consumers of FIA data, who may distrust estimates
that vary too much from year to year (Gillespie 1999).

The major problem with the RA estimator is that it is biased
as an estimator of the current year’s population parameter.
The rationale for the rolling average estimator is that by using
past data you are “borrowing strength,” in terms of sample
size, from previous years. While this creates a “lag” bias
when estimating current conditions, it is more than compen-
sated for by a reduction in variance. This unequal trade
between variance and bias leads to a lower mean squared
error for the rolling average estimator.

Another problem is selection of the weights. Roesch and
Reams (1999) suggest that equal weights could be used for
each year, although they also state that equal weighting might
mask time trends. However, the equal weighting estimator
can be thought of as an unbiased estimator for the population
parameter at some time approximately in the middle of the
rotation cycle, so, if the time trends are long enough in
duration, the equal weighting estimator will react to the
trends. Eriksson (2001b) has shown that if the population
statistic is relatively constant, the equal weighting estimator
is approximately optimal in terms of a squared error criterion.
In order to track time trends more accurately, more weight
could be placed on more recent yearly estimates.

Breidt (1999) presents some models that can be used to
select the weights for the RA estimator in a more objective
manner than a simple arbitrary selection as presented by
Roesch and Reams (1999) and Reams and Van Deusen
(1999). In order to test the properties of these estimators, we
constructed a simulation population with data from two

periodic FIA surveys. Survey data were used so that our
pseudo-population would have realistic trends and variances
for selected variables of interest. We then simulated random
samples from this population and compared the simulated
estimator distributions for accuracy and precision of the
estimators.

Simulation Population

In order to construct a population that possessed attribute
values that were realistic, FIA survey data from the cycle 4
and cycle 5 periodic surveys of the Aspen-Birch Unit (ABU)
in Minnesota were used as endpoints for the 14 yr span from
1977 through 1990. The ABU is an approximately 8.65
million ac area in northeastern Minnesota of which 86.5%
was classified as forest in 1977 (Jakes 1980) and 85% was
classified as forest in 1990 (Leatherberry et al. 1995). In both
cycle 4 and cycle 5, each plot was sampled using a 10 point
variable radius sampling design. Each point was the center
for a smaller fixed radius micro plot where trees with a dbh
of 1 to 4.9 in. were measured. Trees with a dbh ≥5 were
measured on the variable radius plots centered at the points.

To begin construction of the simulation population, indi-
vidual tree values were used for the plots that were physically
measured in both cycles. For all of the simulations, however, plot
values of each variable were used. Plot values were calculated by
multiplying the tree value by its per-acre expansion factor and
summing over all trees on a given plot. These variable radius
methods are given in Schreuder et al. (1993, p. 117). The total
number of trees on these plots will be denoted by N, and each tree
is assigned an identification number j ∈ {1,…,N}. Trees were
then separated into one of three groups: (1) trees alive at both
measurements (survivor trees), (2) trees that were alive at the
first measurement but died before the second measurement
(mortality trees), and (3) trees that were not present at the first
measurement but were alive at the second measurement (in-
growth trees). We will denote the subset of survivor trees by Ns.
The subsets of mortality and in-growth trees will be denoted by
Nm and Ng respectively.

Mortality trees were split into three additional groups based
on cause of death. This more detailed classification was de-
signed to better mimic mortality effects on a given plot. The first
classification was for trees that could reasonably be modeled as
having died randomly and independently at some time during
the 13 yr span. The causes of death that were included in this
group were suppression, weather damage, and animal damage.
The next classification was for trees that should be modeled as
having died in the same year for a given cause of death. For
example, all trees on a given plot that died of harvest should be
modeled as dying in the same year. The causes of death included
in this classification were fire, harvest, and land use conversion.
It can be argued that weather damage should be included in this
classification. However, all weather-damaged trees may not
have been damaged by the same weather event on a given plot.
Therefore, for ease of construction, trees that died from weather-
related causes were placed in the first group. Trees that died from
disease or insect damage made up the third mortality classifica-
tion. These trees were modeled as randomly dying over a 3 yr
period on a given plot.
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There were very few trees that were not present at the first
measurement and were found dead at the second measure-
ment, so, they were excluded from the population for conve-
nience. For this population, the date of “death” for mortality
trees is defined to be the last year the tree was observed alive,
and the date of “birth” for in-growth trees is defined to be the
first year the tree is observed. In the description of the
imputation procedure we will use Yij, i = 1,…,14 and j =
1,…,N for either the dbh or volume of tree j in year i; the
procedures were the same for both variables. The subscript i
= 1 will correspond to year 1977, i = 2 will correspond to
1978, and so on.

The first step in simulating yearly values for the Yij was to
calculate the growth rate, ξj, for each tree. The growth rate for
survivor tree j ∈  Ns was calculated by

ξ j j jY Y= −( ) /14 1 13.

Growth rates for mortality and in-growth trees were calcu-
lated by averaging the growth rates of survivor trees that were
the same species and whose dbh measurement was within 1
inch of the mortality or in-growth tree in 1977 or 1990,
respectively.

Next, dates of birth and death were selected for each
tree. Survivor trees were defined to have a birth date of i
= 1 and a death date of i = 14. Mortality trees were defined
to have a birth date of i = 1. For trees in the first mortality
classification, the death date was selected uniformly
from{1,...,13}. The death date for trees in the plot-wide
classification was selected in the same way, but it was
applied to all trees that died from a given cause (i.e., fire)
on a given plot. A plot death date was randomly selected
from {2,...,13} for trees dying from disease or insects.
Then, for each tree in the disease class, a random variable
selected uniformly on {–1,0,1} was added to the plot date
so that disease trees would randomly die over a 3 yr period
on any given plot. In-growth trees were defined to have a
death date of i = 14. The birth date for in-growth trees was
randomly selected from {2,...,14} .

Initial and final “alive” values, Ybj and Ydj, were calculated
for each tree. The subscripts b and d are used to represent the
value of i which is the birth and death date respectively for
tree j. The initial and final values for survivor trees were
assigned the values recorded during the inventories. The
initial value, Ybj, for mortality trees was assigned the cycle 4
inventory value. The final value for tree j ∈  Nm, was calcu-
lated in the following fashion:

Y Y D j Ndj bj j j m= + − ∈ξ ( )          1

where Dj is the number of years tree j was alive. The final
values for in-growth trees were assigned the values recorded
in the cycle 5 inventory. The initial value for in-growth tree
j ∈ Ng was calculated by

Y Y D j Nbj dj j j g= − − ∈ξ ( )            1 (1)

if it was not located on a microplot. If the calculation in (1)
gave an initial measurement <5 in. then the date of birth

was adjusted so the initial value was ≥5 in. If tree j was
located on a microplot, then the initial dbh was set to 1 in.
Initial volume values were then calculated with (1) using
the new Dj when it had been adjusted. For microplot trees,
initial volume was set to 0.

In order to simulate some noise in yearly Yij values for tree
j, the interval [0,1] was randomly partitioned with Dj – 2
random partitions and the end points {0,1}. The values of
these points were used to represent the cumulative proportion
of total growth, Ydj – Ybj, of tree j occurring at “measurement”
in year i. Constructing yearly values in this manner forces the
property Yi+1,j ≥ Yij for all trees and all years. In order to carry
out this method of construction for tree j, Dj – 2 ordered
random variables, Ub+1,j,...,Ud–1,j, with distribution Unif(0,1)
were selected. The endpoints, Ubj = 0 and Udj = 1, are added
to the collection of random variables. Then, yearly values
were calculated by

 Y U Y Y Y i b dij ij dj bj bj= − + =( ) ,...,              

for all j. For values of i outside {b,...,d}, Yij was set to 0. Also,
the volume value for tree j in year i was set to 0 if the
corresponding dbh was <5 in. For a given j, the expected
measurement for tree j is

E Y Y Y
i b

d b
Y i b dij dj bj bj[ ] ( )        ,...,= −

−
−







+ =

which is the linear interpolation between Ybj and Ydj at year
i. In addition,

Corr Y Y

i b d k

i b k b d i d k
i k b d
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for a given tree j. Correlations involving Ybj or Ydj are defined
to be 0 because they are constants. This correlation function
is decreasing as |k – 1| becomes larger.

In the cycle 5 inventory, plots from the cycle 4 inven-
tory that were classified as disturbed were re-sampled with
probability 1, while undisturbed plots were re-sampled
with probability 1/3 (Leatherberry et al. 1995). In order to
correct for this unequal weighting, all undisturbed plots
were duplicated twice and added back into the constructed
population. So, for every undisturbed plot in the original
constructed population, two more were added that pos-
sessed the same tree values. This duplicated population is
a better representation of the distribution of tree values in
the real population. The resulting number of plots in the
simulation population was 5,911. Volume trends in the
simulation population closely mimicked the published
attributes for the ABU (Leatherberry et al. 1995).

Breidt’s Estimators

The sampling plan that all of Breidt’s (1999) estimators
use is a two-phase design. First a sample s of n plots is
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drawn from area � of size A according to a probabilistic
design p(•). Here we will present results for simple random
sampling (SRS) and stratified simple random sampling
(STS). The sample, s, is then randomly partitioned in to T
subsamples st–T+h, h = 1,...,T, where the partitioning is
independent of s. One of these subsamples is carried out in
each of the T years, so, the entire primary sample s is
measured after T years. In this article, the assumption is
also made that the subsamples are of equal size and that all
plots have the same probability of being placed in any
given subsample, 1/T. This assumption is not critical,
however, and will be discussed shortly. In the following
descriptions of these estimators we will consider all popu-
lation parameters, θt, as averages per unit area (e.g. aver-
age volume per acre). The extension to population totals is
easily accomplished by multiplying the estimator by A.

To begin, using two-phase sampling methodology, θt–T+h,
h = 1,...,T, can be unbiasedly estimated by

ˆ ( )

( / )
θ

πt T h
k s i

n
ik

ik

A
z t T h

T
t T h

k

− +
−

∈ =

=
− +

− +

∑ ∑1

1
1

(2)

where nk is the number of trees sampled on plot k, zik is the
variable of interest from the ith tree sampled on plot k, and
πik is the Horwitz-Thompson expansion factor. Under an
SRS design, πik = naik/A, where aik is the tree to unit area
expansion factor as described by Eriksson (2001a). For an
STS design, πik= njaik/Aj, k ∈  ��, j = 1,...,J, where nj is the
total number of plots sampled in stratum ��, and Aj is the
size of ��. The problem with these estimators is that with
only n/T plots sampled in any given year, they may have an
unacceptable level of precision. In future descriptions, we
will refer to this unbiased estimator as the SA estima-
tor, ˆ

,θSA t T h− + .
In practice, equal subsample size is unlikely to be

obtained. However, if partition of s into {st–T+h: h =
1,...,T} is completed independently of s and the probabil-
ity that plot k is included in st–T+h equals Pt–T+h, h = 1,...,T,
then, (1/T) can be replaced by Pt–T+h in θ̂t T h− + , and the
estimator will still be unbiased. A small amount of varia-
tion in the subsampling proportions would probably not
greatly affect the results obtained in this study. A large
variation may, however, have an effect on the results
depending on the weights assigned to the different
subsamples. These effects will not be explored here.

In order to raise the level of precision it has been
suggested that information from past years be used in the
estimation of parameters for the present year. Therefore,
the estimators considered here all have the form

ˆ ( ),θ⋅
= ∈ =

= − +∑ ∑ ∑
− +

t
h

T

k s i

n

ik ik

t T h

k

w z t T h
1 1

(3)

where wik is a weight that reflects the design properties of
the sample or an assumed model about the population. In
addition, with a little algebraic manipulation, (3) can be

rewritten to be the weighted sum of the unbiased estima-
tors, (2). It is easily seen that if identical weights are
chosen for all variables, then estimates are internally
consistent (the estimate of a sum of variables equals the
sum of the separate estimates for each variable).

In describing the estimators, we will divide them into
three classes. The first class of estimators is based on the
time series ARIMA(0,1,1) model (Brockwell and Davis
1987, p. 274). This class of models includes the equal
weighted simple moving average (a simple average of
unbiased yearly estimates). The second class is based on
the ARIMA(0,2,2) time series model (Brockwell and Davis
1987, p. 274). Finally, the third class is based on a locally
weighted least-squares regression prediction (Neter et al.
1989, p. 400).

ARIMA(0,1,1)-Based Estimators

Estimators of θt in this class are based on the ARIMA(0,1,1)
model

ˆ , { }  ( , }

, { }  ( , }

θ θ σ
θ θ η η ση

t t t t

t t t t

iid N

iid N

= + ∈ ∈
= +−

0

0

2

1
2

For example, the average total volume over the state of
Minnesota next year is equal to this year’s average total
volume plus some random noise that is independent from
year to year. In addition, the ARIMA(0,1,1) model as-
sumes that you have an unbiased estimate of average total
volume in each year.

The best mean square estimator of θt derived from this
model is

ˆ ˆ
,θ θTS t t T h t T h

h

T

w1
1

= − + − +
=

∑

where the weights, wt–T+h, h = 1,...,T, are given by the last row
of the matrix
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The matrix ∆1 is the T × (T – 1) first difference matrix
given by

∆1

1 1

1 1

1 1

=

−
−

−






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




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


O O

and I is an appropriately sized identity matrix. The param-
eter σ σn

2 2/  is usually called the “signal to noise ratio”
(SNR). As the SNR increases from 0 to ∞, an increasing
amount of weight is placed on more recent conditions.
These estimators will be denoted by TS1(SNR = x ) for an
ARIMA(0,1,1) based estimator with an SNR = x.
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ARIMA(0,2,2)–Based Estimators

This estimator class is based on the ARIMA(0,2,2) model
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0

0

2
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2
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For example, next year’s average total volume in Minnesota
is equal to this year’s average total volume plus some noise that
is dependent between years and some more noise that is indepen-
dent between years. This model also assumes that there is an
unbiased estimator of average total volume each year. The
resulting estimator, ˆ

,θTS t2 , has the same form as ˆ
,θTS t1 . How-

ever, the weights are generated by the last row of the matrix

I I= ′ + ′ + ′
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The matrix ∆2 is the T  × (T – 2) second difference matrix
given by
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Also, ∆1 is the same as (4) except the last row has been
removed. Here we will consider the SNR to be the vector
( σ σ σ σξ η

2 2 2 2/ , / ). Once again, as the SNR becomes larger,
more weight is placed on current conditions. This is easy to
see, as either element of the SNR tends to ∞, the variation in
the population parameter becomes much greater than the
variance of the estimator. Therefore, the population is chang-
ing rapidly and past data has little information about current
conditions. The ARIMA(0,2,2) based estimator will be de-
noted by TS2(SNR = x,y ).

Locally Weighted Least-Squares Estimators

The final class of estimators is based on a plot-level model.
Let yk(t – T + h) be the average per unit area of the variable
z(t – T + h) in the plot centered at point k ∈  � in year t – T +
h. For both SRS and STS designs

y t T h z t T h a k sk
i

n

ik ik t T h

k

( – ) ( ) / ,+ = − + ∈
=

− +∑
1

.

The plot level expansion factors, πk, are given by A/n for
SRS designs and Aj/nj for STS designs. The plot level model
considered is

y t T h m t T h

t T h h T
k k

k

( – ) ( – )

         ( – ),                       ,..., )

+ = + +
+ ∈ + =

δ
1

where m(t – T + h) is a smooth deterministic function, {δk} is a
set of iid r.v.’s with mean 0 and variance σδ

2 and {∈ k(t – T + h)}
is a zero mean stochastic process. So, θt–T+h = E[yk(t – T + h)] =
m(t – T + h). Over the T year window of plot rotation, the function
m(•) can be approximated by a polynomial of order q. Therefore,
a natural estimator of m(•) is the predicted value of a linear
regression of yk(t) versus year. If we define the n × 1 vector of all
plots measured arranged according to the year in which they
were sampled

y = − +[ ]
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the n × q + 1 matrix of years in which each plot was measured
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and the n × n matrix of plot selection probabilities
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then, the locally weighted linear regression estimator of θt is
given by
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In both SRS and STS designs, ˆ
,θLL t  can be rewritten to

give the following form
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We will denote this estimator by LL.

Special Cases, Connections, and
Considerations

The first consideration applies to use of both TS1 and
TS2 estimators. Notice, the weights reflect properties of
the variable of interest through the SNR, which will be
unknown in any forest survey. So, in practice, the SNR for
both TS1 and TS2 estimators is usually set to a fixed
constant based on the level of smoothing desired. In
addition, there is a connection between the TS1 estimators
and the simple moving average, which we will denote by
MA. The TS1(SNR = 0) estimator is equivalent to the equal
weight simple moving average.
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The second consideration involves the LL estimator. No-
tice, the weights reflect only the sample design. The weights
are the same for any variable measured within a given
sampling design, so, there is no decision to be made about
smoothing parameters. Also, if both elements of the SNR in
the TS2 estimators are set to 0, then, for the SRS design
ˆ ˆ

, ,θ θLL t TS t= 2 . For this reason, we will group the LL estimator
with the TS2 class. Also, if the order of the regression model
is set to q = 0, the LL estimator is the same as the MA
estimator.

None of the estimators derived here should be considered
to have better performance a priori. The simulation popula-
tion was constructed by a very nonparametric method and is
not a special case of any of the models presented for estimator
derivation. We felt that constructing the population without
a parametric model better mimics a real forest population in
the fact that truth never fits a probabilistic model perfectly.

Efficiency and Sample Size Illustration

A simple population model can provide a brief illustration
of the approximate, relative efficiency of the different rolling
sample estimators of the current value of the population
parameter. To begin, suppose that plot measurements follow
the model:

Y tit it= + + ∈α β( ) (5)

where Yit is the measurement for plot i at time t, and the errors
(∈ it) are independent with respect to plots, have mean 0 and
constant variance over time, σ2. If a first order model for
ˆ

,θLL t  is used, the population size is large, plots are sampled
with equal probability, and plot subsample size equals n/T,
then, the following mean square error approximations can be
easily derived for the yearly unbiased (SA), moving average
(MA), and local linear (LL) estimators:
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where, wt–T+h, h = 1,...,T, are the weights given to the yearly
unbiased estimates.

If the relative efficiency of estimators is measured by the
ratio of MSEs then, the relative efficiency of the MA estimator
compared to the LL estimator is approximately
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So, if there is no trend to the data, then the LL estimator can
never be as efficient as the MA estimator. If there is even the
slightest trend, however, it is theoretically possible (although
maybe not practically possible) to take a large enough sample
such that the LL estimator is more efficient. This is due to the
fact that the bias of the MA estimator is not a function of
sample size, while for this simple population the LL estimator
is unbiased. Using (6), the sample size, n*, required to attain
equal efficiency between the MA and LL estimators is

n
T T

∗ ≈
− +

12
1 1

2

2( )( )
σ
β

. (7)

One can see that n* essentially represents a trade-off
between the trend of a population and the variance of plot
measurements.

All of the derivations provided in this section were based
on the simple population model (5). The extent to which these
results will generalize to more complicated populations is
unknown. The results shown are intended to provide a heuris-
tic feel for how trend and variance combine to influence
sample size and efficiency considerations for the rolling
average estimators.

Simulations

For this simulation, we will use two types of variables that
are often of interest to analysts. The first type is measure-
ments of wood volume. In this study, we simulated use of the
estimators on: average volume per acre, average mortality
volume per acre, and average on-growth volume per acre. In
addition, average volume per acre for nine species was also
simulated. For the experiment, we chose three common
species, three moderately common species, and three rare
species. The common species included: quaking aspen
(Populus tremuloides), paper birch (Betula papyrifera), and
balsam fir (Abies balsamea). The moderately common spe-
cies were red pine (Pinus resinosa), white spruce (Picea
glauca), and sugar maple (Acer saccharum). The rare species
were cottonwood (Populus deltoides), black willow (salix
nigra), and silver maple ( Acer saccharinum). The next type
of variable is condition class. For this type, we simulated use
of the estimators on proportion of area in sawtimber,
poletimber, and sapling status. These classifications were
generated using a simplification of the algorithm used by the
North Central Region FIA. Instead of applying the algorithm
to each sample point of a plot, it was applied to the whole plot.

Simulations with the pseudopopulation were accomplished
by first selecting 1,000 plots by simple random sampling with
replacement from the simulated plots. The reason for sam-
pling with replacement was to simulate sampling from a
region with area A whose response surface for the variables
listed previously is a step function. Each of the steps has the
height of one of the simulated plots and an area of A/5911 ac.
Sampling without replacement is equivalent to randomly
locating a sample point somewhere in this region. In addition,
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using the formulas in Ripley (1981), expectations and vari-
ances for the variables mentioned previously are calculated
simply by using the means and variances of the 5,911 simu-
lated plots. After the initial sample was taken, each plot in the
sample was randomly assigned to 1 of 5 subsamples of size
200. The same 1,000 plots were used throughout the 14 yr
period 1977,...,1990. So, once year 6 was reached, the plots
from the first subsample were used again. Following selec-
tion of the samples, the subsamples were used to calculate
unbiased estimates of population parameters with the two
phase unbiased estimator [SA, (2)] for each year, 1977,...,1990.
Then, several of Breidt’s weighted estimators were used to
estimate the current status for the years 1981,...,1990. For on-
growth and mortality volume, the year indices were
1978,...,1990 and 1982,...,1990. In each simulation, this
procedure was replicated 5,000 times. We believed that
this number of replications was adequate based on the fact
that the same estimators in different simulations behaved
very similarly.

In order to use the time-series-based estimators, we made
some practical decisions concerning the SNRs. The first
decision that was made was to set the first SNR in the
TS2(SNR = x,y) estimator to be 0. We thought that modeling
the population as having a constant mean rate of increase or
decrease over a 5 yr period was a sufficient approximation
and left only one SNR to be chosen. In order to calculate
optimal SNRs, we needed to calculate ση

2  for both models. In
each model, Var[θt − θt−1]   =    Var[const. + ηt]. Therefore,
using the notation from the simulation population descrip-
tion, we calculated ση

2  by

ση
2

1= − ∈{ }−Var Y Y ii i  :   1978,...,1990 ,

where Ŷt  is the population mean of variable Y in year t. The
second parameter in the SNRs, σ2, is simply the sampling
variance of the two-phase estimator and was calculated
according to Eriksson (2001a). All of the SNRs were less than
0.2, and many were very close to 0. Thus, the TS1 and TS2
estimators with optimal SNRs will be very close to the MA
and LL estimators, respectively. We suspect that the true
SNRs will be less than 1 for almost any forest resource, since
change over time is relatively small compared to differences
over, say, a county. To mimic the selection of constant SNRs,
we chose four values for the SNRs in the interval 0 to 1. We
will denote a time series based estimator with an optimal SNR
by TS1(SNR = opt ) or TS2(SNR = 0,opt ).

There were five simulations that were conducted. The
first simulation involved the volume variables: average
volume per acre, average on-growth volume per acre, and
average mortality volume per acre. The estimators used
were: MA, LL, TS1(SNR = opt ), TS1(SNR = 1), TS2(SNR =
0,1), and TS2(SNR = 0,opt ). The second simulation used
the same volume variables but the estimators tested were
MA, LL, TS1(SNR = 0.25), TS1(SNR = 0.5), TS1(SNR = 1),
TS2(SNR = 0,0.25), TS2(SNR = 0,0.5), and TS2(SNR =
0,1). This simulation was performed to see how sensitive
these estimators are to the choice of SNRs. The third simula-
tion involved the species domains of average volume per

acre. The estimators used were MA, LL, TS1(SNR = 1), and
TS2(SNR = 0,1). The purpose of this simulation was to
determine how these estimators behave when they are used to
estimate domains of a general variable. The fourth and fifth
simulations were the same as the first and second simulations
except the classification variables were used.

We used two criteria to judge the quality of a particular
estimator: root mean squared error (RMSE) and the bias ratio
(BR). For the estimator ση

2
 of the population value θt, the

simulated RMSE and BR were calculated by
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where r is the number of simulated samples drawn, ˆ
,θt i  is the

estimate of θt for sample i, and S t( ˆ )θ  is the sample standard
deviation formula applied to the r values of ˆ

,θt i . The BR
statistic was chosen to determine if bias might play a large
role in the actual coverage of a nominal confidence interval
(CI). A value of |BR| < 0.1 implies the bias effect on the CI can
essentially be ignored and even for a value <0.5, the bias
effect is not pronounced (Sarndal et al. 1992).

Results

The main result from these simulations was that all of
the RA estimators outperformed the SA estimator in every
simulation, with every variable with regards to RMSE.
This result makes intuitive sense. There was, however, a
definite gradient among the estimators in terms of RMSE
and BR. In many cases, low average RMSE was accompa-
nied by a high average BR. In terms of average RMSE, the
TS1 class of estimators outperformed the TS2 estimators
and the LL estimator in every simulation. In addition, the
MA estimator performed the best in most of the simula-
tions. The largest increase in average RMSE from the best
estimator to the MA estimator was only 7.31%.

In the first simulation, where average total, on-growth,
and mortality volume were estimated, TS1(SNR = opt) had
the lowest average RMSE for volume and on-growth, while
the MA estimator had the lowest average RMSE for mortality
volume (Table 1). The TS1(SNR = opt) and MA estimators
performed almost identically in estimating the three param-
eters, the largest percent difference in average RMSE being
2.84%. Figure 1 displays the performance of the first simula-
tion estimators in terms of bias and variance. The MA estima-
tor had the tightest one standard deviation (SD) band, and the
true value for each variable was usually within the band.

In the second simulation, where average total, on-growth,
and mortality volume were estimated again, the MA estimator
always had the lowest average RMSE (Table 2). Figure 2
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illustrates the performance of the TS1 estimators through
time. As the SNR becomes larger, more weight is placed on
current conditions and the 1 SD band becomes wider. In
Table 2 it can be seen that the TS2 class of estimators seems
to be fairly insensitive to changes in the SNR. There was only
at most a 4.56% difference among average RMSE values for
the TS2 class estimators.

Once again, in the third simulation, where average
volume for three species domains was estimated, the MA
estimator had the lowest average RMSE over all species
(Tables 3–5). There was also almost no detectable bias
problem for the MA estimator in each species. In all but
one year, BR < 0.5 for all species. Figures 3 and 4 show that
the MA estimator performed well for the common and
moderately common species. It had the tightest 1 SD band,
and the bias was small. In the case of the rare species
domain, Figure 5 illustrates that the MA variance can be
higher than the other estimators if the variable decreases to
0. It also illustrates a potential problem with the TS2 class
of estimators, namely negative estimates. Since the TS2
estimators can have negative weights, negative estimates
are possible. As Cottonwood and Black willow increase
from 0, the MA estimator once again performed very well.

In the fourth simulation, where proportion of area classi-
fied by one of three different stand size classes was estimated,
TS1(SNR = opt) performed the best in terms of average RMSE
(Table 6). The greatest difference, however, between the MA
estimator and the TS1(SNR = opt) was 4.21%. Within a given
year, the small variance of the classification variables created
a large average bias ratio. The BR was > 0.5 in almost every
year for sawtimber and poletimber. For the first two years,
BR > 2 for the sapling class.

In the fifth simulation, the MA estimator performed nearly
the best for each size class; however, bias problems were
experienced due to low population variability when com-

Figure 1.  Estimator performance in the first simulation (volume
variables). The lines represent a 1 SD band for a given estimator
over 5,000 simulated samples. The TS1(SNR = opt) and TS2(SNR
= 0,opt ) were excluded because they were virtually identical to
the MA and LL estimators.

Table 1. Results of the first simulation. Rows are arranged in ascending order according
to average RMSE within each variable.

Variable Estimator Ave. RMSE Ave. BR* BR > 0.5†

Volume TS1(SNR = opt) 25.39 0.314 0
MA 25.41 0.316 0
TS1(SNR = 1) 35.85 0.077 0
LL 41.28 0.035 0
TS2(SNR = 0,opt) 41.28 0.035 0
TS2(SNR = 0,1) 43.15 0.023 0
SA 53.20 0.010 0

On-growth TS1(SNR = opt) 1.71 0.539 4
MA 1.76 0.803 5
TS1(SNR = 1) 2.05 0.212 1
LL 2.33 0.171 1
TS2(SNR = 0,opt) 2.34 0.153 1
TS2(SNR = 0,1) 2.42 0.102 0
SA 2.96 0.012 0

Mortality MA 3.65 0.386 3
TS1(SNR = opt) 3.78 0.272 1
TS1(SNR = 1) 4.95 0.125 1
TS2(SNR = 0,opt) 5.96 0.252 2
LL 6.02 0.277 2
TS2(SNR = 0,1) 6.02 0.164 0
SA 7.26 0.008 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
† This column represents the number of years in which BR > 0.5.
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Figure 2.  Performance of the TS1 estimators in the second
simulation (volume variables). The lines represent a 1 standard
deviation band for a given estimator over 5,000 simulated samples.

pared to the population trend. Figure 6 shows that the 1 SD
band of the MA estimator drifts away from the true population
trend. When exploring different fixed SNR values, the
TS1(SNR = 0.25) performed the best with regards to average
RMSE (Table 7). The MA estimator had the second lowest
RMSE with the exception of the poletimber classification,
where TS1(SNR = 0.5) had the second lowest average RMSE.
The MA estimator had the smallest 1 SD band, but, it tended
to stray from the true population value. Figure 7 shows that
for each variable, the true value was almost always contained
within the 1 SD band of the TS1(SNR = 0.25) estimator. By
applying slightly more weight to current estimates, the bias
problems of the MA [TS1(SNR = 0) seem to disappear. In
addition, Table 7 shows that once again, the performance of
the TS2 class of estimators seems to be rather robust to
changes in the value of the SNR. The largest difference in
average RMSE for the TS2 estimators was 5.07%.

Discussion

Certainly, we have shown for this simulation population
that the TS1 class of estimators, which contains the MA
estimator, performed the best in terms of RMSE for our
simulation population. This class can, however, have bias
problems. Although, if the SNR was high enough for the TS1
estimator, bias problems were often be eliminated at the
expense of RMSE. Another conclusion that can be drawn
from these simulations is that the MA estimator performs
well. At first, simply averaging yearly estimates does not
seem like it would produce reliable estimates of current
status. If spatial variation is high enough, however, the MA
estimator seems to work well, even under some moderate

Table 2.  Results of the second simulation (TS estimators). Rows are arranged in
ascending order according to average RMSE within each variable.

Variable Estimator Ave. RMSE Ave. BR* BR > 0.5†

Volume MA 24.60 0.292 0
TS1(SNR = 0.25) 27.46 0.156 0
TS1(SNR = 0.5) 30.94 0.100 0
TS1(SNR = 1) 35.51 0.060 0
LL 41.03 0.035 0
TS2(SNR = 0,0.25) 41.30 0.031 0
TS2(SNR = 0,0.5) 41.81 0.027 0
TS2(SNR = 0,1) 42.99 0.023 0
SA 53.28 0.016 0

On-growth MA 1.71 0.782 5
TS1(SNR = 0.25) 1.71 0.453 2
TS1(SNR = 0.5) 1.84 0.310 1
TS1(SNR = 1) 2.04 0.192 1
LL 2.33 0.178 1
TS2(SNR = 0,0.25) 2.34 0.154 0
TS2(SNR = 0,0.5) 2.36 0.135 0
TS2(SNR = 0,1) 2.42 0.108 0
SA 2.98 0.014 0

Mortality MA 3.64 0.389 2
TS1(SNR = 0.25) 3.92 0.245 1
TS1(SNR = 0.5) 4.34 0.185 0
TS1(SNR = 1) 4.91 0.126 0
TS2(SNR = 0,0.25) 5.90 0.235 1
TS2(SNR = 0,0.5) 5.90 0.205 1
LL 5.96 0.273 2
TS2(SNR = 0,1) 5.98 0.162 0
SA 7.21 0.003 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
† This column represents the number of years in which BR > 0.5.
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Table 3.  Results of the third simulation (common species). Rows are arranged in
ascending order according to average RMSE within each species.

Species Estimator Ave. RMSE Ave. BR* BR > 0.5†

Quaking aspen MA 11.58 0.066 0
TS1(SNR = 1) 17.50 0.025 0
LL 20.32 0.031 0
TS2(SNR = 0,1) 21.24 0.021 0
SA 26.24 0.010 0

Paper birch MA 6.84 0.068 0
TS1(SNR = 1) 10.35 0.021 0
LL 12.00 0.028 0
TS2(SNR = 0,1) 12.57 0.019 0
SA 15.56 0.010 0

Balsam fir MA 5.22 0.192 0
TS1(SNR = 1) 7.60 0.050 0
LL 8.80 0.028 0
TS2(SNR = 0,1) 9.19 0.018 0
SA 11.35 0.013 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
† This column represents the number of years in which BR > 0.5.

Table 4.  Results of the third simulation (moderately common species). Rows are
arranged in ascending order according to average RMSE within each species.

Species Estimator Ave. RMSE Ave. BR* BR > 0.5†

Sugar maple MA 3.84 0.092 0
TS1(SNR = 1) 5.74 0.017 0
LL 6.23 0.013 0
TS2(SNR = 0,1) 6.94 0.010 0
SA 8.56 0.007 0

Red pine MA 4.74 0.171 0
TS1(SNR = 1) 7.02 0.040 0
LL 8.07 0.020 0
TS2(SNR = 0,1) 8.46 0.018 0
SA 10.44 0.014 0

White spruce MA 2.32 0.251 0
TS1(SNR = 1) 3.42 0.053 0
LL 3.93 0.021 0
TS2(SNR = 0,1) 4.13 0.016 0
SA 5.12 0.011 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
† This column represents the number of years in which BR > 0.5.

Table 5.  Results of the third simulation (rare species). Rows are arranged in ascending
order according to average RMSE within each species.

Species Estimator Ave. RMSE Ave. BR* BR > 0.5†

Cottonwood MA 0.035 0.345 0
TS1(SNR = 1) 0.049 0.124 0
LL 0.059 0.102 0
TS2(SNR = 0,1) 0.060 0.082 0
SA 0.070 0.009 0

Black willow MA 0.036 0.112 1
TS1(SNR = 1) 0.058 0.058 0
LL 0.067 0.051 0
TS2(SNR = 0,1) 0.071 0.041 0
SA 0.086 0.011 0

Silver maple MA 0.57 0.057 1
TS1(SNR = 1) 0.83 0.017 0
LL 0.97 0.014 0
TS2(SNR = 0,1) 1.00 0.013 0
SA 1.23 0.013 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
† This column represents the number of years in which BR > 0.5.
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Figure 3.  Estimator performance on the common species domains
in the third simulation. The lines represent a 1 standard deviation
band for a given estimator over 5,000 simulated samples.

Figure 4.  Estimator performance on the moderately common
species domains in the third simulation. The lines represent a 1
standard deviation band for a given estimator over 5,000 simulated
samples.

temporal trends. Even if it is desirable to choose a less biased
TS1 estimator, it would be wise to choose a constant SNR, at
least within each variable type. This would make estimation
much less complicated as well as preserving additivity among
variable domains.

We suspect that any tree measurement variables are likely
to be similar in variation structure to the volume related
variables we simulated. Therefore, the MA estimator would
be a good choice for these type of variables. It has a low
variance and would provide the stability of estimates from
year to year. The MA estimator will react slowly to sudden
changes in tree attribute variables. We feel, however, that
sudden trend changes in these attributes are unlikely without
an obvious catastrophic event such as a large-scale weather
event or disease epidemic, in which case it would probably
not be advisable to continue sampling and estimation proce-
dures in the usual fashion. In addition, by using an estimator
that tracks the current conditions more closely, you may
create apparent small trends due to its higher variance.
Another consideration is the length of the cycle (T). We
simulated sampling with a 5 yr cycle. Longer cycles will
certainly have negative effects on the performance of the MA
estimator in terms of bias.

The smaller within-year variance of condition class vari-
ables tends to exaggerate bias effects. Therefore, even though
the MA estimator had nearly the lowest average RMSE, it may

be advisable to choose an SNR > 0 to reduce these bias effects.
How to choose the SNR is unclear. It may seem that arbitrary
selection of the SNR is no better than arbitrary selection of the
weights themselves; however, the SNR represents an easily
interpretable parameter in terms of variation over time versus
spatial variation, whereas the weights themselves do not have
an interpretation involving the actual population. For ex-
ample, all of the simulated variables in this study had SNRs
less than 0.2. Therefore, variation in average yearly change
for each variable was less than 20% as large as the corre-
sponding average spatial variation for each variable.

Another consideration is that these simulations were
conducted in a very simple fashion without the use of
auxiliary information. In recent years, it has been sug-
gested that surveys should make use of auxiliary informa-
tion to reduce estimator variance or obtain a higher sample
in each year (Czaplewski 1999, Robinson et al.1999). The
first consideration is how to incorporate the auxiliary
information into the RA estimators. In the case of the LL
estimator, incorporation of the information is easy. All
that needs to be done is to place the information for each
tree sampled into the X matrix just as in ordinary regres-
sion analysis. By adding the extra information, the LL
estimator may compete better with the TS1 estimators in
terms of RMSE. Another consideration is how the MA
estimator will fare once auxiliary information is used. The
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Figure 5.  Estimator performance on the rare species domains in
the third simulation. The lines represent a 1 standard deviation
upper bound for a given estimator over 5,000 simulated samples.
The lower bound for TS1 estimators is 0 and the lower bound for
TS2 and LL estimators is <0.

Table 6.  Results of the fourth simulation. Rows are arranged in ascending order
according to average RMSE within each size class.

Size class Estimator Ave. RMSE Ave. BR* BR > 0.5†

Sawtimber TS1(SNR = opt) 0.0165 0.960 10
MA 0.0166 0.977 10
TS1(SNR = 1) 0.0185 0.198 0
LL 0.0209 0.051 0
TS2(SNR = 0,opt) 0.0209 0.050 0
TS2(SNR = 0,1) 0.0220 0.029 0
SA 0.0272 0.004 0

Poletimber TS1(SNR = opt) 0.0213 0.866 7
MA 0.0219 0.919 7
TS1(SNR = 1) 0.0236 0.210 0
LL 0.0267 0.069 0
TS2(SNR = 0,opt) 0.0267 0.068 0
TS2(SNR = 0,1) 0.0279 0.043 0
SA 0.0344 0.010 0

Sapling TS1(SNR = opt) 0.0091 0.558 3
MA 0.0095 0.729 3
TS1(SNR = 1) 0.0110 0.109 0
LL 0.0126 0.081 0
TS2(SNR = 0,opt) 0.0126 0.077 0
TS2(SNR = 0,1) 0.0132 0.045 0
SA 0.0163 0.010 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
† This column represents the number of years in which BR > 0.5.

reason that the MA estimator performs so well is that the
variance of the SA estimator within a given year is usually
very large. If that variance could be substantially reduced
with auxiliary information, the MA estimator may not
perform as well compared to other TS1 estimators.

The TS2 estimators, including the LL estimator, do not
perform as well in terms of RMSE because they fit the data
too closely. Thus, for populations with low SNRs, they
tend to track noise rather than any real trend. While this
produces weighted estimators that are nearly unbiased, the
variance of these estimators is high. The high variance
often produced average RMSE that were not much better
than the SA estimator, which we considered the upper
limit. So, even though these estimators had good bias
properties, their large variability made them less desirable
for general use in FIA surveys.

Overall, drawing conclusions about optimal or best
estimators in a multiresource survey is usually not pos-
sible, and when the survey is drawn out over time, it is even
more difficult. For the population studied here, the amount
of trend in relation to the variance of the individual panel
estimators (i.e., the signal to noise ratio) was just too high
for the more complex estimators to perform well. If the
sample size were increased for a variable with low spatial
variation, the TS2 estimators, including LL, might perform
more competitively. For instance, applying Equation (7)
to the sawtimber class variable, n* ≈ 3000. So, the sample
size in the simulation would have to be tripled for the
performance of the LL estimator to equal the MA estima-
tor. However, for a variable like total volume per acre, n*
≈ 35,000. Thus, increasing sample size to the maximum
that is practically feasible is not likely to change the
results. Even if the sample size were increased in practice,
these estimators may still not perform well because FIA
has a fixed sampling intensity of approximately one plot
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Figure 6.  Estimator performance in the fourth simulation
(condition class variables). The points lines represent a 1 standard
deviation band for a given estimator over 5,000 simulated samples.
The TS1(SNR = opt) and TS2(SNR = 0,opt) were excluded because
they were virtually identical the the MA and LL estimators.

Figure 7.  Performance of the TS1 estimators in the fifth simulation
(condition class variables). The lines represent a 1 standard
deviation band for a given estimator over 5,000 simulated samples.

Table 7.  Results of the fifth simulation (TS1 estimators). Rows are arranged in
ascending order according to average RMSE within each size class.

Size class Estimator Ave. RMSE Ave. BR* BR > 0.5†

Sawtimber TS1(SNR = 0.25) 0.0155 0.527 7
MA 0.0165 0.987 10
TS1(SNR = 0.5) 0.0165 0.340 0
TS1(SNR = 1) 0.0184 0.195 0
LL 0.0207 0.054 0
TS2(SNR = 0,0.25) 0.0210 0.046 0
TS2(SNR = 0,0.5) 0.0212 0.040 0
TS2(SNR = 0,1) 0.0218 0.031 0
SA 0.0270 0.007 0

Poletimber TS1(SNR = 0.25) 0.0203 0.512 6
TS1(SNR = 0.5) 0.0214 0.341 3
MA 0.0219 0.907 7
TS1(SNR = 1) 0.0236 0.203 0
LL 0.0268 0.066 0
TS2(SNR = 0,0.25) 0.0269 0.057 0
TS2(SNR = 0,0.5) 0.0272 0.050 0
TS2(SNR = 0,1) 0.0279 0.040 0
SA 0.0344 0.012 0

Sapling TS1(SNR = 0.25) 0.0093 0.342 2
MA 0.0096 0.725 3
TS1(SNR = 0.5) 0.0100 0.209 1
TS1(SNR = 1) 0.0111 0.113 0
LL 0.0127 0.081 0
TS2(SNR = 0,0.25) 0.0128 0.068 0
TS2(SNR = 0,0.5) 0.0129 0.059 0
TS2(SNR = 0,1) 0.0133 0.046 0
SA 0.0164 0.011 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
† This column represents the number of years in which BR > 0.5.



Forest Science 49(1) 2003 63

per 2,400 ha. Thus, increasing the sample size also means
that larger areas must be considered, and it is possible that
the spatial variance will increase with this increase in area.

Of the estimators studied, the TS1 class seems to have
enough flexibility to handle estimation in a multiresource
survey. The model parameters are easily interpreted with
regard to variance structure, making it possible to be more
objective in choosing constant values for this parameter. In
addition, the MA estimator worked well in this simulation
study as long as spatial variation was large. Therefore, we
suggest using the TS1 estimators to easily incorporate previ-
ous years, data into the current year’s estimates. We would
like to caution, however, that these results are based on data
from a specific region of Minnesota, which implies that the
results may not be identically replicated in practice when
applied to other forest types or natural resources. The main
result that one should draw from this research is that the
moving average should not be so quickly dismissed due to
bias problems. The real problem is estimator mean square
error.
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