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[1] Advective flows within soils and snowpacks caused by pressure fluctuations at the
upper surface of either medium can significantly influence the exchange rate of many
trace gases from the underlying substrate to the atmosphere. Given the importance of
many of these trace gases in understanding biogeochemical cycling and global change, it
is crucial to quantify (as much as possible) any impact these flows can have on the
transport of these gases. This study (part 1 of 2) details a new model describing the
influence that naturally occurring, pressure-driven, oscillatory advective flows have on
CO2 profiles within soils and snowpacks and on the associated CO2 fluxes emanating
from the underlying source. This model, which consists of two layers with differing
permeability and CO2 source strength, is developed for both a dispersive and a
nondispersive medium. The pressure forcing and the CO2 response, modeled as plane
waves in time and the horizontal direction, have amplitudes that vary in the vertical
direction as described by analytical solutions to the diffusion equation (for pressure) and
the advective-diffusive and dispersive-diffusive equations (for CO2). In the case of a
dispersive medium, the dispersion coefficient is derived in terms of the horizontal wave
number and amplitude of the pressure forcing at the upper surface and the vertical
structure and dispersivity of the medium. Diffusive flux enhancement factors, developed
for the dispersive and nondispersive models, are expressed as functions of the surface
amplitude of the pressure forcing, the permeability and cross-sectional shape and
dimension of the pore tubes of the medium, and the vertical structure of the medium.
Results indicate that advective flows induced by naturally occurring atmospheric pressure
fluctuations are likely to enhance diffusive fluxes more in a dispersive medium than a
nondispersive medium. However, such pressure forcing can significantly enhance
diffusive fluxes in either medium.
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1. Introduction

[2] Given the increasing concern about the buildup of
trace gases in the atmosphere and their possible influence on
global change and atmospheric chemistry, it is important to
understand the physical processes that control their ex-
change between the atmosphere and the biosphere. For
soil-atmosphere gas exchange, molecular diffusion is a
key process in virtually all situations. However, over a
century ago, Buckingham [1904] proposed that naturally
occurring advective flows in soils induced by variations in
atmospheric pressure at the soil’s surface might also affect
the exchange of gases between the soil and the atmosphere.
This pressure-related phenomenon, which has been termed
wind pumping, atmospheric (pressure) pumping, and baro-

metric pumping [Fukuda, 1955; Colbeck, 1989; Nilson et
al., 1991; Auer et al., 1996], occurs not only in soils but in
any permeable medium exposed to a time-varying pressure
field or a static pressure differential. There are many natural
settings where these types of pressure forcing can occur.
[3] For example, whenever moving air or any moving

fluid encounters an obstacle, a static pressure differential is
formed between the windward and leeward sides of the
obstacle. If the obstacle is permeable, then the fluid, which
will be forced through it as a result of the pressure
difference, will transport material through the obstacle.
Similarly, any time-varying or periodic pressure field at
the top of a permeable layer (soils, snowpacks, benthic
sediments) will induce periodic motions within the medium
[e.g., Waddington et al., 1996]. In this case, however, these
periodic motions are not simple symmetric motions, which
would just move fluid back and forth with no net transport.
Rather, within the pore spaces and connecting paths of the
permeable medium, these oscillatory flows asymmetrically
enhance the diffusional exchange through both shear dis-
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persion, caused by viscous drag at the pore boundaries
[Watson, 1983], and rotational dispersion, which occurs
when the direction of the pressure gradient rotates with
time [Webster and Taylor, 1992].
[4] In the broadest sense, these two pressure-related

processes epitomize the two major physical processes
associated with naturally occurring pressure-induced ex-
change at the Earth’s surface: a moving fluid interacting
with a rough surface, which will induce pressure fields
associated with drag, and the existence or persistence over
the surface of a permeable medium of either a stationary or
a propagating pressure field caused by some remote phe-
nomenon. Although these physical transport processes may
be relatively few, there are a great variety of physical
phenomena associated with variations in surface pressure.
Among them are high-frequency atmospheric turbulence,
which can be characterized by timescales between about
10�1 s and about 103 s and space scales between about
10�2 m and 102 m [Colbeck, 1989; Massman et al., 1997],
and low-frequency synoptic-scale atmospheric motions,
which have wavelengths of about 106 m and periods of a
week or so (�106 s) [Massmann and Farrier, 1992; Auer et
al., 1996]. Between these extremes lie atmospheric gravity
waves [Nappo, 2002; Lee and Barr, 1998], solitary waves
[Hauf et al., 1996; Rees et al., 1998], mesoscale disturban-
ces [Grivet-Talocia et al., 1999], coherent turbulent struc-
tures within the atmospheric surface layer [Katul et al.,
1997; Watanabe, 2004], and a host of other phenomena, all
of which can cause natural pressure-induced advective
flows in soils.
[5] Because of the ubiquity of these natural flows and

the permeable nature of most of the Earth’s surface,
pressure-induced advective flows have been studied in a
variety of settings, some of which include: the transport of
heat, trace gas, and aerosols in snowpacks and glacial
firn [Gjessing, 1977; Albert and McGilvary, 1992;
Cunningham and Waddington, 1993; Massman et al.,
1997; Albert and Hardy, 1995], dating trace gases held
within sand dunes [Severinghaus et al., 1997], radon entry
into basements [Robinson et al., 1997], CO2 profiles along
geological faults [Lewicki et al., 2003], and the exchange
of nutrients and solutes within benthic sediment layers in
coastal regions [Harrison et al., 1983; Huettel and
Webster, 2001; Jiao and Li, 2004].
[6] While it does appear that naturally occurring pressure-

induced advective flows are common, their importance to
gas transfer relative to diffusion can vary significantly. For
oscillatory flows with high Schmidt number (Sc), transport
by these natural advective motions can dominate diffusion
[Watson, 1983; Webster, 2003]. When Sc � 1 or less,
however, the pressure-induced transport is likely to be small
compared to diffusion [Waddington et al., 1996] or at least
to contribute much less to transport than the high Sc
oscillatory flows [Watson, 1983]. Other studies [e.g.,
Colbeck, 1989] suggest that standing or stationary pressure
waves or a stationary pressure differential (like that forced
by flow over irregular topography) are more effective at
pressure-induced transport than traveling waves (like those
associated with atmospheric turbulence) and that stationary
waves have the potential to enhance diffusion significantly.
It has also been suggested that low-frequency atmospheric
motions are less effective than higher-frequency motions at

trace gas transport [Waddington et al., 1996]. Finally, flows
forced by natural pressure variations in a dispersive medium
can be considerably more efficient at trace gas transport
than similar flows in a nondispersive medium [Scotter and
Raats, 1968; Auer et al., 1996].
[7] The purpose of this work (part 1) is to outline a new

(physically based) analytical model describing natural pres-
sure-induced advective flows in snowpacks and soils and
their impact on CO2 profiles and the associated diffusional
flux enhancements. The model, developed for both disper-
sive and nondispersive media, consists of two layers with
differing permeability and CO2 source strength. The pres-
sure forcing and the CO2 response, represented as linear
plane waves in time and in the horizontal direction, have
amplitudes that vary with depth in accordance with analyt-
ical solutions to the diffusive and advective-diffusive equa-
tions. The complete CO2 profile is given as a superposition
of a mean (time independent) solution and a sum of time-
dependent wave harmonics. For the dispersive case, the
dispersion coefficient is developed in terms of the horizontal
wave number and amplitude of the pressure forcing at the
upper surface and the vertical structure and dispersivity of
the medium. The models are used to examine how dis-
persivity and wave parameters can influence the profiles of
CO2 within the layered medium. The impact of the location
of the CO2 source term (whether in the upper or lower layer)
is also examined. Enhancement factors are developed for
both the dispersive and nondispersive models in terms of
permeability of the medium, the size and cross-section
shape of the pore spaces, vertical structure of the medium,
and the surface amplitude of the pressure forcing.
[8] In this first part of the study, the new model is shown

to reinforce and extend the results of many earlier studies,
which are detailed in the previous paragraphs. In part 2,
Massman and Frank [2006] use this analytical model to
estimate the time lag between the surface pressure forcing
and the CO2 response for the case of a deep snowpack
overlying a layer of soil in an effort to assess whether
observed undersnow CO2 fluctuations result from, or are at
least consistent with, possible advective flows induced by
natural pressure pumping. They also use the model to infer
information about the dispersivity of snow and the spatial
and temporal characteristics of the pressure forcing.

2. Atmospheric Forcing: The Pressure Field

[9] Equations (1) and (2) are frequently used to describe
atmospheric pressure pumping for a homogeneous medium
[Clarke and Waddington, 1991; Massmann and Farrier,
1992; Waddington et al., 1996; Massman et al., 1997].

@p

@t
¼ kpr2p; ð1Þ

where p (Pa) is the fluctuating pressure field or the driving
variable responsible for pressure pumping, t is time,r is the
gradient operator, r2 is the Laplacian operator, and the
pressure diffusivity, kp (m

2 s�1), is given as follows:

kp ¼
P0k

hm
; ð2Þ
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where P0 (Pa) is the mean ambient or background pressure,
k (m2) is the air permeability of the medium, h is the air-
filled porosity of the medium, and m (Pa s) is the dynamic
viscosity of air. For the present purposes, variations in
temperature within the porous media are not considered so
that m is uniform throughout the medium. Together, these
two equations describe the ‘‘diffusion’’ of pressure waves
through a permeable medium and follow from Darcy’s law,
the equation of mass conservation for air, the assumptions
that p � P0 and that the temperature of the medium is
uniform in time and space [e.g., Massman et al., 1997], and
the compressibility of air. Other models based on the
incompressibility of air have also been used to describe the
fluctuating pressure field within a permeable medium
[Albert and McGilvary, 1992], but such models are not
considered in the present study because it is not clear that
they are amenable to analytical solutions.
[10] Assuming p is described by a traveling or plane wave

yields (in complex notation)

p x; y; z; tð Þ ¼ Ap zð Þei wt�kh �rhð Þ; ð3Þ

where x, y, and z are the spatial (Cartesian) coordinates
with z being positive downward from the surface; Ap(z) is
the amplitude of the pressure wave as a function of depth,
z; i =

ffiffiffiffiffiffiffi
�1

p
; w is the wave frequency, which by

convention will be taken as positive (w > 0); kh =
{̂{{kx + |̂|ky is the horizontal wave number vector with {̂{{ as
the unit vector in the x direction, |̂| as the unit vector in
the y direction, and kx and ky are the respective horizontal
wave numbers; rh = {̂{{x + |̂||y; and the bold dot is the dot
product of two vectors.
[11] The modeled pressure (pumping) field results from

solving equations (1)–(3) for Ap(z). The analytical solution
for an isothermal porous medium with homogeneous phys-

ical properties [Clarke and Waddington, 1991; Waddington
et al., 1996] is

Ap zð Þ ¼ Aþ
p e

bz þ A�
p e

�bz; ð4Þ

where Ap
+ and Ap

� are the complex amplitudes of the
downward (ebz) and upward (e�bz) propagating pressure
waves and

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ i

w
kp

r
; ð5Þ

where kh
2 = kh � kh = kx

2 + ky
2. Note here that b can also be

written as

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ i

2

H2
p

s
; ð6Þ

where Hp =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kp=w

p
is the attenuation depth of the pressure

wave.
[12] The parameter b is fundamental to characterizing

different types of natural pressure pumping [Waddington
et al., 1996]. For example, in the case of barometric
pumping (the term used to describe natural pressure pump-
ing associated with very low frequency atmospheric pres-
sure waves, i.e., w � 10�4 Hz), it is reasonable to assume
that the horizontal wavelength of the pressure wave is
much greater than Hp (i.e., kh � 1/Hp) and therefore that
b � (i + 1)/Hp. Whereas, for static pressure pumping forced
by ‘‘wavy’’ topography w = 0 and b = kh.
[13] The present study assumes a two-layered medium

where each layer has different, but homogeneous, proper-
ties. Therefore equation (4) is applied to each layer, and
continuity of pressure or Ap(z) and the vertical mass flux
(proportional to k

dAp zð Þ
dz

) are assumed across the interface
between them. The upper boundary condition is the ampli-
tude of the pressure forcing, Ap(0), at the upper surface or z =
0. The lower boundary condition assumes an impermeable
layer beneath the second model layer, which is equivalent to
assuming dAp/dz = 0 at the bottom of the lower layer. The
model for the pressure wave is completed by solving for the
two complex amplitudes Ap

+ and Ap
� for each of the two

layers using these boundary and interface conditions. This
method of solution has analogs in heat transfer and electro-
magnetic wave propagation through nonuniform media
[Karam, 2000]. The final solutions for Ap(z) and kdAp(z)/
dz for either layer have the form

Ap zð Þ ¼ F zð ÞAp 0ð Þ ð7Þ

k
dAp zð Þ
dz

¼ �kbG zð ÞAp 0ð Þ; ð8Þ

where for the upper layer (0 � z � Dw),

and for the lower layer (Dw < z � Ds),

Fl zð Þ ¼ kwbw cosh bl Ds � zð Þ½ 
kwl

Gl zð Þ ¼ kwbw sinh bl Ds � zð Þ½ 
kwl

;

with the subscripts w and l denoting the upper or lower
layers. Here Dw is the thickness of the upper layer, Dl is the
thickness of the lower layer, Ds = Dw + Dl is the total depth

Fw zð Þ ¼ kwbw cosh blDlð Þ cosh bw Dw � zð Þ½  þ klbl sinh blDlð Þ sinh bw Dw � zð Þ½ 
kwl

Gw zð Þ ¼ kwbw cosh blDlð Þ sinh bw Dw � zð Þ½  þ klbl sinh blDlð Þ cosh bw Dw � zð Þ½ 
kwl

;
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of the permeable substrate, and kwl = kwbw cosh(blDl)
cosh(bwDw) + klblsinh(blDl) sinh(bwDw).

3. Pressure-Induced Velocity Field

[14] Darcy’s law, given next, determines the volume flux
or velocity of air, v, forced by the pressure gradient. For the
upper layer,

vw ¼ � kw

m
rrrrrp

¼ � kw

m
Ap 0ð Þ �ik̂hkhFw zð Þ � k̂bwGw zð Þ

� �
ei wt�kh�rhð Þ: ð9Þ

where k̂ is the unit vector in the z-direction, k̂h is the unit
vector in the kh direction (k̂h = kh/kh). For the lower layer,

vl ¼ � kl

m
Ap 0ð Þ �i k̂hkhFl zð Þ � k̂blGl zð Þ

� �
ei wt�kh �rhð Þ: ð10Þ

[15] A careful examination of equations (9) and (10)
shows that the horizontal component of the volume flux is
not continuous across the interface between the two layers.
Continuity in the vertical volume flux has been explicitly
incorporated (i.e., kwbwGw(Dw) = klblGl(Dw)), as previously
discussed, and the pressure field is continuous because
Fw(Dw) = Fl(Dw). However, continuity in the horizontal
volume flux requires kwkhFw(Dw) = klkhFl(Dw) (or more
precisely that kwkh = klkh), which cannot be satisfied if the
horizontal wavelength is the same for both layers and the
permeabilities are not (kw 6¼ kl). Consequently, this model
imposes a ‘‘slip’’-like condition on the horizontal Darcian
velocity at the interface between two layers with very
different permeabilities. However, this discontinuity is not
particularly significant to the modeling of the vertical
profiles of mass or mass fluxes.

4. Advective-Diffusive Model for CO2

[16] Assuming the trace gas (CO2) is dilute compared to
the carrier gas (air), the advective-diffusive equation for
CO2 mol fraction, c, within the soil or snowpack is given as
[e.g., Massman et al., 1997]

h
@c
@t

þ v � rc� Der2c ¼ Sc; ð11Þ

where (1) De = htD is the effective diffusivity (m2 s�1) with
D (m2 s�1) denoting the diffusivity of the CO2 in air for the
ambient temperature and pressure and t denoting the
tortuosity factor of themedium (0 < t� 1) and (2) Sc = SCO2

/c
with SCO2

denoting the source term for CO2 (mol m�3 s�1)
and c (mol m�3) is the molar density of the air at ambient
environmental conditions. Although no notational distinction
between the upper and lower layers is made here, h, t,De, and
SCO2

can be different for each layer.
[17] Even though the advective term v � rrrrrc is nonlinear,

equation (11) is still amenable to an analytical solution
using separation of variables and Fourier expansion. The
first step is to assume the following form for the solution:

c x; y; z; tð Þ ¼ c0 zð Þ þ
X1
n¼1

cn zð Þeni wt�kh �rhð Þ; ð12Þ

where c0(z) represents the average or background CO2 mol
fraction, which is assumed to be constant in time and a
function of depth only, and cn(z) is amplitude of nth
harmonic of the time-dependent CO2 response to the
pressure forcing. Physical constraints imposed on c0(z)
and cn(z) by the natural environment lead to the expectation
that cn(z) � c0(z). Consequently, equation (12) is a
perturbation-type solution to the advective-diffusive trans-
port equation undergoing oscillatory forcing.
[18] The second step is to derive a set of recursive

inhomogeneous differential equations for each of the cn

by equating coefficients associated with each plane har-
monic wave eni(wt � kh � rh). Thus the complete analytical
solution is an infinite series of (harmonic) plane waves with
amplitudes that are attenuated in the z direction. Combining
equations (11) and (12) yields the following differential
equations for cn. For n = 0,

�De

d2c0

dz2
¼ Sc; ð13Þ

and for n � 1 the result is the following inhomogeneous
Helmholtz equation:

d2cn

dz2
� k2hn

2 þ iwh
De

n

� 	
cn ¼

kAp 0ð Þ
mDe

� bG zð Þ dcn�1

dz
þ k2h n� 1ð ÞF zð Þcn�1


 �
: ð14Þ

[19] The solutions to these equations are determined by
the source term, Sc and the boundary conditions. Here we
assume the simplest possible model for the source term, i.e.,
that Sc is uniform throughout the source layer and constant
with time. For the present study, which is primarily focused
on a deep snowpack overlaying a soil layer, this assumption
is realistic. In this case, for the site and time period under
investigation, the soil layer was nearly isothermal and dry
and was, in general, a weak source of CO2 [Sommerfeld et
al., 1996]. The snow layer, on the other hand, was at best a
negligible source of CO2 and, as discussed in part 2 of this
study, had a relatively constant depth.
[20] The upper boundary condition on equation (13) is

c0(0) = c(0), which is taken to be a measured quantity. The
lower boundary condition follows from the assumption that
there is no flux into the underlying bedrock from the layer

above, or
dc0

dz
(Ds) = 0. The final boundary condition is

specified at the interface and is c0(Dw) = c(Dw), which
again is taken to be a measured quantity. This last boundary
condition allows Sc to be expressed as an analytical
function of the layer thicknesses and the measured mol
fractions. The solution to equation (13) and Sc is

c0 zð Þ ¼
c 0ð Þ þ c Dwð Þ � c 0ð Þ

Dw

z for 0 � z � Dw

fwlc 0ð Þ þ 1� fwl½ c Dwð Þ þ fwl

c Dwð Þ � c 0ð Þ
Dw


 �
z� z� Dwð Þ2

2Dl

" #
for Dw � z � Ds :

8>>><
>>>:

ð15Þ
Sc ¼ Dw

e

c Dwð Þ � c 0ð Þ
DwDl

; ð16Þ

where fwl = hwtw/(hltl) and De
w = hwtwD.
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[21] The solution to the homogeneous part of equation
(14), i.e., the complementary solution, cn

c(z), for the no-
source upper layer is

cc
n zð Þ ¼ Aþ

cn
elwnz þ A�

cn
e�lwnz; ð17Þ

where lwn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2hn

2 þ iwhw
Dw

e
n

q
and Acn

+ and Acn

� are the

complex amplitudes of the nth harmonic downward (elwnz)
and upward (e�lwnz) ‘‘waves’’ of CO2 mol fraction.
[22] The solution to the inhomogeneous part of equation

(14), i.e., the particular solution,cn
p(z), depends on n. The n =

1 solution for the no-source upper layer is

cp
1 zð Þ ¼ kwAp 0ð Þ

mDw
e


 �
c Dwð Þ � c 0ð Þ

Dw


 �
bw

b2w � l2
w1

" #
Gw zð Þ: ð18Þ

Note here that it is possible to continue the solution series
for n � 2. However, this is not necessary for the present
study because, as discussed in part 2, there is little
observational evidence to support the inclusion of any
higher harmonics.
[23] The boundary conditions for the mass transfer model,

equation (14), are similar to, but not exactly the same as, those
outlined for themodel of the pressure field (i.e., equation (4)).
As in the pressure model, an amplitude at the upper boundary
is specified. It will be denoted as Ac1

(0). The lower boundary
condition is also a no-flux condition, and at the interface
between the two layers the solutions and the corresponding
fluxes are matched as with the pressure field.
[24] With these boundary conditions and matching con-

straints, the solution to equation (14) for the snowpack (0 �
z � Dw) is

c1 zð Þ ¼ h4 sinh lw1zð Þ þ Ac1
0ð Þ � gwc1

Gw 0ð Þ
n o

e�lw1z

þ gwc1
Gw zð Þ; ð19Þ

and for the soil (Dw � z � Ds) it is

c1 zð Þ ¼ h3 cosh ll1 Ds � zð Þ½  þ glc1

Ds � z

Dl

� 	
sinh bl Ds � zð Þ½ 

þ gclc1
cosh bl Ds � zð Þ½ ;

ð20Þ

where

h4 ¼
h3 cosh ll1Dlð Þ þ h1

sinh lw1Dwð Þ ;

h3 ¼
h2 sinh lw1Dwð Þ � h1 sinh lw1Dwð Þ

cosh ll1Dlð Þ cosh lw1Dwð Þ þ ll1

fwll1w
sinh ll1Dlð Þ sinh lw1Dwð Þ

;

h2 ¼
�glc1

sinh blDlð Þ=Dl � glc1
bl cosh blDlð Þ � gclc1

bl sinh blDlð Þ þ fwlgwc1
bwFw Dwð Þ

fwllw1

þ Ac1
0ð Þ � gwc1

Gw 0ð Þ
n o

e�lw1Dw ;

h1 ¼ glc1
sinh blDlð Þ þ gclc1

cosh blDlð Þ
� Ac1

0ð Þ � gwc1
Gw 0ð Þ

n o
e�lw1Dw � gwc1

Gw Dwð Þ;

with

gwc1
¼ kwAp 0ð Þ

mDw
e


 �
c Dwð Þ � c 0ð Þ

Dw


 �
bw

b2w � l2
w1

" #

glc1
¼ kwAp 0ð Þ

mDl
e


 �
c Dwð Þ � c 0ð Þ

Dw


 �
bwklbl

b2l � l2
l1

� �
klw

" #
;

(where ll1 is the soil analog to lw1) and

gclc1
¼ � 2bl=Dl

b2l � l2
l1

" #
glc1

:

[25] However, there is a fifth boundary condition imposed
on equations (19) and (20) at the snowpack/soil interface (z =
Dw). The magnitude of the complex solution at this interface,
jc1(Dw)j, is to be specified and henceforth is denoted by
Ac1

(Dw). This last boundary condition is important because,
as discussed in part 2, it can be measured (at least for very low
frequencies). However, Ac1

(Dw) must be imposed on c1(z) at
z = Dw in such a way as to keep the phase of the solution
consistent across the interface. This is accomplished using an
iterative numerical method described in Appendix A. (Note
that all model profiles are displayed graphically in section 6.)
[26] Before ending this section, there are two points

concerning the mass flow model that need some discussion.
First, the model is expressed in terms of an amplitude,
Ac1

(0), as an upper boundary condition. Generally speaking
this amplitude may not be measurable in a natural setting, so
it is important to be able to estimate or parameterize it in
terms of the pressure forcing and the physical constraints
imposed on it by the medium itself. Such a parameterization
is developed in section 7, which discusses the diffusive flux
enhancement factors. Second, if bw = lw1, equation (18)
would become undefined, indicating that the mass flow
model is potentially subject to resonance. This is true for
either model layer regardless of the relative positioning of
the source term. From the general definitions of b and l1,
resonance will occur in the mass flow model whenever k

ht =mD
P0
. For most conditions encountered at the Earth’s surface,

m D/P0 = (2��8) � 10�15 m2, well below k/(ht) values
for most soils and snowpacks [e.g., Albert et al., 2000;
Massman et al., 1997; Freeze and Cherry, 1979].

5. Dispersive-Diffusive Model for CO2

[27] In soils (as well as snowpacks), dispersion results
from mechanical mixing caused by the interaction between
the flow and the structural inhomogeneities of the medium.
It is typically parameterized in terms of the advective
velocity and a length scale (or dispersivity (m)) that is
characteristic of the medium [Bear, 1972; Labolle and
Fogg, 2001; Lichtner et al., 2002] and the physical dimen-
sions of the volume of the medium undergoing advective
flows [Perfect, 2003]. Generalizing equation (11) to include
the effects of dispersivity of the permeable medium yields

h
@c
@t

þ v�rrrrrc� Der2c�rrrrr � DD � rrrrrc ¼ Sc; ð21Þ
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where DD (m2 s�1) is the dispersion tensor, and the
dispersive term that is proportional to rrrrrc/c, which is
relatively small, has been neglected. To extend the previous
(nondispersive) analytical model to include dispersion,
some simplification of the dispersivity tensor is necessary.
[28] For an isotropic medium, DD can be expressed as

follows:

D ¼
aT vþ aL � aTð Þ vxvx

v
aL � aTð Þ vxvy

v
aL � aTð Þ vxvz

v

aL � aTð Þ vyvx
v

aT vþ aL � aTð Þ vyvy
v

aL � aTð Þ vyvz
v

aL � aTð Þ vzvx
v

aL � aTð Þ vzvy
v

aT vþ aL � aTð Þ vzvz
v

0
@

1
A;

where aT is the transverse dispersivity (m), aL is the
longitudinal dispersivity (m), vx, vy, and vz are the velocity

components, and v =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y þ v2z

q
is the magnitude of

the vector velocity. To keep this model analytically
tractable, aL = aT = a is assumed. In general, this is not
the case because aL is usually an order of magnitude greater
than aT [Gelhar et al., 1992]. However, Labolle and Fogg
[2001] found with their modeling effort that solute
migration is largely insensitive to aL (at least for molecular
or microscale flows, which can be characterized as aT �
0.01 m). Nevertheless, regardless of whether the flows are
microscale or macroscale, the main impact of assuming aL =
aT on the present model is that (1) the total dispersion
coefficient corresponding to the diagonal terms of the
dispersivity matrix are underestimated by a small amount
and (2) the dispersion associated with the off-diagonal
elements can be ignored. This simplification diagonalizes
the dispersion tensor, reducing it to the unity tensor times a
scalar, D(z), which is

D zð Þ ¼a
kAp 0ð Þ

m


 �
Sgn <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2hF zð Þ2 þ b2G zð Þ2

q
 �
ei wt�kh �rhð Þ

� �� 	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2hF zð Þ2 þ b2G zð Þ2

q
 �
ei wt�kh �rhð Þ;

where Sgn is the Signum function: Sgn(x) = sign of x and<{}
indicates the real part. The above expression for D(z) results
from the velocity equations (9) and (10) and the Signum
function is associated with v, the magnitude of the velocity
[Lichtner et al., 2002], which insures that dispersion enhances
(rather than reverses) diffusion.D(z) can be further simplified
to

D zð Þ ¼a
kAp 0ð Þ

m


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h jF zð Þj2 þ jbG zð Þj2

q
 �
Sgn

� < ei wt�kh�rhð Þ
n o� �

ei wt�kh �rhð Þ; ð22Þ

where jxj indicates the absolute value of x. This simplification

to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2hF zð Þ2 þ b2G zð Þ2

q
is extremely good when the

permeabilities of the upper and lower model layers are the
same. For the case of differing permeabilities the results are
still quite good for the upper layer, but it doesmisrepresent the
magnitude of the advective velocity for the lower layer.
However, advective velocities are so low in the lower layer
that this inaccuracy should have very little impact on any
modeling results. Equation (21) is thus simplified to

h
@c
@t

þ v � rrrrrc� Der2c�D zð Þr2c� rD zð Þ½  � rrrrrc½  ¼ Sc:

ð23Þ

[29] Next, because both c and D have the same wave
formulation in the horizontal, it is useful to note the
equivalency: D(z)rh

2c = rrrrrhD(z) � rrrrrhc, where the h sub-
script refers to the horizontal portions of the gradient and
Laplacian operators. In addition to this equivalency, two
other simplifications are necessary: one involving D(z), the
other involving @D(z)/@z. Numerical test and comparisons

suggested that:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h jF zð Þj2 þ jbG zð Þj2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ jbG 0ð Þj2

q
for D(z) and @D(z)/@z � �jbG(0)jD(z). Including the
equivalency and the two simplifications yields

h
@c
@t

þ v � rrrrrc� Der2c� 2Dr2
hc�D @2c

@z2
þDjbG 0ð Þj @c

@z
¼ Sc;

ð24Þ

whereD =
kAp 0ð Þ

m

h i
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ jbG 0ð Þj2

q
 �
Sgn(<{ei(wt�kh � rh)})

ei(wt�kh � rh) is constant within a given layer of the model.
[30] Of these latter two approximations, the first is quite

good. However, the second, being one of several approx-
imations that could have been used, is relatively conserva-
tive. In general, this second approximation is more
dependent on w and kh than the first approximation, and it
improves at the higher frequencies and higher wave num-
bers relative to the lower frequencies and longer wave-
lengths. Nevertheless, at most frequencies this velocity
shear related term, DjbG(0)j@c/@z, is negligible compared
to the dispersive-diffusive term, �D@2c/@z2. However, the
shear-related term does increase with increasing w and kh, so
that it can become significant at high enough frequencies or
short enough horizontal wavelengths. As discussed later,
this suggests that the present formulation of the shear-
related term may exclude the dispersive model for use in
describing very high frequency forcing.
[31] It is possible to use the same perturbation approach

to derive an analytical solution to equation (24) as that used
for deriving the analytical model of equation (11). However,
first it is necessary to approximate the wave part, [Sgn (<
{ei(wt�kh � rh)}) ei(wt�kh � rh)], of D (equation (22)) for both the
mean field and perturbation equations. This can be done
using the first term of the Fourier series appropriate to either
c0 or c1. These approximations are based upon the follow-
ing Fourier expansions: Sgn[cos(x)] cos(x) = jcos(x)j = 2/p +
4 cos(2x)/(3p) + � � � forc0 and jcos(x)jcos(x) = 8 cos(x)/(3p) +
8 cos(3x)/(15p) + � � � for c1. The simplification is achieved
because only the first terms of each expansion are
kept. Incorporating higher harmonics is not necessary
since only c0 and c1 are sufficient for the present
purposes (as discussed in part 2). This is equivalent tomaking
t h e f o l l o w i n g a s s i g n m e n t s f o r D: D =

[2p][a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ jbG 0ð Þj2

q
][
kAp 0ð Þ

m ] for the mean field equation

and D = [ 8
3p][a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ jbG 0ð Þj2

q
][
kAp 0ð Þ

m ] in the equation

describing c1(z). However, given the uncertainty in any
estimate of dispersivity and that 8/(3p) � 1, the 8/(3p)
factor will be subsumed into a, but the ratio between the
expressions for D in the mean and perturbation equations
will be preserved. The resulting and final models for the
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mean (steady state) and (n = 1) perturbation portions of
the dispersive flow model are

� De þ
3

4
D

� 	
d2c0

dz2
þ 3

4
DjbG 0ð Þj


 �
dc0

dz
¼ Sc ð25Þ

d2c1

dz2
� DjbG 0ð Þj

De þD

� 	
dc1

dz
� De þ 2D

De þD k2h þ
iwh

De þD

� 	

� c1 ¼
kAp 0ð Þ

m De þDð Þ bG zð Þ dc0

dz


 �
; ð26Þ

where D is now given as [a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ jbG 0ð Þj2

q
] [kAp(0)/m].

Note that the equations describing the nondispersive
pressure pumping model are recovered if D = 0, so that
these last two equations generalize the original model.
[32] The method of solving these coupled equations

proceeds as before. All boundary conditions and interface
matching conditions are the same, except that the definition
of flux has changed slightly. The flux associated with the
steady state solution is now defined as �[De + 3D/4]dc0/dz
+ [3DjbG(0)j/4]c0. The perturbation field has a similar
definition for the instantaneous flux: �[De + D]dc1/dz +
[DjbG(0)j]c1. The analytical solutions to these equations
are presented graphically in the next section.

6. Modeled CO2 Profiles

[33] Figure 1 gives a schematic overview of the model, its
domain and structure, and the important input variables
along with their numerical values. Figure 2 shows four
examples of the model profiles for the steady state solution,
c0(z). These profiles correspond to nondispersive and
highly dispersive substrates for the cases where the source
term is located in either the upper or lower layer. Note that
although this study is focused primarily on the case where Sc
is in the lower layer with a passive upper layer, the reverse

case is included here for the purposes of exploring model
sensitivity. Except for a, Ap(0), Ac1

(0), and sometimes
Ac1

(Dw) (all discussed below), all the specific values chosen
for the boundary conditions and the physical parameters that
define the two permeable layers are taken from observations
and discussed in more detail in part 2. In this first part of this
study the pertinent values of these model input parameters
are stated without elaboration. For these simulations, c(0) =
375 ppm and c(Dw) = 1532 ppm. For the dispersive cases,
De = 1.13� 10�5 m2 s�1,Dw = 2.33� 10�5 m2 s�1, andDl =
5.29 � 10�7 m2 s�1. In this and the next two figures,
wherever the solid and dashed lines overlap the dispersive
and nondispersive cases are nearly identical.
[34] Figure 3 shows the profiles of the low-frequency

perturbation field, c1(z), for the same choice of parameter
values as Figure 1. For this simulation, w = 1.0 � 10�5 s�1,
corresponding to a wave period of about 7.25 days. The

Figure 2. Steady state CO2 model profiles, c0(z). In the
case of the CO2 source term located in the upper layer, only
one curve is shown for the dispersive and nondispersive
substrates because the two corresponding curves are
virtually indistinguishable. The thin horizontal line at a
depth of 1.1 m represents the interface between the upper
and lower layers.

Figure 3. Model perturbation CO2 profiles, c1(z), corre-
sponding to very low frequency forcing. Where the solid
and dashed lines overlap, only the solid line is shown. The
thin horizontal line at a depth of 1.1 m represents the
interface between the upper and lower layers.

Figure 1. Schematic of model domain with snowpack and
soil parameter values and key model variables. The model
parameters are taken largely from Massman et al. [1997].
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associated wavelength is assumed to be 105 m. Ac1
(0) =

1.0 ppm is chosen arbitrarily and mostly for convenience;
but, Ac1

(Dw) = 42 ppm was taken from observed under-
snow data. The forcing amplitude Ap(0) = 10 Pa, is fixed
for all simulations. However, 10 Pa is likely to underes-
timate the true amplitude of the pressure forcing on such
low-frequency synoptic scales where 100 Pa � Ap(0) �
1000 Pa is more typical. However, for these simulations
the major driving variable for dispersive flows is the product
aAp(0). Consequently, a is adjusted to compensate for the
fixed value of Ap(0) such thatDw� 2De

w for highly dispersive
flows. For this simulation the dispersivity, a = 100 m.
[35] Figure 4 shows the profiles of the high-frequency

perturbation field, c1(z), for the same choice of parameter
values as Figure 1. For this simulation, w = 5.2 � 10�3 s�1,
corresponding to a wave period of about 20 min and a
wavelength of 10 m. This figure is intended to suggest how
atmospheric turbulence might influence the substrate CO2

profiles. As before Ac1
(0) = 1.0 ppm; but now, Ac1

(Dw) =
0.25 ppm is chosen arbitrarily. For this simulationa = 0.01m,
Dw = 2.72 � 10�5 m2 s�1, and Dl = 6.09 � 10�7 m2 s�1.
[36] Figure 2 suggests that the importance of dispersivity

to the mean profiles (at least for the present examples) is
primarily confined to the lower layer when the source term
is located there. This is a consequence of the fact that
dispersion should increase the fluxes emanating from the
soil and from the snowpack. However, now that the flux
estimate is greater with dispersion than without it, the
corresponding estimates for both the source term and the
amount of CO2 stored within the source layer are also
greater. However, in the present study these changes in the
source strength result only from mathematical consistencies
imposed by the modeling assumptions, they should not be
understood as implying that any physical or ‘‘real’’ source
term is determined by the fluxes. That said, it is important to
realize that the present results clearly indicate the importance
of advective flows to CO2 profiles and fluxes within and near
any source region. Consequently, any model of soil CO2

based on simple diffusion with a source term driven by
environmental and intrinsic parameters (e.g., temperature,
soil moisture, microbial growth kinetics) runs the risk of
significantly misrepresenting the CO2 storage and fluxes

during periods when naturally occurring pressure fluctua-
tions induce advective flows within the soil.
[37] Figures 3 and 4 both indicate that dispersivity can

influence the substrate profiles of CO2. However, clearly the
impact is greater at high frequencies than at low frequen-
cies. At both high and low frequencies the amplitude of c1

within the substrate is reduced as dispersivity increases.
This is consistent with the finding, discussed in more detail
in section 7, that the advective flux associated with the
perturbation field is less in a dispersive medium than a
nondispersive medium, assuming all other things remain
equal. Although less important to the present study, these
last two figures also indicate that the location of the source
term influences CO2 profiles in such a way as to magnify
the effects of the forcing or dispersivity.
[38] To this point of the study, the focus has been on the

analytical models of the trace gas profiles within the sub-
strate. Consequently, the pressure forcing wave and the CO2

response wave were expressed in terms of their respective
amplitudes, Ap(0) and Ac1

(0). The next section develops
mathematical expressions for the CO2 flux that can be used
independent of the substrate CO2 profiles and uses
Chatwin’s [1975] model (in a manner similar to Webster
[2003]) to derive expressions of the enhancement of simple
diffusion by naturally occurring oscillatory dispersive flows
in soils and snowpacks. Expanding the discussion to include
model fluxes and the enhancement factor has two important
benefits. First, Chatwin’s [1975] enhancement factor makes
it possible to express the wave amplitudes (or upper and
lower boundary conditions) Ac1

(0) and Ac1
(Dw) in terms of

the forcing amplitude Ap(0) (plus some structural character-
istics of the permeable substrate). Therefore, as pointed out
at the end of section 4, in so far as Ac1

(0) may be very
difficult or even impossible to measure directly, a model of
the enhancement factor can provide an alternative method
for estimating it. Second, highlighting the model fluxes
can provide insights and guidance for subsequent model-
ing and observational studies of pressure pumping in soils
and snowpacks.

7. Advective Fluxes and Diffusive Flux
Enhancement Factors

7.1. Nondispersive Fluxes

[39] For a nondispersive medium the mean or net vertical
flux emanating from a snowpack undergoing periodic
pressure forcing, Fc(0), is composed of a mean diffusive
flux, Fdiff(0), and a mean advective wave flux, Fwave(0), as
follows:

Fc 0ð Þ ¼ Dw
e

c Dwð Þ � c 0ð Þ
Dw

þ kw

4m
Ap 0ð ÞAc1

0ð Þ< bwGw 0ð Þf g;
ð27Þ

where the first term of on the right-hand side of equation
(27) is Fdiff(0) and the second term is Fwave(0), which is
obtained as the covariance between the two sinusoidal
waves k̂ � v and c1 [e.g., Watson, 1983].
[40] Before proceeding to the dispersive case, equation

(27) can be used to examine the relative importance of
different types of natural pressure forcing to flux enhance-

Figure 4. Model perturbation CO2 profiles, c1(z), corre-
sponding to high-frequency forcing. The thin horizontal line
at a depth of 1.1 m represents the interface between the
upper and lower layers.
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ment. The key parameter at this point of the discussion is
< {bwGw(0)}.
[41] First, consider barometric pressure pumping associ-

ated with synoptic scale atmospheric motions with wave
period about a week (w � 10�5 s�1), for which bw � (i + 1)/

Hpw andGw(0)� (i + 1)(Dw

Hpw
+

ffiffiffiffi
kl
kw

q
Dl

Hpw
); where Hpw =

ffiffiffiffiffiffiffiffiffi
2P0kw
hwmw

q
.

In this case, bwGw(0) is nearly purely imaginary and
<{bwGw(0)} � 0, indicating, in agreement with previous
studies [Waddington et al., 1996], that barometric pressure
pumping is unlikely to have much effect on trace gas fluxes
from snowpacks.
[42] Next consider topographically induced pressure forc-

ing (w = 0). For this case, both bw and Gw(0) are real
quantities and therefore <{bwGw(0)} = bwGw(0). Therefore,
if all other things are held fixed, the wave flux associated
with topographic pressure forcing will exceed the
corresponding low-frequency Fwave(0). In turn this suggests
that topographically induced pressure forcing could signif-
icantly enhance diffusive fluxes. Colbeck [1989] found
similar results.
[43] As the final example, consider pressure forcing

driven by atmospheric turbulence (10�3 s�1 � w � 10�1

s�1), for which both bw and Gw(0) are complex so that <
{bwGw(0)} > 0. This type of natural forcing therefore is
intermediate between the two previous examples, indicating
that atmospheric turbulence may also enhance the mean flux
evolving from the snowpack. However, the relative impor-
tance of this type of forcing to the total flux will depend, in
part, on the relative contributions of kh

2 and w/kp to
bw (equation (5)).

7.2. Dispersive Fluxes

[44] For a dispersive medium Fwave(0) remains the
same. However, equation (25) indicates there are two
additional flux components: the gradient-dispersive flux,
Fgd(0) = 3

4
Ddc0/dz, which for the case of a snowpack

overlying a soil is proportional toDw[c(Dw)�c(0)], and the
shear-dispersive flux, Fsd(0) = � 3

4
DjbG(0)jc0, which under

the same snowpack/soil scenario above is proportional to
�DwjbwG(0)jc(0). However, unlike Fwave(0), which results
from the interaction of the perturbation fields k̂�v and c1,
Fgd(0) and Fsd(0) result from a quasi steady state advective
flow (v / [Sgn (<{ei(wt�kh � rh)}) ei(wt�kh � rh)]) interacting
with the mean or steady state CO2 field.
[45] For the case of a snowpack (nonsource) overlaying

the soil (source) the gradient-dispersive flux is

Fgd 0ð Þ ¼ 3

4
Dw

swjbwG 0ð Þj
esw jbwG 0ð ÞjDw � 1


 �
c Dwð Þ � c 0ð Þ½ ; ð28Þ

and the shear-dispersive flux is

Fsd 0ð Þ ¼ � 3

4
DwjbwG 0ð Þjc 0ð Þ; ð29Þ

where sw = 3
4
Dw/(De

w + 3
4
Dw). Note here that Fgd(0) takes on

slightly different expressions depending on the location of
the source term; however, Fsd(0) is the same for either
source location. Further note here that because the shear-
dispersive flux is negative, it reduces the overall diffusive
enhancement by opposing the gradient-dispersive flux.

However, for the modeling scenarios examined in the
present study, jFsd(0)j � Fgd(0), which indicates that the
dispersive model is consistent with the expectation that
dispersion augments diffusion (or more specifically disper-
sion enhances the coefficient of diffusion).

7.3. Enhancement Factor

[46] In general the diffusive enhancement factor, R, is the
ratio of an advective flux to the diffusive flux. For Fgd(0)
and Fsd(0), R can easily be determined from the last two
equations and the definition of Fdiff (0) from equation (27).
However, Rwave = Fwave(0)/Fdiff (0) is better expressed
without explicitly including Ac1

(0). Since the basic approach
for accomplishing this is the same regardless of dispersivity
of the medium, the nondispersive case is presented first.
[47] In Chatwin’s [1975] model, Rwave is proportional to

the square of the pressure gradient, where the constant of
proportionality (F ) is a function of the Schmidt (Sc) and
Wormersley (Wo) numbers, the radius of the tube (a (m)),
and the kinematic viscosity (n (m2 s�1)) [Watson, 1983].
Assuming that the pore system of the substrate is composed
of a network of cylindrical capillary tubes each of uniform
radius, which are randomly but uniformly distributed in all
directions, Webster [2003] extended Chatwin’s and Wat-
son’s results to yield

Rwave /
hw
3

F Sc;Wo; a; nð Þ
5

<2 ikhFw 0ð Þf g



þ 3F Sc;Wo; a; nð Þ
5

<2

� bwGw 0ð Þf g
�
n2

m2
A2
p 0ð Þ;

where Sc = n/D, and Wo = (a2w/n)1/2. The first term of this
expression, hw/3, is the effective diffusivity correction,
which from equation (11) should be given by hwtw. For a
sandy underwater sediment t � 1/3 may not be unreason-
able [Webster, 2003]. However, for many soils and most
snowpacks, t often exceeds 1/3 by a factor of 2 or more [Du
Plessis and Masliyah, 1991; Massman et al., 1997].
Consequently, the randomly distributed tube model under-
predicts the true tortuosity for many permeable substrates at
the Earth’s surface, suggesting of course that tubes of pore
space in natural permeable media are probably not
randomly distributed [Saffman, 1960]. To compensate for
this underestimation, the above expression is adjusted by
replacing hw/3 by hwtw and then dropping the factor of 3/5
that multiplies <2{bwGw(0)} (the second term enclosed in
square brackets in the above proportionality). Combining
these simplifications with the approximation <{ikhFw(0)} =
0, which is quite reasonable for the present study, Rwave can
be expressed as

Rwave ¼ F Sc;Wo; a; nð Þ<2 bwGw 0ð Þf g n
2

m2
A2
p 0ð Þ: ð30Þ

Note here that the factor hwtw has been subsumed into
Fdiff(0) and therefore has been eliminated from equation
(30).
[48] The factor F (Sc, Wo, a, n) can be obtained from

Watson [1983] by noting first that Sc � 1 for air and CO2,
and second that for most naturally occurring atmospheric
driving frequencies and permeable substrates at the Earth’s
surface, at a minimum,Wo < 1 can be expected and thatWo�
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1 is probable (or equivalently that Wo � 0). Under these
conditions, F (Sc, Wo, a, n) = (Sc

4/6144)(a6/n4). Next,
combining this expression for F with the relationship
a6/kw

3 = (24/hw)
3 valid for cylindrical tubes [Webster,

2003; Saffman, 1960] yields the following expression
for the enhancement factor Rwave

cyc for a permeable medium
composed of pore spaces shaped like cylindrical tubes:

Rcyc
wave ¼

S4c
6144

24

hw

� 	3
" #

kw<2 bwGw 0ð Þf g
� � A2

p 0ð Þk2w
m2n2

" #
; ð31Þ

where kw
3 has been included such that each term enclosed in

a square bracket on the right hand side of this expression is
dimensionless.
[49] Even though equation (31) is valid for a permeable

medium with cylindrical pore tubes, much of the logic used
to derive this expression is also valid for pore space tubes
with rectangular cross sections, except that the tube-shape
geometry factor, [

S4c
6144

(24hw
)3], is different. In the case of a

rectangular cross section, Watson’s [1983] model suggests
that F (Sc, Wo, a, n) = (Sc

2/945)(h6/n4) and the model of Du
Plessis and Masliyah [1991] suggests that h2/kw = [9(1 �
hw)

2/3]/[hw(1 � (1 � hw)
1/3)]; where h (m) is a measure of

the half width of the rectangle. Therefore, for a permeable
medium with rectangular pore tubes, the enhancement
factor Rwave

rec can be expressed as

Rrec
wave ¼

S2c
945

9

hw

� 	3
1� hwð Þ2

1� 1� hwð Þ1=3
� �3

2
64

3
75 kw<2 bwGw 0ð Þf g
� �

�
A2
p 0ð Þk2w
m2n2

" #
: ð32Þ

[50] The perturbation amplitude, Ac1
(0), can now be

estimated by combining equations (31) and (32) with the
definition R = Fwave(0)/Fdiff (0) and the expressions for
Fdiff (0) and Fwave(0) defined by equation (27).

Ac1
0ð Þ ¼ 4fcs

Ap 0ð Þkw
m n


 �
De

n


 �
kw< bwGw 0ð Þf g @c0

@z
0ð Þ


 �
; ð33Þ

where fcs is the tube-shape geometry factor from equations
(31) and (32) as appropriate and

@c0

@z (0) is the vertical
gradient of c0(z) at z = 0. Providing that jFsdj � Fgd (see
Table 1), then the above formulations for R and Ac1

(0) are
formally the same as for the nondispersive case, except that
the Schmidt number must now account for enhancement of
diffusivity by the dispersion coefficient, i.e., Sc = n/(D + D).
[51] Results of model simulations of a snowpack overly-

ing an isothermal soil undergoing high- and low-frequency
oscillatory pressure forcing are listed in Tables 1 and 2.
Included in these tables are the component CO2 fluxes, the
amplitudes of the CO2 wave, Ac1

(0), predicted using equa-
tion (33), and the source term, Sc, predicted using equation
(16) or its equivalent in the case of a dispersive medium.
The simulations with the source term in the upper model
layer are not shown because they do not offer any informa-
tion beyond that contained in Tables 1 and 2, except that all
fluxes, other than Fsd(0), are approximately twice those
shown in Table 1.
[52] The results presented in these tables suggest that

(1) Fwave(0) increases with increasing frequency for both
dispersive and nondispersive media, (2) Fwave(0) is neg-
ligible for very low frequency (barometric) pressure
forcing for either type of media, (3) Fwave(0) decreases
with increasing dispersivity of the medium, (4) when all
other things are equal, Fwave(0) is greater for media with
pore tubes of rectangular cross section than those with
cylindrical cross section, (5) because of Fgd(0) oscillatory
flow in a dispersive media can significantly enhance and
even dominate Fdiff (0), and (6) Fsd is usually small
compared to Fgd, but that it does become relatively more
important at higher frequencies.
[53] Results shown in Table 1 also indicate that Fwave(0)

induced by high-frequency turbulent atmospheric pressure
forcing does not contribute much to the overall fluxes.
However, this conclusion does not necessarily extend to
all possible situations for two reasons. The first can be seen
from the enhancement factor, equations (31) and (32),
which increases as the cube of permeability. Therefore
Fwave(0) is likely to be significantly higher for soils and
snowpacks with permeabilities exceeding kw = 6.25 �
10�9 m2, which was used for this study. Second, atmospheric
turbulence occurs on more than just one frequency. A more
appropriate approach would relate the enhancement factor

Table 1. Model Vertical Surface CO2 Component Fluxes (ppm m s�1) at Low and High Forcing Frequencies for Dispersive and

Nondispersive Snowpack Overlying a Soil, Which is Assumed to Be the CO2 Source
a

Frequency
w, s�1

Nondispersive Dispersive

Fdiff(0) Fwave(0) [M] Fdiff(0) Fwave(0) [M] Fgd(0) Fsd(0)

1.0 � 10�5 0.12 � 10�1 0.34 � 10�21 [1.4] 0.12 � 10�1 0.15 � 10�22 [6.5] 0.18 � 10�1 �.31 � 10�8

5.2 � 10�3 0.12 � 10�1 0.26 � 10�5 [1.4] 0.10 � 10�1 0.71 � 10�7 [7.7] 0.19 � 10�1 �.28 � 10�2

aPositive values of the fluxes indicate that they are upward from the snow surface into the atmosphere. The values for Fwave(0) assume that the pore space
tubes have a cylindrical cross section. Fwave(0) for a pore tube with a rectangular cross section can be found by multiplying the tabulated value of Fwave(0)
by the number enclosed in square brackets, [M], to the right of these values.

Table 2. Model CO2 Wave Amplitudes for Pore Tubes With Cylindrical (Ac1
cyc(0) (ppm)) and Rectangular (Ac1

rec(0) (ppm)) Cross Sections

and CO2 Source Terms, Sc (ppm s�1), Associated With the Fluxes Shown in Table 1

Frequency
w, s�1

Nondispersive Dispersive

Ac1
cyc(0) Ac1

rec(0) Sc Ac1
cyc(0) Ac1

rec(0) Sc

1.0 � 10�5 0.85 � 10�10 0.12 � 10�9 0.17 � 10�1 0.38 � 10�11 0.24 � 10�10 0.43 � 10�1

5.2 � 10�3 0.74 � 10�2 0.10 � 10�1 0.17 � 10�1 0.20 � 10�3 0.16 � 10�2 0.38 � 10�1
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to an integral over all appropriate frequencies, i.e., R /R wu

wl
<2{bwGw(0)} Sp(w)dw; where Sp(w) is the power

spectral density for turbulent pressure fluctuations and
wu and wl are the limits of integration. This integration
was performed (numerically) in an effort to be more
precise about Rwave, such that: (1) Sp(w) is obtained from
Horst [1997], (2) the total variance is assumed to be
0.5Ap

2(0) with Ap(0) = 10 Pa as before, (3) neutral
atmospheric stability is assumed, (4) Taylor’s hypothesis
is used to relate the horizontal wave number of the
turbulence to its frequency (i.e., kh = w/u where u is
the horizontal wind speed), (5) the frequency at which the
maximum of the frequency weighted spectra occurs is
0.13 Hz as indicated from observations by Massman et al.
[1997] (this parameter is needed to model Sp(w) [cf. Horst,
1997]), (6) wl = 10�3 Hz corresponding to a period of about
100 min, and (7) wu = 13 Hz was chosen with the intention of
assuring thatWo� 1 (forWo > 1 [Watson, 1983] indicates that
Fwave(0) ! 0 very quickly with increasing Wo). For a
nondispersive medium with pore tubes of rectangular cross
section the results of this integration indicate that Rwave

increases with increasing wind speed, but that Rwave < 0.002
for u < 20 m s�1. While these estimates are admittedly crude,
they do nevertheless indicate that the value for the high-
frequency Fwave(0) shown in Table 1 may underestimate the
true turbulence-drivenFwave(0) by 1 or 2 orders ofmagnitude.
[54] Before closing this section, three other points need to

be discussed. The first concerns an important implication of
the dispersive model. The second concerns the consequen-
ces of the approximations to D and @D(z)/@z and the third
suggests how the lower boundary condition of the CO2

wave, Ac1
(Dw), may reasonably be chosen if the upper

boundary condition is obtained from equation (33).
[55] 1. The dispersive model developed in this study

suggests that the enhancement of diffusive fluxes by in-
duced advective fluxes should be proportional to the dis-
persion coefficient (equations (28) and (29)), which in turn
is linearly proportional to the pressure forcing, Ap(0). This is
different from Watson’s [1983] model and the observations
of Joshi et al. [1983], which suggest that the enhancement
should increase as Ap

2(0). Clearly, the magnitude of the
dispersivity, a, and the amplitude of the pressure forcing
dictate the relative importance of the different advective
enhancements. Consequently, it may be possible to assess if
wintertime (eddy covariance) CO2 fluxes observed in nat-
ural environments contain evidence for the different types of
flux enhancements [e.g., Takagi et al., 2005].
[56] 2. Table 1 shows that as the driving frequency w

increases the relative importance of the shear-dispersive flux
can increase significantly. In fact, Fsd(0) can become
dominant at high enough frequencies or wave numbers.
Without disregarding this term altogether in equation (24) or
changing the approximations to the term @D(z)/@z, this
constraint on Fsd(0) would seem to limit the dispersive
model to those frequencies and wave numbers less than or
about equal to those used in this study.
[57] 3. The CO2 profiles shown in section 6 assumed that

Ac1
(0) = 1 ppm and that Ac1

(Dw) = 0.25 ppm. However,
using the model with Ac1

(0) given by equation (33) should
require a more logically based estimate of Ac1

(Dw). The
elements of such a choice are contained in equation (33). A
relatively simple scaling argument based on this equation

yields: Ac1
(Dw) = Ac1

(0)[jGw(Dw)j/jGw(0)j][c0(Dw)/c0(0)],
where the term [jGw(Dw)j/jGw(0)j] accounts for the decrease
in the forcing strength with depth, while the term [c0(Dw)/
c0(0)] allows for the increasing amounts of CO2 with depth.

8. Conclusions

[58] This study outlines a new two-layer analytical model
describing CO2 profiles and fluxes in permeable snowpacks
and soils associated with advective flows forced by periodic
pressure fluctuations at the upper surface of the substrate.
The model assumes that each layer has uniform, but
different, physical properties with a CO2 source term
located in either the upper or lower layer. The substrate
pressure field is described by wave solution to the diffusion
equation. The CO2 response is decomposed into a steady
state solution and a wave solution to the advective-diffusive
equation. The wave portion of the CO2 model does include
the possibility of a resonance, which could cause numerical
problems for substrates of very low permeability. The model
is first developed for nondispersive substrates and then
extended to dispersive substrates.
[59] For a nondispersive medium the diffusive CO2 flux

is enhanced by wave flux forced by pressure oscillations at
the upper surface. For a dispersive medium the model also
describes two additional fluxes, which are proportional to
the dispersivity of the medium, the pressure forcing, and the
structure of the substrate. These additional fluxes are of
opposite sign, but the counterdiffusive flux, induced by
vertical velocity shear near the surface of the substrate,
tends to be negligible for all but very high frequencies and
horizontal wave numbers. Otherwise, depending upon the
dispersivity of the medium and the strength of the pressure
forcing, the dispersive-diffusive flux can enhance the diffu-
sive flux significantly. Interestingly, in a dispersive medium
the wave portion of the flux enhancement tends to be
reduced over what would occur in a nondispersive medium.
This is a result of slight differences in the mean gradient of
the CO2 within the substrate and the Schmidt number used
to describe the wave enhancement [Watson, 1983] between
nondispersive and dispersive media. Modeling results also
indicate that a substrate network of pore tubes with rectan-
gular cross section allow for greater enhancement of diffu-
sive fluxes than would the same network of tubes with
cylindrical cross section. A simple method for estimating
the amplitude of the CO2 perturbation induced within the
substrate by the oscillatory forcing is given in terms of the
amplitude of the pressure forcing, the mean substrate
gradient, and substrate properties. Finally, all other things
remaining equal, a model sensitivity study indicated that
locating the CO2 source term in the upper layer generally
enhanced the CO2 profiles and fluxes significantly over the
case with the source term located in the lower layer.

Appendix A

[60] This appendix describes a relatively fast, convergent,
phase-preserving algorithm for implementing the fifth
boundary condition on the mass transfer model, equation
(14), at the interface between the two layers (z = Dw). This
approach ensures that the model can be used (as is done in
part 2 of this study) to estimate the phase of the solution at
Dw. The present method does not affect the phase because it
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uses only real numbers to scale the solution to a specified
magnitude at the interface, denoted here as in the main text
by Ac1

(Dw). By specifying magnitude of the solution, c1(z),
at z = Dw this fifth boundary condition is stronger than
simply requiring that the two solutions be continuous across
the interface. This algorithm assumes the previously stated
upper and lower boundary conditions and that the upper and
lower layer solutions are matched at the interface between
the two layers.
[61] 1. In Step 1, assume a value for the upper boundary

condition, Ac1
(0), and calculate the magnitude of the

solution at Dw, jc1(Dw)j.
[62] 2. In Step 2, calculate the ratio Ac1

(Dw)/jc1(Dw)j and
divide the upper boundary condition Ac1

(0) by this ratio.

[63] 3. In Step 3, use this ratio,
Ac1 0ð Þ

Ac1 Dwð Þ=jc1 Dwð Þj, as a new

upper boundary condition for the model and calculate a new
solution for c1

new(z) and a new value for jc1
new(Dw)j.

[64] 4. In Step 4, calculate the new ratio Ac1
(Dw)/

jc1
new(Dw)j and multiply the new solution c1

new(z) by this
new ratio.
[65] 5. In Step 5, from this newly scaled solution,

[Ac1
(Dw)/jc1

new(Dw)j]c1
new(z), check to see how close the

scaled upper boundary condition, Ac1
(0)[jc

1
(Dw)j/

jc1
new(Dw)j], is to the original upper boundary condition,

Ac1
(0).

[66] 6. In Step 6, if the scaled upper boundary condition is
within an acceptable level of tolerance, say 10�3 for example,
then the scaled solution, [Ac1

(Dw)/jc1
new(Dw)j]c1

new(z), is the
final solution that incorporates the measured boundary con-
dition, Ac1

(Dw), at z = Dw. If not, then return to Step 2 and
repeat until the level of tolerance has been achieved. (For the
present study this tolerance level was usually achieved in four
iterations.)

Notation

Ap Amplitude of pressure wave or perturbation
field (Ap is a function of depth), Pa.

Ac Amplitude of CO2 wave or perturbation
field (Ac is a function of depth) (mol
fraction: ppm, mol mol�1).

A± Amplitude of generic upward (+) and
downward (�) propagating waves.

a pore tube radius (assuming the pore space
of the substrate are cylindrical tubes), m.

c CO2 molar density, mol m�3.
D Coefficient of diffusivity for binary gases

(e.g., CO2 in air), m2 s�1.
De Effective coefficient of diffusivity (e.g.,

CO2 in air within a porous medium; De
w =

upper layer, De
l = lower layer), m2 s�1.

Dw Depth of snow layer (upper layer of a two-
layer permeable substrate), m.

Dl Depth of soil layer (lower layer of a two-
layer permeable substrate), m.

Ds = Dw + Dl (total depth of the permeable
substrate), m.

DD Dispersion tensor (3 � 3 matrix), m2 s�1.
D Coefficient of dispersion (scalar equivalent

of DD: Dw = upper layer, Dl = lower layer),
m2 s�1.

F(z) Nondimensional complex-valued function
describing variation of the pressure wave at
a depth z within the substrate (Fw(z) = upper
layer; Fl(z) = lower layer).

Fc(0) Total (CO2) flux exiting the upper surface (z
= 0) of the substrate, ppm m s�1.

Fdiff (0) Diffusive component of Fc(0), ppm m s�1.
Fwave(0) Nondispersive pressure pumping compo-

nent of Fc(0), ppm m s�1.
Fgd(0) Gradient-dispersive pressure pumping com-

ponent of Fc(0), ppm m s�1.
Fsd(0) Shear-dispersive pressure pumping compo-

nent of Fc(0), ppm m s�1.
F Parameter associated with pore geometry

and flow characteristics within the substrate,
s4 m�2.

fsc scaling factor (nondimensional generaliza-
tion of F ).

G(z) Nondimensional complex-valued function
describing variation of the pressure wave at
a depth z within the substrate (Gw(z) = upper
layer; Gl(z) = lower layer).

G(0) = Gw(z = 0) (note jG(0)j = magnitude of the
complex number G(0)).

Hp (real-valued) attenuation depth of the sur-
face pressure wave, m.

h pore tube half-width (assuming substrate
pore space is composed of rectangular
tubes), m.

h1, h2, h3, h4 complex-valued, secondary, model con-
stants, ppm, mol mol�1.

i =
ffiffiffiffiffiffiffi
�1

p
.

{̂{{, |̂|, k̂ unit vectors associated with the x, y, and z
coordinates.

k air permeability of the substrate (kw = upper
layer; kl = lower layer), m2.

kwl secondary complex-valued model variable
related to kw and kl, m.

kh two-dimensional horizontal wave number,
m�1.

kh magnitude of kh, m
�1.

k̂h (dimensionless) unit vector corresponding
to kh ( k̂h = kh/kh).

n subscript referring to the integer harmonic
of the CO2 wave within the substrate (n = 1,
2, 3, . . .).

P0 mean atmospheric background pressure, Pa.
p perturbation pressure field (assumed to be a

traveling plane wave in the horizontal with
a depth-dependent amplitude: p(x, y, z, t) =
Ap(z)e

i(wt�kh � rh)], Pa.
rh two-dimensional vector representing hori-

zontal distance, m.
R Dimensionless diffusional enhancement fac-

tor (ratio of pressure pumping flux to
diffusional flux; see Fdiff(0), Fwave(0),
Fgd(0), and Fsd(0) above).

Sc substrate CO2 source term, ppm m�3 s�1.
Sp(w) Power spectrum as a function of frequency,

w.
t time, s.
u horizontal atmospheric wind speed, m s�1.
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v three-dimensional Darcian velocity (vw =
upper layer, vl = lower layer), m s�1.

vx, vy, vz x, y, and z vector components of v, m s�1.

v magnitude of v (v =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y þ v2z

q
), m s�1.

x, y, z spatial coordinates, m.
a dispersivity of the permeable substrate (aL =

lateral dispersivity, aT = transverse disper-
sivity), m.

b complex-valued attenuation coefficient as-
sociated with the substrate pressure wave
(determined by the frequency and horizontal
wave number of the pressure wave and the
vertical structure of the substrate; bw =
upper layer, bl = lower layer), m�1.

g refers to 3 different, complex-valued, sec-
ondary model constants, ppm, mol mol�1.

h air-filled porosity of the substrate (hw =
upper layer, hl = lower layer) (dimension-
less).

kp pressure diffusivity [kp = P0k/(hm)], m
2 s�1.

l complex-valued attenuation coefficient as-
sociated with the substrate CO2 wave
(determined by the frequency and horizontal
wave number of the pressure wave, the
effective diffusivity and the tortuosity of the
substrate, and the wave harmonic; lw =
upper layer, ll = lower layer), m�1.

m dynamic viscosity of air, Pa s.
n kinematic viscosity of air, m2 s�1.

sw dimensionless real-valued secondary vari-
able related to De

w and Dw.
t tortuosity of the substrate (tw = upper layer,

tl = lower layer) (dimensionless).
fwl dimensionless real-valued secondary vari-

able related to t and h.
c Substrate CO2 mol fraction (composed a

steady state portion, c0(z), and a series of
harmonic plane waves (perturbation fields),P1

n¼1 cn(z)e
ni(wt�kh � rh) ), ppm, mol mol�1.

c(0) Mean CO2 mol fraction at the top surface of
the upper layer of substrate, ppm, mol
mol�1.

c(Dw) Mean CO2 mol fraction at the interface
between the upper and lower substrate
layers, ppm, mol mol�1.

w wave frequency, Hz, radians s�1.
rrrrr three-dimensional gradient operator.
rrrrrh two-dimensional horizontal gradient operator.

r2 Laplacian operator.
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