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ABSTRACT. The performance of three classes of weighted average estimators is studied for
an annual inventory design similar to the Forest Inventory and Analysis program of the United
States. Thefirstclassis based on an ARIMA(0,1,1) time series model. The equal weight, simple
moving average is a member of this class. The second class is based on an ARIMA(0,2,2) time
seriesmodel. Thefinalclassisbased onalocally weighted least-squares regression prediction.
The estimator properties were tested using a simulation population created from Forest
Inventory and Analysis (FIA) data from northeastern Minnesota. Estimates of total volume per
acre, on-growth volume per acre, mortality volume per acre, proportion of sawtimber acreage,
proportion of poletimber acreage, and proportion of sapling acreage were calculated using
several weighted average estimators in each year. These were compared to the simulation
population, for which the true values are known, and an unbiased yearly estimator. When
computing estimates, the ARIMA(0,1,1) based estimators produced the lowest root mean
squared error of each of the three classes. However, in a few years the bias for some variables
was high. The maximum percent increase between the estimator with the lowest root mean
squared error and the simple moving average was 7.31%. Of all the estimators, the simple
moving average performed well in terms of mean square error in virtually every situation. It
tended to be best among the estimators tested if spatial variation was large and change was
relatively small. It was not consistently best in terms of mean square error in the presence of
moderate change and large spatial variation. For. Sci. 49(1):50-63.
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T

HE USDA Forest Service Forest Inventory and
Analysis (FIA) program provides information on
the status and trends of the nation’s forest re-

every year.

where a proportion of each state’ sinventory is completed

sources. Historically, surveys were conducted periodi-
cally on a state-by-state basis with the time between
inventories ranging from 6 to 18 yr depending on the
region of the country (Gillespie 1999). In recent years,
however, consumers of this information have been con-
cerned that FIA is not adequately meeting their needs for
current data (Van Deusen et al. 1999). Recent legislation
has directed FIA to switch to an annual, or panel survey,

Under periodic surveys, population statistics were esti-
mated independently from cycleto cycle. Estimatesfromany
given cycle possessed a high level of precision. Since cycle
lengthswere many years apart, previous estimates contained
little information about current conditions. In an annualized
survey, however, previous data are only afew years old, so
they may contain a significant amount of information about
conditionsat thetime of the present survey. Y early estimates
will, however, have less precision than the periodic surveys
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due simply to smaller sample measured each year. With this
inmind, it has often been suggested that estimatesfor current
conditionsshouldtakeadvantageof previousdata(Czapl ewski
1995, Gillespie 1999, McRoberts 1999, McRoberts and
Hansen 1999, Reams and Van Deusen 1999, Roesch and
Reams 1999, Van Deusen et al. 1999).

There have been severa different estimation strategies
proposed that would take advantage of previous data
(Czaplewski 1995 and Reams and Van Deusen 1999). One
estimator of thecurrent popul ation statistic, 6,, which appears
often in the literature is the rolling average (RA) given by

~ T ~
Orar = let—T +hB1 4n

where 6,_1 ., h=1,..., Tisanunbiased estimator of 0,_+ ,,,
the population characteristic at timet—T + h, and {w,_1,,}
isaset of constantswhich sumto 1 (McRoberts 1999, Roesch
and Reams 1999). The constant, T, isequal to the number of
years until the entire inventory is completed. If 20% of the
plots selected are sampled each year then T = 5.

The rolling estimator has many advantages. Under the
randomi zati on paradi gm described by Eriksson (1995, 2001a),
Brat IS €asy to calculate from inventory data and has a
variance estimator that is relatively easy to calculate from
data as well. The RA estimator will have a lower annual
variation than any one of theyearly estimators. Thisfact may
appeal to consumers of FIA data, who may distrust estimates
that vary too much from year to year (Gillespie 1999).

Themajor problemwiththeRA estimator isthatitishiased
as an estimator of the current year's population parameter.
Therationa efor therolling averageestimator isthat by using
past data you are “borrowing strength,” in terms of sample
size, from previous years. While this creates a “lag” bias
when estimating current conditions, it is more than compen-
sated for by a reduction in variance. This unequal trade
between variance and bias leads to a lower mean squared
error for the rolling average estimator.

Another problem is selection of the weights. Roesch and
Reams (1999) suggest that equal weights could be used for
eachyear, although they al so statethat equal weighting might
mask time trends. However, the equal weighting estimator
can be thought of asan unbiased estimator for the population
parameter at some time approximately in the middle of the
rotation cycle, so, if the time trends are long enough in
duration, the equal weighting estimator will react to the
trends. Eriksson (2001b) has shown that if the population
statistic isrelatively constant, the equal weighting estimator
isapproximately optimal intermsof asquared error criterion.
In order to track time trends more accurately, more weight
could be placed on more recent yearly estimates.

Breidt (1999) presents some models that can be used to
select the weights for the RA estimator in a more objective
manner than a simple arbitrary selection as presented by
Roesch and Reams (1999) and Reams and Van Deusen
(1999). In order to test the properties of these estimators, we
constructed a simulation population with data from two

periodic FIA surveys. Survey data were used so that our
pseudo-population would haverealistic trends and variances
for selected variables of interest. We then simulated random
samples from this population and compared the simulated
estimator distributions for accuracy and precision of the
estimators.

Simulation Population

In order to construct a popul ation that possessed attribute
values that were realistic, FIA survey data from the cycle 4
and cycle5 periodic surveysof the Aspen-Birch Unit (ABU)
in Minnesotawere used as endpointsfor the 14 yr span from
1977 through 1990. The ABU is an approximately 8.65
million ac area in northeastern Minnesota of which 86.5%
was classified as forest in 1977 (Jakes 1980) and 85% was
classified asforest in 1990 (L eatherberry et al. 1995). In both
cycle4 and cycle 5, each plot was sampled using a 10 point
variable radius sampling design. Each point was the center
for asmaller fixed radius micro plot where trees with a dbh
of 1 to 4.9 in. were measured. Trees with a dbh =5 were
measured on the variable radius plots centered at the points.

To begin construction of the simulation population, indi-
vidual tree values were used for the plots that were physicaly
measuredinbothcycles. For all of thesimul ations, however, plot
valuesof eachvariablewereused. Plot valueswerecal culated by
multiplying the tree value by its per-acre expansion factor and
summing over all trees on a given plot. These variable radius
methods are given in Schreuder et a. (1993, p. 117). The total
number of treesontheseplotswill bedenoted by N, and eachtree
is assigned an identification number j ({ 1,...,N}. Trees were
then separated into one of three groups:. (1) trees dive at both
measurements (survivor trees), (2) trees that were dive at the
first measurement but died before the second measurement
(mortality trees), and (3) trees that were not present at the first
measurement but were alive at the second measurement (in-
growthtrees). Wewill denote the subset of survivor treesby N
The subsets of mortality and in-growth treeswill be denoted by
N,,and Ng respectively.

Mortality treeswere split into three additional groups based
on cause of desath. This more detailed classification was de-
signedto better mimic mortality effectsonagivenplot. Thefirst
classification wasfor treesthat could reasonably be modeled as
having died randomly and independently at some time during
the 13 yr span. The causes of death that were included in this
group were suppression, weather damage, and animal damage.
The next classification was for trees that should be modeled as
having died in the same year for a given cause of death. For
example, al treeson agiven plot that died of harvest should be
modeled asdyinginthesameyear. Thecausesof deathincluded
inthisclassification werefire, harvest, and land use conversion.
It can be argued that weather damage should beincluded inthis
classification. However, all weather-damaged trees may not
have been damaged by the same wesather event on agiven plot.
Therefore, for easeof construction, treesthat died fromweather-
related causeswereplacedinthefirst group. Treesthat diedfrom
disease or insect damage made up the third mortality classifica-
tion. These trees were modeled as randomly dying over a3 yr
period on agiven plot.
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Therewerevery few treesthat were not present at thefirst
measurement and were found dead at the second measure-
ment, so, they were excluded from the population for conve-
nience. For this population, the date of “death” for mortality
treesisdefined to bethelast year thetreewasobserved alive,
and thedate of “birth” for in-growth treesisdefined to be the
first year the tree is observed. In the description of the
imputation procedure we will use Y;;, i = 1,...,14 and j =
1,...,N for either the dbh or volume of treej in year i; the
procedures were the same for both variables. The subscript i
= 1 will correspond to year 1977, i = 2 will correspond to
1978, and so on.

Thefirst stepinsimulating yearly valuesfor the Y;; wasto
calculatethegrowthrate, E for eachtree. Thegrowth ratefor
survivor treej [J N was cal culated by

€j = (Maj —¥) /13

Growthratesfor mortality andin-growth treeswerecal cu-
lated by averaging thegrowth ratesof survivor treesthat were
the same species and whose dbh measurement was within 1
inch of the mortality or in-growth tree in 1977 or 1990,
respectively.

Next, dates of birth and death were selected for each
tree. Survivor trees were defined to have a birth date of i
=1 and adeath date of i = 14. Mortality treeswere defined
to have abirth date of i = 1. For treesin the first mortality
classification, the death date was selected uniformly
from{1,...,13}. The death date for trees in the plot-wide
classification was selected in the same way, but it was
applied to all treesthat died from a given cause (i.e., fire)
on agiven plot. A plot death date was randomly selected
from {2,...,13} for trees dying from disease or insects.
Then, for each treein the disease class, arandom variable
selected uniformly on {-1,0,1} was added to the plot date
so that disease treeswould randomly die over a3 yr period
on any given plot. In-growth trees were defined to have a
death date of i = 14. The birth date for in-growth treeswas
randomly selected from {2,...,14} .

Initial andfinal “ alive” values, ij and Ydj ,werecalculated
for each tree. The subscriptsb and d are used to represent the
value of i which is the birth and death date respectively for
tree j. The initial and final values for survivor trees were
assigned the values recorded during the inventories. The
initial value, Yy, for mortality treeswas assigned the cycle 4
inventory value. The final value for treej [7N,,, was calcu-
lated in the following fashion:

Yg =Yy +&;(D; -1 i ONp,
where D; is the number of years tree j was alive. The final
valuesfor in-growth treeswere assigned the values recorded
inthe cycle 5 inventory. Theinitial value for in-growth tree
j o Ng was calculated by

=Yg

j ~&(0; =) jONg @)

if it wasnot located onamicroplot. If thecalculationin (1)
gave an initial measurement <5 in. then the date of birth
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was adjusted so the initial value was =5 in. If tree | was
located on amicroplot, then theinitial dbhwassetto 1in.
Initial volume values were then calculated with (1) using
thenew D; when it had been adjusted. For microplot trees,
initial volume was set to 0.

Inorder tosimulatesomenoiseinyearly Y, valuesfor tree
j, the interval [0,1] was randomly partitioned with D, — 2
random partitions and the end points {0,1}. The values of
these pointswere used to represent the cumul ative proportion
of total growth, Yd Yb , of treej occurring at “ measurement”
inyeari. Constructmg yearly valuesinthismanner forcesthe
property Y. 412 YJ forall treesand all years. Inorder to carry
out this method of construction for tree j, D. — 2 ordered
randomvariables, Ub+1’j,...,Ud_lJ,Withdistribut|on Unif(0,1)
were selected. The endpoints, Uy, =0 and U = 1, are added
to the collection of random variables. Then, yearly values
were calculated by

i =U; (Y —Yg) +Yy i =b,...d

foral j. Forvaluesof i outside{b,...,d}, Y wassetto 0. Also,
the volume value for tree j in year i Was set to O if the
corresponding dbh was <5 in. For a given j, the expected
measurement for treej is

Oi-b 0O .
ELY; 1= (Y _ij)mH+ij i=b,..d

which isthe linear interpolation between YbJ and YdJ at year
i. In addition,

Corr[Y;, Y41 =

(i—b)(d-kK)

, i<kO{bt 1.,
V(i ~b)(k ~b)(d ~i)(d -K) b '

for agiventreej. Correlationsinvolving Yb or Yy aredefined
to be 0 because they are constants. Thlscorrel ation function
is decreasing as |k — 1| becomes larger.

In the cycle 5 inventory, plots from the cycle 4 inven-
tory that wereclassified asdisturbed werere-sampled with
probability 1, while undisturbed plots were re-sampled
with probability 1/3 (Leatherberry et al. 1995). In order to
correct for this unequal weighting, all undisturbed plots
wereduplicated twice and added back into the constructed
population. So, for every undisturbed plot in the original
constructed population, two more were added that pos-
sessed the same tree values. This duplicated populationis
abetter representation of the distribution of tree valuesin
the real population. The resulting number of plotsin the
simulation population was 5,911. Volume trends in the
simulation population closely mimicked the published
attributes for the ABU (Leatherberry et al. 1995).

Breidt’'s Estimators

Thesampling planthat all of Breidt’s(1999) estimators
use is a two-phase design. First a sample s of n plotsis



drawn from area o of size A according to a probabilistic
designp(e). Herewewill present resultsfor simplerandom
sampling (SRS) and stratified simple random sampling
(STS). Thesample, s, isthen randomly partitioned into T
subsamples s;_1,y,, h = 1,...,T, where the partitioning is
independent of s. One of these subsamplesiscarried outin
each of the T years, so, the entire primary sample s is
measured after T years. In this article, the assumption is
also madethat the subsamples are of equal size and that all
plots have the same probability of being placed in any
given subsample, 1/T. This assumption is not critical,
however, and will be discussed shortly. In the following
descriptions of these estimatorswewill consider all popu-
lation parameters, 8,, as averages per unit area (e.g. aver-
agevolumeper acre). Theextension to population totalsis
easily accomplished by multiplying the estimator by A.

Tobegin, usingtwo-phasesampling methodology, 6,_t.,,
h=1,..,T, can be unbiasedly estimated by

- Zy (t-T +h) 2
Bren = AT gﬂh Z /T &)

where n, isthe number of trees sampled on plotk, z, isthe
variable of interest from theith tree sampled on plot k, and
Tt is the Horwitz-Thompson expansion factor. Under an
SRS design, T, = na, /A, where a,, isthe tree to unit area
expansion factor as described by Eri ksson (20014a). For an
STSdesign, T, = nak/A szﬁ} j=1,....J,wheren isthe
total number of pIots sampled in stratum &4] and A isthe
size of o .. The problem with these estimatorsisthat with
only n/T plotssampledin any givenyear, they may havean
unacceptablelevel of precision. In future descriptions, we
will refer to this unbiased estimator as the SA estima-
tor, Bga t—1 +h -

In practice, equal subsample size is unlikely to be
obtained. However, if partition of s into {s_t,,: h =
1,..., T} iscompleted independently of sand the probabil-
ity that plotkisincludedins,_1,,equalsP_r,,, h=1,...,T,
then, (1/T) can be replaced by P,_,,, in 8,_t,,, and the
estimator will still be unbiased. A small amount of varia-
tion in the subsampling proportions would probably not
greatly affect the results obtained in this study. A large
variation may, however, have an effect on the results
depending on the weights assigned to the different
subsamples. These effects will not be explored here.

In order to raise the level of precision it has been
suggested that information from past years be used in the
estimation of parameters for the present year. Therefore,
the estimators considered here all have the form

=Z k; Z Wy Zy (t =T +h) ©)

wherew;, isaweight that reflects the design properties of
the sample or an assumed model about the population. In
addition, with alittle algebraic manipulation, (3) can be

rewritten to be the weighted sum of the unbiased estima-
tors, (2). It is easily seen that if identical weights are
chosen for all variables, then estimates are internally
consistent (the estimate of a sum of variables equals the
sum of the separate estimates for each variable).

In describing the estimators, we will divide them into
three classes. Thefirst class of estimatorsisbased on the
time series ARIMA(0,1,1) model (Brockwell and Davis
1987, p. 274). This class of models includes the equal
weighted simple moving average (a simple average of
unbiased yearly estimates). The second class is based on
theARIMA(0,2,2) timeseriesmodel (Brockwell and Davis
1987, p. 274). Finally, the third classis based on alocally
weighted least-squares regression prediction (Neter et al.
1989, p. 400).

ARIMA(0,1,1)-Based Estimators

Estimatorsof 8, inthisclassarebasedontheARIMA(O,1,1)
model

6,=6+0, {}iid N(0,6%
6, =61 +n, {n}iid N(0,0%}

For example, the average total volume over the state of
Minnesota next year is equal to this year’s average total
volume plus some random noise that is independent from
year to year. In addition, the ARIMA(0,1,1) model as-
sumes that you have an unbiased estimate of average total
volume in each year.

The best mean square estimator of 6, derived from this
model is

T
Orar = Z‘Wt—T NS

wheretheweights, w,_r,,,,h=1,...,T, aregivenby thelast row
of the matrix

P vand]
ey +A1A'1§ A,

The matrix A, isthe T x (T — 1) first difference matrix
given by

gt 1t -
A =0 -11 C
170 . C
0 ©C
5| -1 1F

and | isan appropriately sized identity matrix. The param-
eter oﬁ / o2 is usually called the “signal to noise ratio”
(SNR). As the SNR increases from 0 to o, an increasing
amount of weight is placed on more recent conditions.
These estimators will be denoted by TS1(SNR=x) for an
ARIMA(0,1,1) based estimator with an SNR = x.
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ARIMA(0,2,2)-Based Estimators
Thisestimator classisbased onthe ARIMA(0,2,2) model

6, = 6.+ 0, {0} iid N(0,0?)

6 =684 +B +n, {n} iid N(0,07)

By = Brg * & {&} iid N(0,0%)

For example, next year’ saveragetotal volumein Minnesota
isequa tothisyear’ saveragetotal volume plus somenoisethat
isdependent betweenyearsand somemorenoisethat i sindepen-
dent between years. This model aso assumes that there is an
unbiased estimator of average total volume each year. The
resulting estimator, 8+, , hasthe sameformas 6. ;. How-
ever, the weights are generated by the last row of the matrix

~1

i, o -
I =050 +;A1A'1+A2A'2§ A,

Thematrix A, isthe T x (T —2) second difference matrix
given by

g1
A, =0 1 21 0
2- 0 o O
O O
g 1 -2 13

Also, A; isthe same as (4) except the last row has been
removed. Here we will consider the S\R to be the vector
(0f /0,07 / 0%). Once again, asthe SNR becomes larger,
more weight is placed on current conditions. Thisis easy to
see, as either element of the SNR tends to o, the variation in
the population parameter becomes much greater than the
variance of theestimator. Therefore, the populationischang-
ing rapidly and past data has little information about current
conditions. The ARIMA(0,2,2) based estimator will be de-
noted by TS2(SNR=x,y ).

Locally Weighted Least-Squares Estimators

Thefinal classof estimatorsisbased onaplot-level model.
Lety,(t—T + h) be the average per unit area of the variable
Z(t—T+h)intheplot centered at pointk 0 o{ inyeart—T +
h. For both SRSand STSdesigns

Yi(t=T +h) = Z Zy (t =T +h)/ gy, k U7 4p°
1=

The plot level expansion factors, 1, are given by A/n for
SRSdesigns and A]/n for STSdesigns. The plot level model
considered is

YV t=T+h)=mt-T +h) +3,

+0 (t—-T+ h), = 1..T)
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wherem(t — T + h) isasmooth determi n|st| cfunction, {3} isa
setof iidr.v.’swithmean 0 and variance 05 and{ [, (t—T+h)}
isazero mean stochastic process. S0, 0,_1,, = E[y,(t—-T+h)] =
m(t—T+h). OvertheT year window of plotrotation, thefunction
m(e) canbeapproximated by apolynomial of order g. Therefore,
a natural estimator of m(e) is the predicted value of a linear
regression of y, (t) versusyear. If wedefinethen x 1 vector of al
plots measured arranged according to the year in which they
were sampled

T
_ _ O
y B gyk(t T +h)]kESl—T+hQ~|:1
then x g+ 1 matrix of yearsinwhich each plot was measured
T
1 h h%...hd ]
@ ) kES( T+hH1 =1
and the n x n matrix of plot selection probabilities
T
5 H D10
W = hlock diagdiag—0
O E M D(ESL—TM 1

then, thelocally weighted linear regression estimator of 6, is
given by

I :[1 T~-Tq][X'WX]_1X'Wy
In both SRS and STS designs, é,_,_'t can be rewritten to
give the following form

B, = [1 T~~-Tq][X’WX] “xrwy

1
-1 h

SI'?EH Tq][x wx]

N—«
@DDDDD
MmOoOoOodad

N

-1 Z E
&, & U]

Wl—T+het_T +h

X

ﬂ\l/|-| Mo

We will denote this estimator by LL.

Special Cases, Connections, and
Considerations

The first consideration applies to use of both TS1 and
TS2 estimators. Notice, the weights reflect properties of
the variable of interest through the SNR, which will be
unknown in any forest survey. So, in practice, the SNRfor
both TS1L and TS2 estimators is usually set to a fixed
constant based on the level of smoothing desired. In
addition, thereisaconnection between the TS1 estimators
and the simple moving average, which we will denote by
MA. The TSL(SNR = 0) estimator isequivalent to the equal
weight simple moving average.



The second consideration involvesthe LL estimator. No-
tice, theweightsreflect only the sample design. The weights
are the same for any variable measured within a given
sampling design, so, there is no decision to be made about
smoothing parameters. Also, if both elements of the SNRin
the TS2 estimators are set to O, then, for the SRS design
8t = B1sy - Forthisreason, wewill grouptheL L estimator
withthe TS2 class. Also, if the order of the regression model
is set to q = O, the LL estimator is the same as the MA
estimator.

None of the estimators derived here should be considered
to have better performance a priori. The simulation popula-
tion was constructed by avery nonparametric method and is
not aspecial caseof any of themodelspresented for estimator
derivation. We felt that constructing the population without
aparametric model better mimicsareal forest populationin
the fact that truth never fits a probabilistic model perfectly.

Efficiency and Sample Size lllustration

A simplepopul ation model can provideabrief illustration
of theapproximate, relativeefficiency of thedifferent rolling
sample estimators of the current value of the population
parameter. To begin, supposethat plot measurementsfollow
the model:

Y=o +BO+ G ®

whereY;, isthemeasurement for ploti at timet, andtheerrors
(0;y) are independent with respect to plots, have mean 0 and
constant variance over time, o2. If afirst order model for
8, ; isused, the population sizeislarge, plots are sampled
with equal probability, and plot subsample size equals n/T,
then, thefollowing mean square error approximations can be
easily derived for the yearly unbiased (SA), moving average
(MA), and local linear (LL) estimators:

MSE[éSA’t] =To?/n

MSE[éMA]t] ~(T-12B2/4+0%/n
and

MSE[8,, | = (4T +2)0? / {n(T +1))

Inaddition, for both the TS1 and TS2 estimatorswith fixed
SNR or any genera rolling average estimator

i or f
MSE[GRA,t] = ﬁz‘hwt—T +h _Tﬁ B

ar 0
+ Tcrzn‘lﬁzl W2 o Hﬁ

where, w,_r.,, h=1,...,T, arethe weights given to the yearly
unbiased estimates.

If the relative efficiency of estimatorsis measured by the
ratio of MSEsthen, therel ativeefficiency of theMA estimator
compared to the LL estimator is approximately

(T-D*T+np2, T+1 ©6)
82T -1 g2 2(2T-J

So, if thereisnotrendtothedata, thentheL L estimator can
never be as efficient asthe MA estimator. If thereiseven the
slightest trend, however, itistheoretically possible (although
maybenot practically possible) totakealargeenough sample
suchthat the LL estimator ismoreefficient. Thisisduetothe
fact that the bias of the MA estimator is not a function of
samplesize, whilefor thissimplepopulationtheLL estimator
isunbiased. Using (6), the sample size, n", required to attain
equal efficiency between the MA and LL estimatorsis

. 12 o @
T (T-1(T +D) g2

One can see that n* essentially represents a trade-off
between the trend of a population and the variance of plot
measurements.

All of the derivations provided in this section were based
onthesimple populationmodel (5). Theextenttowhichthese
results will generalize to more complicated populations is
unknown. Theresultsshownareintendedto provideaheuris-
tic feel for how trend and variance combine to influence
sample size and efficiency considerations for the rolling
average estimators.

Simulations

For thissimulation, wewill usetwotypesof variablesthat
are often of interest to analysts. The first type is measure-
ments of wood volume. In thisstudy, we simulated use of the
estimators on: average volume per acre, average mortality
volume per acre, and average on-growth volume per acre. In
addition, average volume per acre for nine species was also
simulated. For the experiment, we chose three common
species, three moderately common species, and three rare
species. The common species included: quaking aspen
(Populus tremuloides), paper birch (Betula papyrifera), and
bal sam fir (Abies balsamea). The moderately common spe-
cies were red pine (Pinus resinosa), white spruce (Picea
glauca), and sugar maple (Acer saccharum). Therarespecies
were cottonwood (Populus deltoides), black willow (salix
nigra), and silver maple ( Acer saccharinum). The next type
of variableiscondition class. For thistype, we simulated use
of the estimators on proportion of area in sawtimber,
poletimber, and sapling status. These classifications were
generated using asimplification of the algorithm used by the
North Central Region FIA. Instead of applying the algorithm
toeach samplepoint of aplot, it wasapplied tothewholeplot.

Simulationswiththe pseudopopul ationwereaccomplished
by first selecting 1,000 plotsby simplerandom samplingwith
replacement from the simulated plots. The reason for sam-
pling with replacement was to simulate sampling from a
region with area A whose response surface for the variables
listed previously is astep function. Each of the steps hasthe
height of one of the simulated plotsand an areaof A/5911 ac.
Sampling without replacement is equivalent to randomly
locating asampl e point somewhereinthisregion. Inaddition,
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using the formulasin Ripley (1981), expectations and vari-
ances for the variables mentioned previously are calculated
simply by using the means and variances of the 5,911 simu-
lated plots. After theinitial samplewastaken, eachplotinthe
sample was randomly assigned to 1 of 5 subsamples of size
200. The same 1,000 plots were used throughout the 14 yr
period 1977,...,1990. So, once year 6 was reached, the plots
from the first subsample were used again. Following selec-
tion of the samples, the subsamples were used to calculate
unbiased estimates of population parameters with the two
phaseunbiased estimator [SA, (2)] for eachyear, 1977,...,1990.
Then, several of Breidt’s weighted estimators were used to
estimatethe current statusfor theyears 1981,...,1990. For on-
growth and mortality volume, the year indices were
1978,...,1990 and 1982,...,1990. In each simulation, this
procedure was replicated 5,000 times. We believed that
this number of replications was adequate based on the fact
that the same estimatorsin different simulations behaved
very similarly.

In order to use the time-series-based estimators, we made
some practical decisions concerning the SNRs. The first
decision that was made was to set the first SNR in the
TS(SNR = x,y) estimator to be 0. We thought that modeling
the population as having a constant mean rate of increase or
decrease over a5 yr period was a sufficient approximation
and left only one SN\R to be chosen. In order to calculate
optimal SNRs, we needed to calcul ate Gﬁ for bothmodels. In
each model, Var[8, - 6,_,] Var[const. + n,]. Therefore,
using the notation from the simulation population descrip-
tion, we calculated 62 by

o2 =Var{¥ -Y_, : i 0 1978,...,1990} -
where \?t is the population mean of variable Y in year t. The
second parameter in the SNRs, 62, is simply the sampling
variance of the two-phase estimator and was calculated
accordingto Eriksson (20014). All of the SNRswerelessthan
0.2, and many were very close to 0. Thus, the TS1 and TS2
estimators with optimal SNRs will be very close to the MA
and LL estimators, respectively. We suspect that the true
SNRswill belessthan 1 for almost any forest resource, since
change over timeisrelatively small compared to differences
over, say, acounty. To mimic the selection of constant SNRs,
we chose four values for the SNRsin theinterval 0to 1. We
will denoteatime seriesbased estimator with an optimal SNR
by TSL(SNR = opt ) or TS2(SNR = 0,0pt ).

There were five simulations that were conducted. The
first simulation involved the volume variables. average
volume per acre, average on-growth volume per acre, and
average mortality volume per acre. The estimators used
were: MA, LL, TSI(SNR=opt ), TSL(SNR=1), T2(SNR =
0,1), and TS2(SNR = 0,0pt ). The second simulation used
the same volume variables but the estimators tested were
MA, LL, TSL(SNR=0.25), TS1(SNR=0.5), TS1(SNR=1),
TS2(SNR = 0,0.25), TS2(SNR = 0,0.5), and TS2(S\NR =
0,1). This simulation was performed to see how sensitive
these estimators are to the choice of SNRs. The third simula-
tion involved the species domains of average volume per
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acre. The estimators used were MA, LL, TSI(SNR = 1), and
TS(SNR = 0,1). The purpose of this simulation was to
determinehow these estimatorsbehavewhen they areusedto
estimate domains of a general variable. The fourth and fifth
simulationswerethe sameasthefirst and second simulations
except the classification variables were used.

We used two criteria to judge the quality of a particular
estimator: root mean squared error (RMSE) and thebiasratio
(BR). For the estimator o} n of the population value 8,, the
simulated RMSE and BR were calculated by

RMSE(ét) = 1 %Z (éni _et)z

o
8, ﬁ/r -8,
S(6,)

and

BR®,) =

wherer isthenumber of simulated samplesdrawn, 9tI isthe
estimate of 6, for samplei, and §(8,) isthe sample standard
deviation formula applied to the r values of 6,;. The BR
statistic was chosen to determine if bias might play alarge
role in the actual coverage of a nominal confidence interval
(CI).Avaueof BR|<0.1impliesthebiaseffect onthe Cl can
essentially be ignored and even for a value <0.5, the bias
effect is not pronounced (Sarndal et al. 1992).

Results

The main result from these simulations was that all of
the RA estimators outperformed the SA estimator in every
simulation, with every variable with regards to RMSE.
This result makes intuitive sense. There was, however, a
definite gradient among the estimators in terms of RMSE
and BR. In many cases, low average RMSE was accompa-
nied by ahigh average BR. In terms of average RMSE, the
TSI class of estimators outperformed the TS2 estimators
and the LL estimator in every simulation. In addition, the
MA estimator performed the best in most of the simula-
tions. The largest increase in average RMSE from the best
estimator to the MA estimator was only 7.31%.

In the first simulation, where average total, on-growth,
and mortality volume were estimated, TS1(SNR = opt) had
the lowest average RMSE for volume and on-growth, while
the MA estimator had the lowest average RMSE for mortality
volume (Table 1). The TSL(SNR = opt) and MA estimators
performed almost identically in estimating the three param-
eters, the largest percent difference in average RMSE being
2.84%. Figure 1 displaysthe performance of thefirst simula-
tion estimatorsin termsof biasand variance. The MA estima-
tor had thetightest one standard deviation (SD) band, and the
true value for each variable was usually within the band.

Inthe second simulation, where averagetotal, on-growth,
and mortality volumewereestimated again, the MA estimator
always had the lowest average RMSE (Table 2). Figure 2



Table 1. Results of the first simulation. Rows are arranged in ascending order according

to average RMSE within each variable.

Variable Estimator Ave. RMSE Ave. BR* BR > 0.5
Volume TS1(SNR = opf) 25.39 0.314 0
MA 2541 0.316 0
TS1(SNR = 1) 35.85 0.077 0
LL 41.28 0.035 0
TS2(SNR = 0,0pf) 41.28 0.035 0
TS2(SNR =0,1) 43.15 0.023 0
SA 53.20 0.010 0
On-growth TS1(SNR = op1) 1.71 0.539 4
MA 1.76 0.803 5
TS1(SNR = 1) 2.05 0.212 1
LL 2.33 0.171 1
TS2(SNR = 0,0pf) 2.34 0.153 1
TS2(SNR =0,1) 2.42 0.102 0
SA 2.96 0.012 0
Mortality MA 3.65 0.386 3
TS1(SNR = opf) 3.78 0.272 1
TS1(SNR = 1) 4.95 0.125 1
TS2(SNR = 0,0pf) 5.96 0.252 2
LL 6.02 0.277 2
TS2(SNR =0,1) 6.02 0.164 0
SA 7.26 0.008 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
T This column represents the number of years in which BR > 0.5.

illustrates the performance of the TS1 estimators through
time. Asthe SNR becomes larger, more weight is placed on
current conditions and the 1 SD band becomes wider. In
Table 2 it can be seen that the TS2 class of estimators seems
tobefairly insensitiveto changesinthe SNR. Therewasonly
at most a4.56% difference among average RMSE valuesfor
the TS2 class estimators.

Once again, in the third simulation, where average
volume for three species domains was estimated, the MA
estimator had the lowest average RMSE over all species
(Tables 3-5). There was also almost no detectable bias
problem for the MA estimator in each species. In all but
oneyear, BR<0.5for all species. Figures 3 and 4 show that
the MA estimator performed well for the common and
moderately common species. It had thetightest 1 SD band,
and the bias was small. In the case of the rare species
domain, Figure 5 illustrates that the MA variance can be
higher than the other estimatorsif thevariabledecreasesto
0. It alsoillustrates a potential problem with the TS2 class
of estimators, namely negative estimates. Since the TS2
estimators can have negative weights, negative estimates
are possible. As Cottonwood and Black willow increase
from O, the MA estimator once again performed very well.

In the fourth simulation, where proportion of areaclassi-
fied by oneof threedifferent stand size classeswasestimated,
TSL(SNR=o0pt) performed thebest intermsof averageRMSE
(Table6). Thegreatest difference, however, between the MA
estimator and the TSL(SNR = opt) was4.21%. Withinagiven
year, thesmall variance of theclassificationvariablescreated
alarge average biasratio. The BRwas > 0.5 in almost every
year for sawtimber and poletimber. For the first two years,
BR > 2 for the sapling class.

Inthefifth simulation, the MA estimator performed nearly
the best for each size class, however, bias problems were
experienced due to low population variability when com-
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Figure 1. Estimator performance in the first simulation (volume
variables). The lines represent a 1 SD band for a given estimator
over 5,000 simulated samples. The TS1(SNR= opt) and TS2(SNR
=0,0pt) were excluded because they were virtually identical to
the MA and LL estimators.
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Figure 2. Performance of the TS1 estimators in the second
simulation (volume variables). The lines represent a 1 standard
deviation band for a given estimator over 5,000 simulated samples.

pared to the population trend. Figure 6 shows that the 1 SD
band of theMA estimator driftsaway fromthetruepopulation
trend. When exploring different fixed SNR values, the
TSL(SNR = 0.25) performed the best with regardsto average
RMSE (Table 7). The MA estimator had the second lowest
RMSE with the exception of the poletimber classification,
where TS1(SNR = 0.5) had the second lowest average RMSE.
The MA estimator had the smallest 1 SD band, but, it tended
to stray from the true population value. Figure 7 shows that
for each variable, thetruevaluewasamost always contained
within the 1 SD band of the TS1(SNR = 0.25) estimator. By
applying slightly more weight to current estimates, the bias
problems of the MA [TSL(SNR = 0) seem to disappear. In
addition, Table 7 shows that once again, the performance of
the T2 class of estimators seems to be rather robust to
changes in the value of the SNR. The largest difference in
average RMSE for the TS2 estimators was 5.07%.

Discussion

Certainly, we have shown for this simulation population
that the TS1 class of estimators, which contains the MA
estimator, performed the best in terms of RMSE for our
simulation population. This class can, however, have bias
problems. Although, if the SNR was high enough for the TSL
estimator, bias problems were often be eliminated at the
expense of RMSE. Another conclusion that can be drawn
from these simulations is that the MA estimator performs
well. At first, simply averaging yearly estimates does not
seem like it would produce reliable estimates of current
status. If spatial variation is high enough, however, the MA
estimator seems to work well, even under some moderate

Table 2. Results of the second simulation (TS estimators). Rows are arranged in
ascending order according to average RMSE within each variable.

Variable Estimator Ave. RMSE Ave. BR* BR > 0.5"
Volume MA 24.60 0.292 0
TS1(SNR =0.25) 27.46 0.156 0
TS1(SNR =0.5) 30.94 0.100 0
TS1(SNR = 1) 35.51 0.060 0
LL 41.03 0.035 0
TS2(SNR = 0,0.25) 41.30 0.031 0
TS2(SNR = 0,0.5) 41.81 0.027 0
TS2(SNR =0,1) 42.99 0.023 0
SA 53.28 0.016 0
On-growth MA 1.71 0.782 5
TS1(SNR =0.25) 1.71 0.453 2
TS1(SNR =0.5) 1.84 0.310 1
TS1(SNR = 1) 2.04 0.192 1
LL 2.33 0.178 1
TS2(SNR = 0,0.25) 2.34 0.154 0
TS2(SNR = 0,0.5) 2.36 0.135 0
TS2(SNR =0,1) 2.42 0.108 0
SA 2.98 0.014 0
Mortality MA 3.64 0.389 2
TS1(SNR = 0.25) 3.92 0.245 1
TS1(SNR =0.5) 4.34 0.185 0
TS1(SNR = 1) 491 0.126 0
TS2(SNR = 0,0.25) 5.90 0.235 1
TS2(SNR = 0,0.5) 5.90 0.205 1
LL 5.96 0.273 2
TS2(SNR =0,1) 5.98 0.162 0
SA 7.21 0.003 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
T This column represents the number of years in which BR > 0.5.
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Table 3. Results of the third simulation (common species). Rows are arranged in
ascending order according to average RMISE within each species.

Species Estimator Ave. RMSE Ave. BR* BR > 0.5
Quaking aspen MA 11.58 0.066 0
TSI(SNR=1) 17.50 0.025 0
LL 20.32 0.031 0
TS2(SNR =0,1) 21.24 0.021 0
SA 26.24 0.010 0
Paper birch MA 6.84 0.068 0
TSI(SNR=1) 10.35 0.021 0
LL 12.00 0.028 0
TS2(SNR =0,1) 12.57 0.019 0
SA 15.56 0.010 0
Balsam fir MA 5.22 0.192 0
TSI(SNR =1) 7.60 0.050 0
LL 8.80 0.028 0
TS2(SNR =0,1) 9.19 0.018 0
SA 11.35 0.013 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
¥ This column represents the number of years in which BR > 0.5.

Table 4. Results of the third simulation (moderately common species). Rows are
arranged in ascending order according to average RMSE within each species.

Species Estimator Ave. RMSE Ave. BR* BR > 0.5
Sugar maple MA 3.84 0.092 0
TSI(SNR = 1) 5.74 0.017 0
LL 6.23 0.013 0
TS2(SNR =0,1) 6.94 0.010 0
SA 8.56 0.007 0
Red pine MA 4.74 0.171 0
TSI(SNR=1) 7.02 0.040 0
LL 8.07 0.020 0
TS2(SNR =0,1) 8.46 0.018 0
SA 10.44 0.014 0
White spruce MA 2.32 0.251 0
TSI(SNR=1) 3.42 0.053 0
LL 3.93 0.021 0
TS2(SNR =0,1) 4.13 0.016 0
SA 5.12 0.011 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
T This column represents the number of years in which BR > 0.5.

Table 5. Results of the third simulation (rare species). Rows are arranged in ascending
order according to average RMSE within each species.

Species Estimator Ave. RMSE Ave. BR* BR>0.5
Cottonwood MA 0.035 0.345 0
TSI(SNR = 1) 0.049 0.124 0
LL 0.059 0.102 0
TS2(SNR = 0,1) 0.060 0.082 0
SA 0.070 0.009 0
Black willow MA 0.036 0.112 1
TSI(SNR = 1) 0.058 0.058 0
LL 0.067 0.051 0
TS2(SNR = 0,1) 0.071 0.041 0
SA 0.086 0.011 0
Silver maple MA 0.57 0.057 1
TSI(SNR = 1) 0.83 0.017 0
LL 0.97 0.014 0
TS2(SNR = 0,1) 1.00 0.013 0
SA 1.23 0.013 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
¥ This column represents the number of years in which BR > 0.5.

Forest Science 49(1) 2003 59



a. Quaking aspen
215

=——TRUE —#—MA —&—LL —%—TS1(SNR=1) —+—TS2(SNR=0,1)
205

195 + —

185 [
175 +
- s a—a—8 —a—38
165 D st/ SIS S
%‘——T T N T 1

b. Paper birch
110

E =——TRUE —=—MA —A—LL —2TS1(SNR=1) —+TS2(SNR=0,1)

£ 105+

@ 00 | W

8

et 95 [

)

Q 90 = —————————————

[

£ 85 |

3

o 80 | e H I — X

> - A A ~ =t 4 A A 2
75 Ll T T T e R

c. Balsam fir
90

| %

70./__\4_
-——-—-—‘.‘,_x.\’_‘—'_.

——TRUE —%—MA —A—LL -—>-TS1(SNR=1} ——TS2(SNR=0,1)

50 T T T T T T

77 79 81 83 85 87 89 N
Year

Figure 3. Estimator performance onthe common species domains

inthe third simulation. The lines represent a 1 standard deviation
band for a given estimator over 5,000 simulated samples.

temporal trends. Evenif itisdesirableto choose aless biased
TS1 estimator, it would be wise to choose aconstant SNR, at
least within each variable type. Thiswould make estimation
muchlesscomplicated aswell aspreserving additivity among
variable domains.

We suspect that any tree measurement variablesarelikely
to be similar in variation structure to the volume related
variables we simulated. Therefore, the MA estimator would
be a good choice for these type of variables. It has a low
variance and would provide the stability of estimates from
year to year. The MA estimator will react slowly to sudden
changes in tree attribute variables. We feel, however, that
sudden trend changesin these attributes are unlikely without
an obvious catastrophic event such as a large-scale weather
event or disease epidemic, in which case it would probably
not be advisabl e to continue sampling and estimation proce-
duresinthe usual fashion. In addition, by using an estimator
that tracks the current conditions more closely, you may
create apparent small trends due to its higher variance.
Another consideration is the length of the cycle (T). We
simulated sampling with a 5 yr cycle. Longer cycles will
certainly have negative effects on the performance of the MA
estimator in terms of bias.

The smaller within-year variance of condition class vari-
ablestendsto exaggeratebiaseffects. Therefore, eventhough
theMA estimator had nearly thelowest average RMSE, it may
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Figure 4. Estimator performance on the moderately common

species domains in the third simulation. The lines represent a 1

standard deviation bandfor a given estimator over5,000 simulated
samples.

beadvisableto choosean SNR> 0to reducethesebiaseffects.
How to choosethe SNRisunclear. It may seem that arbitrary
selection of the SNRisno better than arbitrary selection of the
weights themselves; however, the SNR represents an easily
interpretable parameter intermsof variation over timeversus
spatial variation, whereasthewei ghtsthemsel vesdo not have
an interpretation involving the actual population. For ex-
ample, al of the simulated variablesin this study had SNRs
less than 0.2. Therefore, variation in average yearly change
for each variable was less than 20% as large as the corre-
sponding average spatial variation for each variable.
Another consideration is that these simulations were
conducted in a very simple fashion without the use of
auxiliary information. In recent years, it has been sug-
gested that surveys should make use of auxiliary informa-
tionto reduce estimator variance or obtain ahigher sample
in each year (Czaplewski 1999, Robinson et al.1999). The
first consideration is how to incorporate the auxiliary
information into the RA estimators. In the case of the LL
estimator, incorporation of the information is easy. All
that needs to be done is to place the information for each
tree sampled into the X matrix just asin ordinary regres-
sion analysis. By adding the extra information, the LL
estimator may compete better with the TS1 estimators in
terms of RMSE. Another consideration is how the MA
estimator will fareonce auxiliary informationisused. The
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Figure 5. Estimator performance on the rare species domains in

the third simulation. The lines represent a 1 standard deviation

upper bound for a given estimator over 5,000 simulated samples.

The lower bound for TS1 estimators is 0 and the lower bound for
TS2 and LL estimators is <0.

reason that the MA estimator performs so well is that the
variance of the SA estimator within agivenyear isusually
very large. If that variance could be substantially reduced
with auxiliary information, the MA estimator may not
perform as well compared to other TS1 estimators.

The TS2 estimators, including the LL estimator, do not
perform aswell interms of RMSE becausethey fit the data
too closely. Thus, for populations with low SNRs, they
tend to track noise rather than any real trend. While this
producesweighted estimatorsthat are nearly unbiased, the
variance of these estimators is high. The high variance
often produced average RMSE that were not much better
than the SA estimator, which we considered the upper
limit. So, even though these estimators had good bias
properties, their large variability made them lessdesirable
for general usein FIA surveys.

Overall, drawing conclusions about optimal or best
estimators in a multiresource survey is usually not pos-
sible, and whenthesurvey isdrawn out over time, itiseven
moredifficult. For the population studied here, the amount
of trend in relation to the variance of the individual panel
estimators (i.e., the signal to noise ratio) wasjust too high
for the more complex estimators to perform well. If the
sample size were increased for avariable with low spatial
variation, the TS2 estimators, including LL, might perform
more competitively. For instance, applying Equation (7)
to the sawtimber class variable, n* =3000. So, the sample
size in the simulation would have to be tripled for the
performance of the LL estimator to equal the MA estima-
tor. However, for avariable like total volume per acre, n*
= 35,000. Thus, increasing sample size to the maximum
that is practically feasible is not likely to change the
results. Evenif the sample sizewereincreased in practice,
these estimators may still not perform well because FIA
has a fixed sampling intensity of approximately one plot

Table 6. Results of the fourth simulation. Rows are arranged in ascending order
according to average RMSE within each size class.

Size class Estimator Ave. RMSE Ave. BR* BR > 0.5
Sawtimber TS1(SNR = opf) 0.0165 0.960 10
MA 0.0166 0.977 10
TS1(SNR = 1) 0.0185 0.198 0
LL 0.0209 0.051 0
TS2(SNR = 0,0pf) 0.0209 0.050 0
TS2(SNR =0,1) 0.0220 0.029 0
SA 0.0272 0.004 0
Poletimber TSI1(SNR = op?) 0.0213 0.866 7
MA 0.0219 0.919 7
TSI1(SNR = 1) 0.0236 0.210 0
LL 0.0267 0.069 0
TS2(SNR = 0,0pf) 0.0267 0.068 0
TS2(SNR =0,1) 0.0279 0.043 0
SA 0.0344 0.010 0
Sapling TS1(SNR = op?) 0.0091 0.558 3
MA 0.0095 0.729 3
TSI1(SNR = 1) 0.0110 0.109 0
LL 0.0126 0.081 0
TS2(SNR = 0,0pf) 0.0126 0.077 0
TS2(SNR =0,1) 0.0132 0.045 0
SA 0.0163 0.010 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
¥ This column represents the number of years in which BR > 0.5.
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Figure 6. Estimator performance in the fourth simulation

(condition class variables). The pointslines represent a 1standard
deviation band for a given estimator over 5,000 simulated samples.
The TS1(SNR= opt) and TS2(SNR=0,0pt) were excluded because
they were virtually identical the the MA and LL estimators.
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Figure 7. Performance of the TS1 estimatorsin thefifth simulation
(condition class variables). The lines represent a 1 standard
deviation band for a given estimator over 5,000 simulated samples.

Table 7. Results of the fifth simulation (TS1 estimators). Rows are arranged in
ascending order according to average RMSE within each size class.
Size class Estimator Ave. RMSE Ave. BR* BR > 0.5
Sawtimber TS1(SNR = 0.25) 0.0155 0.527 7
MA 0.0165 0.987 10
TSI1(SNR =0.5) 0.0165 0.340 0
TSI(SNR=1) 0.0184 0.195 0
LL 0.0207 0.054 0
TS2(SNR = 0,0.25) 0.0210 0.046 0
TS2(SNR =0,0.5) 0.0212 0.040 0
TS2(SNR =0,1) 0.0218 0.031 0
SA 0.0270 0.007 0
Poletimber TS1(SNR =0.25) 0.0203 0.512 6
TSI1(SNR =0.5) 0.0214 0.341 3
MA 0.0219 0.907 7
TSI(SNR=1) 0.0236 0.203 0
LL 0.0268 0.066 0
TS2(SNR = 0,0.25) 0.0269 0.057 0
TS2(SNR =0,0.5) 0.0272 0.050 0
TS2(SNR =0,1) 0.0279 0.040 0
SA 0.0344 0.012 0
Sapling TSI1(SNR =0.25) 0.0093 0.342 2
MA 0.0096 0.725 3
TSI1(SNR =0.5) 0.0100 0.209 1
TSI(SNR=1) 0.0111 0.113 0
LL 0.0127 0.081 0
TS2(SNR = 0,0.25) 0.0128 0.068 0
TS2(SNR = 0,0.5) 0.0129 0.059 0
TS2(SNR =0,1) 0.0133 0.046 0
SA 0.0164 0.011 0

* The true BR for the SA estimator is 0, but, the simulated BR is presented for comparison.
T This column represents the number of years in which BR > 0.5.
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per 2,400 ha. Thus, increasing the sample size also means
that larger areas must be considered, and it is possibl e that
thespatial variancewill increasewiththisincreasein area.

Of the estimators studied, the TS class seems to have
enough flexibility to handle estimation in a multiresource
survey. The model parameters are easily interpreted with
regard to variance structure, making it possible to be more
objective in choosing constant values for this parameter. In
addition, the MA estimator worked well in this simulation
study as long as spatial variation was large. Therefore, we
suggest using the TS1 estimatorsto easily incorporate previ-
ous years, data into the current year’s estimates. We would
like to caution, however, that these results are based on data
from a specific region of Minnesota, which implies that the
results may not be identically replicated in practice when
applied to other forest types or natural resources. The main
result that one should draw from this research is that the
moving average should not be so quickly dismissed due to
bias problems. The real problem is estimator mean square
error.
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