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ABSTRACT 

 

ASSESSING WILDFIRE RISKS AT MULTIPLE SPATIAL SCALES 

BY 

JUSTIN FITCH, B.S. 

 

Master of Science 

 

New Mexico State University 

Las Cruces, New Mexico 

Dr. Mark C. Andersen, Chair 

 

 In continuation of the efforts to advance wildfire science and develop tools for 

wildland fire managers, a spatial wildfire risk assessment was carried out using 

Classification and Regression Tree analysis (CART) and Geographic Information 

Systems (GIS). The analysis was performed at two scales. The small-scale assessment 

covered the entire state of New Mexico, while the large-scale assessment covered 

only the Middle Rio Grande ecosystem. The result of this project is a Geographic 

Information System (GIS) based predictive model. The model highlights areas of high 

wildfire risk, based on the spatial distributions of numerous variables which 

contribute to wildfire occurrence. The GIS also provides a simple visualization of the 

distribution of risk posed by wildfire to vertebrate communities, based on species 
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richness data obtained from the Southwest Regional GAP program. At a state-wide 

scale, accuracy assessment of the model verifies the usefulness of CART as a wildfire 

risk modeling tool. The resulting three-class fire probability model includes areas 

classified, relatively, as 11, 37, and 84%. These three land categorizations faced 

wildfire frequencies during the test period of 4.55, 10.51, and 32.28 fires per 1000 

km2, respectively. Overlaying the wildfire probability maps with species richness data 

showed that the largest risks to vertebrate species posed by wildfires are concentrated 

along major roads and population centers in the southwestern corner of the state. 

Similarly, the highest risks to vertebrate species in the Middle Rio Grande riparian 

ecosystem are in and around the cities along the river, such as Albuquerque, Socorro, 

and Los Lunas, NM. 
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Introduction: 

 Many changes have occurred in the natural systems of New Mexico, 

particularly within the Middle Rio Grande region, since the beginning of Euro-

American settlement. These changes have included fire suppression, reduction in 

riparian zone, changes in flood regimes, and altered community structure due to the 

introduction and success of invasive plant species. These changes have resulted in 

unnaturally high fuel loads, which have led to increased risk of hot, catastrophic 

wildfires (Merritt and Johnson, 2006). 

 Similar changes have occurred across the United States, which has led to a 

recent surge in large, destructive wildfires. Increased fuel loads, resulting from 

decades of fire suppression, have received much of the blame for this recent outbreak 

(Busenbuerg, 2004; USDA Forest service, 2006). To combat this situation, the US 

Forest Service issued the Wildland Fire and Fuels Research and Development 

Strategic Plan in June 2006 (USDA Forest Service, 2006). 

 The Strategic Plan set forth three strategic goals: 

1) “Advance the biological, physical, social, economic, and ecological 

sciences” (USDA Forest Service, 2006, 11) 

2) “Develop and deliver knowledge and tools to policymakers, 

wildland fire managers, and communities.” (USDA Forest Service, 

2006, 11) 

3) “Provide Federal leadership for collaborative, coordinated, 

responsive, and forward-looking wildland fire-related research and 
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development for all ownerships, now and in the future.” (USDA Forest 

Service, 2006, 12) 

 Various federal agencies and academic researchers have been contributing to 

the goals set forth in this document. Currently, the USDA Forest Service’s Rocky 

Mountain Research Station (Albuquerque Foresety Sciences Lab) has been carrying 

out studies including monitoring effects of wildfire, fuels reduction, and exotic plant 

removal on vertebrates, invertebrates, vegetation, and water resources of the Middle 

Rio Grande riparian system (Merritt, 2005; Finch and Galloway, 2005; Chung-

MacCoubrey and Bateman, 2006). This research has produced knowledge and data 

which have helped to meet the first two goals of the Strategic Plan. 

 In continuation of the efforts to advance wildfire science and develop tools for 

wildland fire managers, in accordance with the first two goals of the Strategic Plan, a 

spatial wildfire risk assessment was carried out at two scales. The small-scale 

assessment covered the entire state of New Mexico, while the large-scale assessment 

covered only the Middle Rio Grande ecosystem. 

 The result of this project is a Geographic Information System (GIS) based 

predictive model. The model highlights areas of high wildfire ignition probability, 

based on the spatial distributions of numerous natural and anthropic variables which 

contribute to wildfire occurrence. The relationships between these variables and 

wildfire probability were determined using Classification and Regression Tree 

(CART) analysis. The GIS also provides a simple visualization of the distribution of 

risk posed by wildfire to vertebrate communities, based on species richness data 
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obtained from the Southwest Regional Gap Analysis Program (SWReGAP) (Boykin 

Prior-Magee et al., 2007). 

 This study hoped to answer the following general questions: 

1) Can CART analysis, combined with data on historic wildfire 

ignition and spatial distributions of natural and anthropic variables 

be used to successfully predict areas of relatively high or low risk 

of wildfire occurrence? 

2) Is this process able to be carried out quickly and cheaply, with 

existing datasets? 

The study also hoped to answer the following questions, specific to the state 

of New Mexico and the Middle Rio Grande: 

1) What are the important natural and anthropic predictors of wildfire 

occurrence in New Mexico and the Middle Rio Grande 

Ecosystem? 

2) In which geographic regions of the State of New Mexico and the 

Middle Rio Grande ecosystem does wildfire pose the greatest risk 

to vertebrate diversity? That is, which areas should be prioritized 

for wildfire risk reduction treatments? 
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Background 
 
Risk Assessment: 
 
 Risk assessment is the process of estimating the likelihood of a stressor and 

the magnitude of its adverse effects on an endpoint, or value to be protected 

(Fairbrother and Turnley, 2005; Landis and Weigers, 1997). Risk assessment began in 

the insurance industry, being applied to engineering and nuclear science (Fairbrother 

and Turnley, 2005). Wide-Scale use of risk assessment received its start in 1983, with 

the publication of Risk Assessment in the Federal Government: Managing the 

Process. This publication was more commonly known as the Red Book (Landis, 

2003a). The field of risk assessment slowly worked its way into the realm of the 

environmental sciences over the next few years. In 1987, the Pellston Conference was 

held in Breckenridge, CO, with the goal of establishing research priorities for 

environmental risk assessment (Landis, 2003a). In 1992, the U.S. Environmental 

Protection Agency (USEPA) published a framework for ecological risk assessment in 

order to address increased interest in various ecological issues, particularly the means 

by which humans affect the natural environment (USEPA, 1992). 

 Through the mid-1990’s, ecological risk assessment was typically based on 

the USEPA paradigm, which was limited by its design, focusing on the analysis of 

only a single stressor and a single endpoint. This model also lacked adequate 

flexibility to incorporate spatial variation of the environment (Landis, 2005). To 

address these limitations, the Relative Risk Model was proposed by Landis and 

Wiegers (1997). The relative risk model expanded ecological risk assessment to the 
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regional scale, incorporating multiple sources, stressors, and endpoints. Under this 

framework, ecological risk assessment began to be applied at the watershed level and 

above. At the time of its development, and in the years immediately following, the 

primary application area of ecological risk assessment using the Relative Risk Model 

was the analysis of risks posed to diverse systems by chemical or biological 

contaminants (Wiegers and Landis, 2005; Luxon and Landis, 2005). 

 In recent years however, application of the Relative Risk Model has 

expanded. Landis (2003b) used the relative risk model to evaluate the threats posed 

by the non-indigenous European green crab off the shores of Cherry Point, 

Washington. Andersen et al. (2004) used a GIS based relative risk assessment to 

determine threats to biodiversity posed by military actions on a United States Army 

base and missile range. Landis (2003a) also mentions the use of ecological risk 

assessment to evaluate impacts of urbanization, land use change, fishing, and climate 

change. 

 Risk assessment as an ecological tool is required by multiple laws. For 

example, the National Environmental Policy Act (NEPA) requires that federal 

agencies produce an Environmental Impact Statement (EIS) before taking any action 

which will significantly affect the human environment. More specifically, NEPA 

Section 102(2)(A)states that: 

“…all agencies of the Federal Government shall…include in every 

recommendation or report on proposals for legislation and other major 
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Federal actions significantly affecting the quality of the human 

environment, a detailed statement by the responsible official on -- 

(i) the environmental impact of the proposed action, 

(ii) any adverse environmental effects which cannot be avoided should 

the proposal be implemented, 

(iii) alternatives to the proposed action, 

(iv) the relationship between local short-term uses of man's 

environment and the maintenance and enhancement of long-term 

productivity, and  

(v) any irreversible and irretrievable commitments of resources which 

would be involved in the proposed action should it be implemented. ” 

(NEPA, 1969, Sec 102(2)) 

 However, neither NEPA nor any of the other federal laws requiring risk 

assessment, such as the Endangered Species Act and the Healthy Forests Restoration 

Act, specify how these risk assessments are to be carried out or even the format of the 

results (O’laughlin, 2005b). 

 In 2003, a symposium was held in Portland, Oregon, with the objective of 

advancing tools and methods for relative risk assessments, particularly those dealing 

with the risks posed by uncharacteristic wildfire (Irwin and Wigley, 2005; 

O’Laughlin, 2005a), which had, in recent years, become a burning issue within the 

wildland management community. 
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Wildfire Science/Risk: 

 Wildfire science is another field which has seen drastic changes in recent 

years. With this change in the scientific outlook on wildfire have come changes in 

management practices. For approximately 100 years, the U.S. federal government, as 

well as state and local governments, based their wildfire management decisions on a 

wildfire suppression policy which was developed between 1905 and 1911, under 

which all fire outbreaks were suppressed immediately. This policy did not include 

any means of dealing with heavy accumulations of fuels which resulted from long 

wildfire-free periods (Busenberg, 2004). As a result, these fuels have accumulated in 

many of America’s forests over the past 100 years, resulting in a recent and drastic 

increase in number and intensity of wildfires (USDA Forest Service, 2006).  

 The 2003 Portland symposium on wildfire risk assessment, as well as much of 

the literature, focuses on the comparative assessment of risks associated with different 

fire and fuel treatment methods on a single piece of forest. As stated, NEPA requires 

this type of assessment by federal agencies before they may go forward with any 

action that will affect the human environment (NEPA, 1969). 

 The Federal Wildland Fire Management Policy, as updated in 2001, goes so 

far as to say that sound risk management is a foundation for all fire management 

activities (O’laughlin, 2005b). In 2003, the United States Congress passed the 

Healthy Forest Restoration Act. Though a controversial piece of legislation, the Act 

set the goal of focusing fuels reductions and forest restoration projects on federal 
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lands on which wildfires pose risks to communities, water supplies, and the 

environment (O’laughlin, 2005b). 

 Because it is not explicitly required by law, as is comparative assessment of 

various fuel reduction or restoration options, much of the literature has ignored the 

issue of spatial risk distribution. In a nation where 29% of the total land area, 655 

million acres, are federally owned, and approximately 190 million acres are at risk of 

catastrophic wildfire (O’laughlin, 2005b), spatial risk categorizations are essential to 

prioritize areas for restoration and fuels reduction treatments. 

 Some researchers have recently used modern technologies to view and 

analyze both the effects and risks of wildfire from a spatial perspective. Both Remote 

Sensing and Geographic Information System technologies are being implemented to 

help advance the field of wildfire risk assessment (Amatulli et al, 2006).  

 While modern technologies are increasing its ease and potentially its 

accuracy, prediction of wildfire risk is not a new concept. Short-term risk prediction 

dates back to the initial publication of the National Fire Danger Rating System 

(NFDRS) in 1972, revised in 1978. The NFDRS is a set of numerical indices 

designed to aid in wildfire management and prevention. The primary index is the 

Burning Index (BI) (Peng et al., 2005). The BI is based on fuel and weather data 

obtained from Remote Automatic Weather Stations (RAWS). The formula includes 

two calculated components. The Spread Component inputs wind, slope, and fuel data 

into a wildfire spread model developed by Rothermel in 1972. The other component, 

the Energy-Release Component, accounts for the reaction intensity and surface area-
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to-volume ratio of the fuel bed. This model is universal, used without modification in 

all parts of the US (Peng et al., 2005). Peng et al. (2005) analyzed the usefulness of 

the Burning Index in predicting wildfires in Los Angeles County, CA and concluded 

that it can be effectively used to predict only a small amount of variation in spatial 

wildfire risk. 

 Haight et al. (2004) analyzed the risk of wildfire to human lives and structures 

in the Wildland-Urban Interface in Michigan. The authors only used two variables to 

characterize wildfire risk. These were historic fires and current fuel data. Based on 

historic fire data, they determined what types of fuels were most prone to wildfire. 

They then built risk maps based on those classifications and up-to-date fuels maps. 

 Hampton et al.(2003) used a combination of two methods to determine 

relative spatial fire risk. The first was a measurement of “fire hazard” across the 

landscape. This was created using a fire modeling program called FlamMap 

(Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, US Forest 

Service. 2006. Available http://www.firemodels.org) FlamMap takes spatial 

vegetation, weather, and fuel moisture data as input, and returns maps showing the 

potential crown fire intensity and heat per unit area that would be produced by 

wildfire across the entire study area. Hampton’s “fire hazard” layer is a combination 

of these two FlamMap output variables. The second method was termed “fire risk”. 

This was determined by simply creating a raster layer of number of wildfires/km2 

across the study area, based on historic wildfire point locations. Hampton believes 
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these two layers, fire hazard and fire risk, to be sufficiently accurate to prioritize 

restoration treatment locations (Hampton et al., 2003).  

 The newest version of FlamMap, released in March, 2006, contains a 

Treatment Optimization Model. This function determines the optimal locations for 

wildfire treatments based on models of fire spread from numerous random locations 

throughout a landscape. The treatment areas suggested by the optimization model are 

those areas whose treatments will be most beneficial to stopping the spread of 

wildfires, not necessarily those areas which are most likely to ignite. 

 Wildfire risk prediction software, such as FlamMap, responds to a widespread 

lack of appropriate statistical analysis techniques in the  field of wildfire risk analysis 

(Amatulli et al., 2006). Historically, assessments of risk have been based on 

professional opinion. Recently however, trust in this method has deteriorated, as 

scientists, policymakers, and the public seek more scientific and reproducible 

methods of risk determination (O’laughlin, 2005a).  

 Academic researchers have also responded to this need. Amatulli et al. (2006) 

proposed using Classification and Regression Trees analysis to provide unbiased 

statistical models which incorporate spatial relationships between multiple variables 

and wildfire risk. Amatulli et al. concluded that the CART method can be very useful 

in creating accurate wildfire risk maps. The results of this study, as will be discussed, 

support this conclusion, while modifying and simplifying the process.  

 Beginning in 2006, the Landscape Fire and Resource Management Planning 

Tools Project (Landfire) began releasing detailed data layers, derived from Landsat7 
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imagery and ground data, showing vegetation cover, fuels data, and fire regimes 

(Landfire, 2007). The project should have continuous coverage available across the 

United States by 2009. The goal of Landfire is to provide data to contribute to 

strategic wildfire planning at the national and regional level. The data layers provided 

by Landfire can be incorporated into predictive programs such as FlamMap, to 

predict fire behavior and prioritize candidate fuels reduction sites. These data can also 

be used, as was done in this project, in a CART analysis. 

 

Classification and Regression Tree (CART) Analysis: 

 Fire risk estimations have historically been done using either multiple linear 

regression or logistic regression, with some work having been done with neural 

networking (Amatulli et al, 2006). Each method has its benefits and drawbacks.  

 Logistic regression needs no prior assumptions about the distribution of the 

input data, which is a plus for modeling fire risk from scratch, given only prior 

occurrences and spatial distribution of potential causative variables. However, logistic 

regression is only capable of yes/no output. This means that a model of this type 

cannot predict probabilities of wildfire, but instead can only classify each area as 

either at risk or not at risk. 

 This output problem can be solved using multiple linear regressions. 

However, this method cannot take categorical variables as input. Categorical 

variables, such as vegetation type or fuel model, have been shown to be of great 

importance in modeling of wildfire risk (Amatulli et al., 2006).  
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 The neural networking approach overcomes the drawbacks of both logistic 

and multiple linear regressions. These models have been shown to produce acceptable 

results. However, the neural network is somewhat of a “black box”, meaning that the 

modeler has no real explanation for the results obtained from the model. There are no 

decision rules created and output by the neural network (Amatulli et al., 2006). 

 The CART model solves the problems of all three of these options. It allows 

for input of categorical variables, and outputs a set of decision rules, the classification 

tree, which allows for a continuous classification of fire risk. 

 Cart is a non-parametric statistical procedure which creates classification or 

regression trees. Classification trees are those in which the dependent variable is 

categorical. If the dependent variable is numeric, the output is termed a regression 

tree (Amatulli et al, 2006).  

 The process of tree creation involves the repetitive binary splitting of data, 

based on how well one independent variable acts as a predictor of the value of the 

dependent variable. Initially, all of the data is split into two categories, based on the 

value of one predictor variable. Next, each group is subsequently split, based on 

another (or the same) predictor variable. This process is continued until it is 

determined that no further splits contribute to the classification of the dependent 

variable. At this point, the data has typically been split into a large number of classes. 

The resulting tree is then “pruned” in such a way as to reduce the number of separate 

classes in the tree while keeping misclassification at a minimum (Salford Systems, 

2004).  
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 The result of this recursive process is a classification/regression tree, a flow 

chart in which each possible combination of predictor variables falls into one, and 

only one, class. An example of a regression tree is shown in Figure 1. Each 

intermediate node, represented by blue diamonds in Figure 1, represents a decision 

rule, upon which data is classified. Each rectangle in Figure 1 is a terminal node, 

representing one class. Each terminal node is defined by a set of explicit rules, which 

can be determined by tracing the path downward through the tree from the initial 

decision rule to a given terminal node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Figure 1: Classification tree resulting from CART analysis of state-wide wildfire probability 
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Study Area 
 
New Mexico: 

 Measuring approximately 121,666 square miles, New Mexico is the 5th largest 

state in the United States (NMDGF, 2006). The state experiences a generally dry, 

warm climate, with an average annual temperature of 54 degrees F. Variation in 

precipitation is predominantly a function of altitude and latitude (NMDGF, 2006). 

The high mountains of the southern Rockies receive up to 40 inches of rain per year, 

while some lower areas receive only eight to ten. There is also a general East/West 

trend, with slightly higher precipitation levels in the eastern portions of the state 

(Encyclopædia Britannica, 2008). 

 New Mexico spans eight Level III ecoregions, as defined by the United States 

Environmental Protection Agency (USEPA, 2002; Figure 2). An ecoregion is “an 

area of general similarity in ecosystems and in the type, quality, and quantity of 

environmental resources (USEPA, 2002).” The ecoregions within New Mexico are 

the Colorado Plateau, Southern Rockies, Arizona/New Mexico Plateau, Arizona/New 

Mexico Mountains, Chihuahuan Desert, High Plains, Southwestern Tablelands, and 

the Madrean Archipelago (USEPA, 2002). 

 The Colorado Plateau ecoregion covers a small potion of the extreme 

northwestern corner of the state. This is a region of canyons, mountains, mesas and 

plateaus. Its high elevation yields extensive pinyon-juniper woodlands. Saltbrush-

greasewood ecosystems predominate large low lying areas in this ecoregion (USEPA, 

2002). 
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Figure 2: Level III Ecoregions of New Mexico, as delineated by US EPA 
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Two lobes of the Southern Rockies ecoregion extend into the state from the North. 

This region is classified by high steep mountains, and a large elevational gradient. 

The lower elevations are typically covered by grass and shrub. Middle elevations 

include Douglas fir, ponderosa pine, aspen, and juniper-oak woodlands. Both the low 

and middle elevation areas are grazed extensively. The higher elevation areas are 

predominately coniferous forests, with alpine ecosystems at the highest of these areas 

(USEPA, 2002). 

 The Arizona/New Mexico Plateau is a large area comprising most of the 

northwest quarter of New Mexico, spanning the northern half of the state from the 

western border with Arizona through the Rio Grande Rift. This region is a transition 

zone between the low semi-arid grasslands to the south and east and the Colorado 

Plateau to the North (USEPA, 2002). 

 The Arizona/New Mexico Mountains are lower in elevation than the 

surrounding mountains, such as the southern Rockies. Predominant ecosystems in this 

region include low elevation chaparral, mid elevation pinyon-juniper and oak 

woodlands, and higher elevation ponderosa pine forests (USEPA, 2002). 

 The Chihuahuan Desert ecoregion covers most of the southern portion of New 

Mexico, extending from the Arizona border, north of the Madrean Archipelago to the 

high plains at the eastern edge of the state. This ecoregion also extends northward 

along the Rio Grande rift. This area is categorized by wide basins and valleys covered 

by arid grass and shrubland ecosystems. Oak-Juniper woodlands can be found at 

higher elevations on mountains in this region (USEPA, 2002). 
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 The Western High Plains ecoregion extends along nearly the entire eastern 

margin of New Mexico. This region is differentiated from the great plains of Middle 

America by increased elevation and reduced precipitation. The predominant natural 

vegetation in the Western High Plains is saltbrush-greasewood, though large amounts 

of these areas are now in agricultural production (USEPA, 2002). 

 The Southwestern Tablelands lie to the west of the high plains and to the north 

of the Chihuahuan desert. This region is composed of sub-humid and semi-arid 

grasslands (USEPA, 2002). 

 Lastly, the Madrean Archipelago ecoregion, better known as the sky islands 

region, encompasses the southwest corner of New Mexico. This is a basin and range 

area, with shrubsteppe ecosystems in the basins and oak-juniper woodlands on the 

mountains. Ponderosa Pine predominates the higher elevation mountains (USEPA, 

2002). 

 The wide variations in elevation and ecosystems make New Mexico one of the 

more biodiverse states. More than 4,500 plant and animal species have been cataloged 

in the state (NMDGF, 2006). Included in this count are 504 bird species, 184 

mammal species, 105 reptile species, and 26 amphibian species (NMDGF, 2006). 

Vertebrate species richness is greatest in the southwestern corner of the state, and 

along the Middle Rio Grande. Species richness is lowest in the eastern high plains 

(Boykin, K., NMCFWRU, unpublished data). 

 The wide range of ecosystems in the state allows for a wide range of wildfire 

risks. Areas of sparse vegetation are at lower risk for catastrophic wildfire than areas 
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of dense vegetation. Similarly, regions of drier climate are greater fire risk than wetter 

areas. Differences in terrain also affect the degree of human infrastructure. 

  

Middle Rio Grande: 

 The middle Rio Grande Study area is completely within the Rio Grande 

floodplain, but spans across the Arizona/New Mexico Plateau and Chihuahuan Desert 

level III ecoregions (USEPA, 2002; Figure 3). The riparian areas along the Middle 

Rio Grande historically supported a Cottonwood (Populus deltoids spp. 

Wislezeni)/Willow (Salix gooddingii) dominated forest. This forest is the most 

extensive cottonwood forest remaining in the southwestern United States (Chung-

MacCoubrey and Bateman, 2006). These forests were well adapted to frequent 

flooding and low intensity wildfires. However, flood regimes have been altered and 

floods have become very infrequent in most areas along the Middle Rio Grande due 

to damming of the river upstream (Merritt and Johnson, 2006). Because of the near 

cessation of flooding, human alterations have created a new disturbance regime with 

wildfire as the most important disturbance (Smith et al., 2006). This altered 

disturbance regime has contributed to the extensive invasion of Saltcedar (Tamarix 

ramoisissima) and other non-native species in most areas along the river (Merritt and 

Johnson, 2006).  

 Saltcedar is a fast growing plant, resulting in an accelerated rate of fuel 

accumulation, which in turn leads to wildfires of higher intensity. High intensity 

wildfires often result in the death of the less fire-resistant native trees, such as 
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cottonwood and willow (Merritt and Johnson, 2006). Following intense wildfires, 

cottonwoods and other native trees are often replaced by fast growing invasives such 

as salt cedar and Russian olive (Elaeagnus angustifolia) (Finch and Galloway, 2006).  

 

 
Figure 3: Middle Rio Grande study area 

 

 The riparian areas of the Middle Rio Grande support greater numbers of 

breeding bird species than do the surrounding uplands. Additionally, even given the 

limited extent of riparian coverage in the desert southwest, these areas support an 
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even greater number of migrating birds, counted both individually and by species 

(Ellis, 1995). 

 Ellis (1995) concluded that bird species richness did not differ between areas 

dominated by native cottonwood trees and those dominated by the invasive saltcedar. 

However, more species were found to be unique to cottonwood than to saltcedar. 

Neotropical migrants, of special concern in the region, showed a slight springtime 

preference for cottonwoods. Ellis (1995) concluded that while many species may be 

able to transition into use of saltcedar instead of cottonwood, preservation of native 

cottonwood forests will be essential to the continued use of the Middle Rio Grande 

riparian zone by many bird species. 

 Finch and Galloway (2006) found avian species richness to be slightly greater 

in post-wildfire sites along the Middle Rio Grande than on unburned sites. Similar to 

Ellis’ findings however, preference between the two types of sites varied by species 

(Finch and Galloway, 2006). 

 Studies on bat activity found a negative effect of invasive plants (Chung-

MacCoubrey and Bateman, 2006). Monitoring bat activity for two years before and 

after invasive reduction treatments and on control sites, researchers found a greater 

increase in bat activity on treatment sites than on control sites for the years following 

treatments. They also found an uneven North-South distribution, with greater bat 

activity on the southern sites than on the middle and north sites. 50.2% of this 

variation was explained by reduced canopy cover on the southern sites (Chung-

MacCoubrey and Bateman, 2006). 

21 



 Existing literature indicates that the Middle Rio Grande riparian habitat is 

utilized by at least 50 reptile and amphibian species (Chung-MacCoubrey and 

Bateman, 2006). Most species caught in trapping studies tend to be associated with 

upland habitats, and were captured in open, sandy areas. A 2000-2005 capture study 

found 9 amphibian, 11 lizard, and 13 snake species in the riparian zone. (Chung-

MacCoubrey and Bateman, 2006)  
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Methods 

 The general methods for the production of each relative vertebrate risk map 

are outlined by the flowchart in Figure 4. In order to analyze the relative levels of 

risk that wildfire poses to vertebrate resources within the state of New Mexico and the 

Middle Rio Grande riparian zone, spatial relative wildfire occurrence probabilities 

were first estimated. 

 

 
Figure 4: Flowchart showing general steps towards creation of vertebrate risk map 

 

 Two separate wildfire probability maps were created, one small-scale map 

covering the entire state of New Mexico and one larger-scale map covering only the 

Middle Rio Grande riparian zone. Relative wildfire probabilities were determined by 

means of a Classification and Regression Tree analysis, incorporating historic 

wildfire ignition points (Southwest Coordination Center, unpublished data) and 

various natural and anthropic spatial variables.  
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 The historic wildfire ignition point dataset contained ignition points 

(latitude/longitude), burn areas, and ignition causes for all reported wildfires in the 

state of New Mexico from July 1, 1996 through June 30, 2004, totaling 4,569 data 

points. For this study, only ignition point locations were used. 

 

State Wildfire Probability Map: 

 The statewide relative wildfire probability map was based on numerous spatial 

variables. These variables and the data sources are indicated in Table 1. The table 

also shows the notation for the layer used in the CART output, which will be 

discussed later. 

 For use in the risk assessment model, some of the datasets had to be converted 

to more meaningful layers. ESRI’s ArcGIS 9.2 was used to convert the Major Roads 

and Rivers vector layers into raster datasets representing distances to roads and rivers,  

respectively. This was accomplished using the Straight Line (Euclidian) Distance tool 

in the ArcGIS Spatial Analyst toolbar. The Detailed Roads layer was used to create a  

Road Density raster dataset using the Line Density tool. The two distance layers and 

the road density layer were created as GRID files with spatial resolution of 2.27 km. 

This spatial resolution was chosen as a compromise between high resolution and low 

processing time. The ownership polygon file was also converted into a raster dataset 

with a 2.27 km resolution. The Temperature, Precipitation, and Land-Cover layers 

were used in their original raster format. Average Maximum July Temperature was 

used as a surrogate for relative temperature, as the temperature gradient throughout  
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Table 1: Data and sources used in Statewide CART analysis 

Data Source Input Data Layer Figure 1 Notation 

 
PRISM Group (Oregon Climate 

Service) 
 

 
Average Max July 

Temperature 
Average Precipitation 

 

 
Temp 

 
Ppt 

Southwest Regional Gap 
Analysis Project 

 
Major Road Distance 

Road Density 
River Distance 

Land-cover 
 

 
MjRdDist 
RdDens 
RvrDst 
LndCvr 

New Mexico Resource 
Geographic Information System 

Program (University of New 
Mexico) 

 

Land Ownership 
 

Owner 
 

 

the state is fairly consistent throughout the year. On average, July is one of the 

warmest months in the Southwest United States. The Average Precipitation dataset 

gives the average annual precipitation for each cell. Each of the two climate variables 

are raster datasets with a spatial resolution of .0417 decimal degrees. The Landcover 

dataset divides the state into 30 x 30 m cells, each classified into one of 89 distinct 

landcover types. Analysis of multiple datasets of various spatial resolutions was 

easily and automatically dealt with by ArcGIS. 

 All fires from July 1, 1996 through June 30, 1997 were isolated. This resulted 

in 521 data points. 522 new data points were randomly selected within the state of 

New Mexico, all at least 2km from any documented wildfire ignition points, using the 

Generate Random Points tool within Hawth’s Tools, a free ArcGIS extension package 

(Beyer, H. L. 2004. Available: http://www.spatialecology.com/htools). The resulting 

1,043 points, wildfire and non-wildfire, were combined into one dataset, with 
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attributes specifying the location (latitude/longitude) and whether the point 

represented a fire or no-fire location. The fire/no-fire points were imported into 

ArcGIS as a shapefile using the Add XY Data tool, and overlaid with the raster layers 

representing each independent variable. The values of each variable at each fire/no-

fire point location were added to the attribute table of the shapefile using the Extract 

Values to Points Spatial Analyst tool. The attribute table, containing all points and 

values for each independent value at the point locations was exported. The resulting 

file was used as input into QUEST 9.1.2 for the CART analysis (Y.S. Shih. 2005. 

Available: http://www.stat.wisc.edu/~loh/quest.html). This input data, the learning 

sample, included one full year of wildfire occurrences, thus accounting for fire 

probabilities both in and out of fire season and during all times of the year. 

 The CART analysis returned a classification tree with 12 terminal nodes, and 

11 intermediate nodes (Figure 1). The software classifies each terminal node as ‘yes’  

or ‘no’ depending on the proportion of wildfire to no-wildfire points placed in each 

class. If there are more wildfire points than no-fire points, the node will be classified 

as ‘yes’. Alternatively, if there are more no-fire points than fire points, the node will 

be classified as ‘no’. The numbers of points in each category are also output, and 

were used to calculate a relative risk score, or relative wildfire probability. For 

instance, if 20 wildfire points and 80 no-wildfire points fall under one terminal node, 

the relative risk score assigned to that node would be 0.2, or 20%. The 12 terminal 

nodes represented 10 relative risk classes, as two pairs of nodes were assigned the 

same risk score.  
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 The 10 relative risk classes were mapped across the study area based on the 

series of decision rules leading to each terminal node on the regression tree. This was 

done using the reclassify tool and the raster calculator within ArcGIS. This could also 

be accomplished by writing a simple if/then classification script, a method which 

would be extrememly useful in a case with large numbers of variables and classes. 

  

Middle Rio Grande Wildfire Probability Map 

 Digital Orthophoto Quarter Quadrangles (DOQQs) were used to determine the 

Middle Rio Grande study area, which includes the entire Middle Rio Grande riparian 

cottonwood gallery, between Cochiti Dam, NM and Bosque Del Apache NWR, NM. 

A polygon file, delineating the study area boundaries, was digitized over the DOQQs 

using ArgGIS 9.2.  

 As with the statewide fire probability analysis, CART was 

employed to create the relative wildfire probability map for the Middle Rio Grande 

study area. Due to the relatively small number of wildfires within the study area over 

the 9 year period for which data is available (28 wildfires), the CART analysis was 

based on the full nine years of fire ignition points. As the land-cover and vegetation 

within the MRG study area are much more uniform than that throughout the entire 

state, it was useful to include more natural independent variables in the CART 

analysis for this smaller area. These variables included forest-specific data, such as 

canopy cover and canopy height. The layers used are listed in Table 2, arranged by 

source. 
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Table 2: Data and sources used in Middle Rio Grande CART analysis 

Data Source Input Data Layer Figure 5 Notation 

Landfire Project 
(www.landfire.gov), USDA 

Forest Service: 

 
Canopy Bulk Density 
Canopy Base Height 

Canopy Height 
Canopy Cover 

Scott & Burgan Fire Fuel 
Models 

 

 
CBD 
CBH 
CHT 
CCV 

SB_40 

 
Southwest Regional Gap Analysis 

Project: 
 

 
Road Distance 
Road Density 

Population Centers Data 
 

 
Rd_Dens 
MjRdDist 
Pop_Dist 

 
New Mexico Resource 

Geographic Information System 
Project: 

 

Vegetation Classifications (2) 
DOQQs Veg1/Veg3 

 

 A data file, containing fire and no-fire point data, along with associated 

natural and anthropic variable values, was created using ArcGIS 9.2 in the manner 

described for the statewide analysis. Again, raster datasets were created from the 

initial data to represent distances to roads and population centers. A river distance 

dataset was not used, as the entire study area parallels the Rio Grande River. A road 

density raster was also created. The vegetation layers were converted to raster 

datasets. The Landfire data were obtained as raster files with 30 m resolution.  

 The Landfire data were used in the MRG fire probability assessment, but not 

in the statewide assessment. This is because many of the Landfire layers, such as 

canopy cover, canopy height, and canopy base height are specific to forest cover. This 

made the Landfire datasets more promising for determining variations in fire 
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probabilities based on small differences in the cottonwood forests of the Middle Rio 

Grande region. 

 The CART analysis for the MRG study area was carried out using Salford 

Systems’ CART© software, a proprietary program. CART© was used for this 

analysis because it was determined to be better at dealing with limited datasets than 

QUEST. The CART analysis returned the classification tree in Figure 5. These 

results were then converted to a relative wildfire probability map for the Middle Rio 

Grande region by the process described for the state probability map. 

  

Species Richness Data: 

 Spatial species richness data were obtained from the Southwest Regional Gap 

Analysis Project (Prior-Magee et al., 2007). These data were compiled over the entire 

SWReGAP region, including New Mexico, Arizona, Colorado, Utah, and Nevada. 

The species richness data were based on vertebrate habitat models developed by the 

SWReGAP. A 65,000 point systematic grid was created, covering the entire region. 

The number of species occurring at each point was then calculated. This point file 

was then converted into raster format using a kriging interpolation technique 

(Boykin,K. Jan 23, 2006. Southwest Regional Gap Analysis Project, personal 

communication). The GAP data included a total vertebrate species richness raster, as  

well as a species richness raster for each vertebrate taxon: birds, mammals, reptiles, 

and amphibians.  

29 



 Each SWReGAP species richness raster was overlaid with the relative wildfire 

probability layers in ArcGIS 9.2. Species-wildfire risk maps were created by 

multiplying the relative wildfire risk score by the species count, using the Raster 

Caluculator, in each cell for both the statewide fire probability map and the Middle 

Rio Grande fire probability map. The map values therefore represent a relative 

weighting of the combination of relative wildfire probability and species richness. 

Thus, the highest values represent areas with both high wildfire probabilities and high 

species richness. Similarly, the lowest values represent areas of low species richness 

which were determined to have a low wildfire probability. 
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Figure 5: Classification tree resulting from CART analysis of MRG wildfire risk
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Results 

State Wildfire Probability Map: 

 The relative wildfire risk scores yielded by the CART analysis ranged from 

9% to 85%. A large proportion of the land area, about 47.5%, fell in the lowest fire 

probability class (9%).  The second largest class, by land area coverage (23.1%), was 

the highest probability class (85%). The intermediate classes ranged from less than 

1% to almost 10% of the total area of the state. The large total coverage of the two 

extreme fire probability classes seems to be attributed to the large impact that humans 

have on wildfire frequency/probability. Major roads and developed areas contribute 

to a high probability of wildfire occurrence. Ownership, precipitation, and land cover 

also play a role in prediction of wildfire probability. Nonetheless, most areas away 

from human development are at low probability of wildfire. The highest wildfire 

probabilities are found along major highways and in or around large population 

centers. 

 

Accuracy Assessment: 

 The results of the CART analysis yielded the relative risk map shown in 

Figure 6. Figure 7 shows the relationship between the July 1, 1996 – June 30, 1997 

wildfires and the relative risk map. These wildfires were the learning sample, those 

used by the CART software to establish the risk map. Figure 8 shows the relationship 

between the July 1, 1997 – June 30, 2004 wildfires and the relative risk map. These 

wildfire points were the test sample, not used to establish the risk map, but acting as a  
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Figure 6: Relative wildfire probability map as 
determined by CART analysis 
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Figure 7: Relative wildfire probability map  
overlaid with learning sample points 
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Figure 8: Relative wildfire probability map 
overlaid with test sample points 
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7-year test of the accuracy of the maps predictions. Table 3 shows the total amount of 

land and number of wildfire points of each period falling into each relative wildfire 

probability class.  

 
Table 3: Areas as totals and percentages of study area and number of wildfire points from each 

of the original 10 fire probability classes, ‘96-‘97 and ‘97-‘04 

 
Risk 

Score 
 

 
Area 
(km2) 

 

 
Land 

% 
 

 
96-
97 
pts 

 

 
96-97 

% 
 

 
fires/1000 

km2

 

 
97-
04 
pts 

 

 
97-04 

% 
 

 
fires/1000 

km2

 

 
9 
 

 
14,7000 

 

 
47.10 

 

 
32 

 

 
6.17 

 

 
0.22 

 

 
678 

 

 
16.87 

 

 
4.60 

 
 

12 
 

 
16,100 

 

 
5.15 

 

 
3 
 

 
0.58 

 

 
0.19 

 

 
43 

 

 
1.07 

 

 
2.67 

 
 

26 
 

 
16,400 

 

 
5.25 

 

 
9 
 

 
1.73 

 

 
0.55 

 

 
95 

 

 
2.36 

 

 
5.79 

 
 

30 
 

 
2,800 

 

 
0.90 

 

 
6 
 

 
1.16 

 

 
2.14 

 

 
36 

 

 
0.90 

 

 
12.84 

 
 

32 
 

 
31,200 

 

 
9.96 

 

 
26 

 

 
5.01 

 

 
0.83 

 

 
377 

 

 
9.38 

 

 
12.09 

 
 

40 
 

 
10,800 

 

 
3.44 

 

 
14 

 

 
2.70 

 

 
1.30 

 

 
84 

 

 
2.09 

 

 
7.79 

 
 

70 
 

 
5,480 

 

 
1.75 

 

 
6 
 

 
1.16 

 

 
1.09 

 

 
34 

 

 
0.85 

 

 
6.20 

 
 

76 
 

 
5,820 

 

 
1.86 

 

 
20 

 

 
3.85 

 

 
3.44 

 

 
308 

 

 
7.66 

 

 
52.90 

 
 

78 
 

 
5,930 

 

 
1.90 

 

 
17 

 

 
3.28 

 

 
2.86 

 

 
268 

 

 
6.67 

 

 
45.16 

 
 

85 
 

 
71,100 

 

 
22.70 

 

 
386 

 

 
74.37 

 

 
5.43 

 

 
2096 

 

 
52.15 

 

 
29.50 

 
 

 While the total land area of the highest probability class accounts for only 

22.7% of the state, 52.15% of the test data wildfires occurred in areas falling under 
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this classification. Conversely, while the lowest probability classification covered 

47.1% of the state, only 16.87% of the test sample wildfires occurred here. Nearly 

two thirds (66.48%) of the test data wildfires occurred on land in one of the top three 

probability classes, totaling just 26.46% of the total land area. 

 The validity of the model is further illustrated by looking at the wildfire 

frequency within each probability class given in Table 3 by the number of wildfires 

per 1000 km2 of ground coverage. While a monotonic increase in fire frequency was 

not found with increasing fire probability classification, a general trend does emerge. 

The three lowest wildfire frequencies correspond to the three lowest probability 

classifications. Similarly, the three highest wildfire frequencies correspond to the 

three highest probability classes, though the highest of these frequencies, 

approximately 46 wildfires per 1000 km2, occurred in the second highest probability 

class, while the highest probability class had a wildfire frequency of only 29 per 1000 

km2. 

 As a result of this non-monotonic match between the ten-class map and the 

test data, in order to increase the accuracy of the model, the ten probability classes 

were collapsed into three classes. These classes and their associated land areas and 

wildfire frequencies are shown in Table 4. The relative wildfire risk scores associated 

with these three classes are 11, 37, and 84%.  The 11% classification covers 57.49 

percent of the land area and had a ’97-’04 wildfire frequency of 4.55 fires/km2. It is 

composed of the three lowest probability classes of the original model. The 37% 

probability classification covered 16.05% of the land area and had a ’97-’04 wildfire 
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frequency of 10.51 fires/km2. It is composed of the middle four classes of the original 

model. The 84% classification covers 26.46% of the land area and had a ’97-’04 

wildfire frequency of 32.28 fires/km2. This fire probability class is composed of the 

three highest classes of the original model.  

  
Table 4: Areas as totals and percentages of study area and number of wildfire points from each 

of the 3 derived fire probability classes, ‘96-‘97 and ‘97-‘04 
 

Risk 
Score 

Area 
(km2) 

Land 
% 

96-
97 
pts 

96-97 
(%) 

fires/1000 
km2

97-04 
(fires) 

97-04 
(%) 

fires/1000 
km2

 
11 

 
179,961 57.49 45 8.67 0.25 818 20.35 4.55 

 
37 

 
50,238 16.05 52 10.02 1.03 528 13.14 10.51 

 
84 

 
82,807 26.46 422 81.31 5.10 2673 66.51 32.28 

 

 The new, three class relative wildfire probability map is shown in Figure 9. 

Figure 10 shows the relationship between the July 1, 1996 – June 30, 1997 wildfires 

and the three-class relative probability map. Figure 11 shows the relationship 

between the July 1, 1997 – June 30, 2004 wildfires and the three-class relative 

probability map. 

 

Middle Rio Grande Wildfire Probability Map: 

 The MRG classification tree analysis yielded 7 fire risk scores (0, 1, 2, 4, 9, 

43, and 50%). These results were mapped over the study area as low (0, 1, & 2%), 

medium (4 & 9%) and high (43 & 50%) fire probabilities, resulting in Figure 12. The 
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low probability class covered 77.33% of the MRG study area, while the medium class 

covered 7.04% and the high class covered 15.63%.  

 Predictor variables of importance included anthropic variables such as road 

density, distance, and population distance. Natural variables were also included in the 

classification tree, such as vegetative cover, Scott and Burgan (2005) fire fuel models, 

and canopy cover. 

 A comparison of the results of the MRG risk assessment and the MRG area of 

the statewide risk assessment shows significant variation. Only approximately 30% of 

the area within the MRG study area is classified in the same category, low, medium, 

or high, in the two analyses. Only 20% of the land within the MRG study area 

classified at high risk in the statewide analysis is similarly classified in the MRG 

analysis.  Alternately, approximately 40% of the area classified at high risk in the 

MRG analysis is also classified at high risk in the statewide analysis. Though there 

was disagreement between the outputs of the two assessments, both analyses found 

that the areas near and within population centers, such as Albuquerque, Los Lunas, 

and Socorro, are generally at higher risk of wildfire. 
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 Figure 9: Three class relative wildfire probability map 
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 Figure 10: Three class relative wildfire probability map  
overlaid with learning sample 
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Figure 11: Three class relative wildfire probability map  
overlaid with test sample 
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Figure 12: Relative wildfire probability map as determined by CART  
analysis  

 
 
Risk toVertebrate Species 

 
 Maps of relative risk of wildfire to vertebrate communities were created for 

both the Middle Rio Grande and the entire state of New Mexico. For each study area, 

a map was created depicting risk to the entire vertebrate community, as well as maps 

showing risk to each individual vertebrate taxon: mammals, birds, reptiles, and 

amphibians (Figures 13 – 22).  
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Figure 13: Relative risk of wildfire to all vertebrate species 
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Figure 14: Relative risk of wildfire to reptilian species 
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Figure 15: Relative risk of wildfire to amphibian species 
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Figure 16: Relative risk of wildfire to avian species 
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Figure 17: Relative risk of wildfire to mammalian species 
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 Figure 18: Relative risk of wildfire to all vertebrate  

species of the Middle Rio Grande 
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Figure 19: Relative risk of wildfire to reptilian  

species of the Middle Rio Grande 
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Figure 20: Relative risk of wildfire to amphibian  

species of the Middle Rio Grande 

51 



 
Figure 21: Relative risk of wildfire to avian  

species of the Middle Rio Grande 
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Figure 22: Relative risk of wildfire to mammalian  

species of the Middle Rio Grande 
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Discussion 

 The results of the CART analyses and the resulting maps show that the 

greatest contributors to fire probability are anthropic variables. For the statewide 

analysis, Major Road Distance is the most important predictor of wildfire risk, 

showing up in the classification tree three times. Road Density and Land Ownership 

were also important predictors. The classification tree for the Middle Rio Grande area 

includes Road Density three times and Major Road Distance twice. Each tree also 

includes natural variables, such as Precipitation, Distance To Rivers, Vegetation, 

and/or Canopy Cover. 

 The analysis of the test sample, those fires between July 1, 1997 – June 30, 

2004, validates the accuracy of the statewide fire probability classification. The three-

class fire probability model includes areas classified, relatively, as 11, 37, and 84%. 

These three land categorizations faced wildfire frequencies during the test period of 

4.55, 10.51, and 32.28 fires per 1000 km2, respectively. 

 Overlaying the two risk maps with the GAP derived species richness data 

yielded spatial distributions of the relative risk to various vertebrate taxa posed by 

wildfire.  In the data, it can be seen that the high fire probabilities near major roads 

and population centers caused these areas to be at the highest risk to vertebrate 

communities (Figures 13 – 22). The statewide map of risk to all vertebrate species 

shows that the highest overall risks are near major roads and populations in the 

southwestern portion of the state (Figure 13).  
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 The pattern of high risk in this portion of the state can be seen in the risk maps 

for all taxa except for amphibians, which are at highest wildfire risk in the 

northeastern portions of the state (Figures 14 – 17). Based on the Middle Rio Grande 

risk assessment, the area of highest risk to the most species in this ecosystem is near 

the city of Socorro. There is also elevated risk around the village of Los Lunas, and 

through the northern portions of Albuquerque (Figure 18). 

  

Limitations: 

 The results of this study are intended as a management tool. Wildfire 

management is an important and increasingly common tool in the western United 

States. Land Management agencies can use the risk maps developed here to prioritize 

areas for fuels reduction or other wildfire management treatments based on the risk of 

fire to vertebrate communities. 

 One major limitation of these results can be seen in the conflicting results in 

the MRG area between the two analyses. As noted, only approximately 30% of this 

area was placed in the same classification level in the two analyses. There are two 

possible explanations for this.  

 The first is a shortage of data in the MRG CART analysis. CART analysis is 

most successful with large datasets (Amatulli et al., 2006). Because there were only 

28 wildfires within the MRG study area during the years in which data was available, 

the dataset is limited. This could limit the specificity and accuracy of the MRG 
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assessment, in which case the results of the statewide assessment could be viewed as 

more accurate.  

 The second possible cause of the differing classification between the two 

analyses is the use of different predictor variables. Different predictor variables, 

naturally, will result in a different classification tree. Because of the relative 

uniformity of the cottonwood forests of the MRG study area, more forest specific 

predictor variables, such as canopy cover, were input into the CART analysis. If the 

input of these layers were responsible for the differences, then it could be argued that 

the results of the MRG analysis are more accurate. However, of these more specific 

layers, only one, canopy cover, was determined to be a predictor of wildfire 

probability, and even it was located in a low level of the regression tree. Most of the 

intermediate nodes in the tree were populated with anthropic variables, as was the 

case in the statewide assessment. However, to determine the true culprit behind the 

differing results, more data is needed for the Middle Rio Grande study area, so that a 

test sample can be used to determine the accuracy of these results. 

 While the statewide analysis was validated by the accuracy assessement, there 

is still a possibility that the classification is biased. The source of this potential bias is 

the frequency of fire sightings in the areas near and away from human infrastructure. 

More specifically, it is possible that there is a detection bias in favor of the developed 

and populated areas, as there are more humans around to see and report small fires. In 

backcountry areas, small fires could burn without being detected. These fires would 

not be included in the ignition points dataset. If this is the case, the model resulting 
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from the data would predict higher wildfire risk around roads and populated areas, as 

was seen. Because equal bias would be included in both the learning and test samples, 

that the accuracy assessment would not detect any inaccuracies in the model.  

 A major limitation to practical application of the results is that the relative risk 

categorizations cross jurisdictional boundaries. Since the highest risk areas typically 

fall close to major roads, and much land along major highways is privately owned, 

much of the land at highest risk is in private ownership. That which is publicly owned 

is divided between numerous federal and state agencies. It would be ideal for all of 

the land management agencies in the state to use these results as a basis of 

cooperation in combating fire risk state-wide. Even without inter-agency cooperation, 

because of the universal nature of the GIS model, it would be easy for any given 

agency to isolate their land in the model and prioritize their lands for wildfire 

management.  

 Another limitation of these results stems from the way the land area was 

classified into fire probability categories. A large portion of the classification tree 

nodes dealt with anthropic variables, such as Major Road Distance and Road Density. 

When land is categorized by these variables, the vegetation type and actual amount of 

available fuels are not accounted for. While the validity of the fire probability map 

was verified with the test data, the results were simplified from the original tree, 

which was pruned down from an even larger tree by the software, before being 

returned. This means that the software reduced over 100 fire probability classes to 

only 10, which were subsequently combined into the three final classes. Because of 
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this, each probability class is a heterogeneous mixture of patches of land of varying 

fire probability, which average to the relative probability presented in the model. 

Thus, there are smaller areas of varying wildfire probability within the land of each 

category. For instance, in the area categorized as the highest fire probability, there are 

areas at truly high probability of wildfire, but also some areas with very little chance 

of a fire. This could include small rocky outcrops, high alpine areas, or developed 

areas with little or no vegetation. Because of this, specific management techniques 

cannot be applied across large areas of uniform risk classification.  

 In addition, the method of multiplying the relative fire probability with the 

species richness to determine a relative risk value allows for areas to be categorized at 

the same risk, while one might be at a high risk for wildfire but have a low species 

richness and the other is at a lower risk of wildfire but has a high species richness. If 

this is the case, it is clear that different management techniques would be employed in 

the two areas. 

 Lastly, some areas, while classified at high wildfire risk, may not be amenable 

to fuels reductions or other such wildfire treatments. Also, some ecosystem types may 

not be as susceptible to long-term damage from wildfires. For instance, much of the 

area classified as high risk land along major roads in the southwestern portion of the 

state is grassland. While fuels reduction and removal are common practices to reduce 

fire risk in forested areas, there is little that can be done to reduce the long-term risk 

of grassland fire. The current cattle grazing across the grasslands of New Mexico is 

about as much as can be done to reduce this risk. However, following a wildfire, 
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grasslands are much quicker to return to their former condition than forested lands. 

This reduces the impacts of wildfire on some species, particularly those that are 

mobile over extensive areas, such as birds and large mammals, and can avoid death in 

the wildfire.  

 

Applications to Wildfire Risk Assessment: 

 Researchers have discussed the need of addressing the goals of the National 

Fire Plan through advancements and standardization of wildfire risk assessment 

(O’laughlin, 2005a). At the 2003 symposium on advancing tools for relative risk 

assessment for uncharacteristic wildfires, much discussion focused on using relative 

risks to weigh the costs and benefits of wildfire/fuels treatments against the increased 

risks posed by wildfires if treatments were not performed (Irwin and Wigley, 2005). 

However, publications resulting from this conference overwhelmingly ignore the 

spatial aspect of wildfire treatments. The risk assessments discussed in this literature 

focus on only the risks associated with different management strategies of a given 

piece of forest. 

 The huge amounts of forested land across the United States and the limited 

financial and labor resources of the federal and state governments combine to produce 

considerable restrictions to timely wildfire treatments to all areas in need. For this 

reason, it is suggested that a spatial distribution of risk be determined during the risk 

assessment process. This spatial risk assessment can then be used to determine areas 

at higher risk from wildfire. These areas can be prioritized for wildfire prevention 
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treatments when time and resources are limited. The method of relative spatial risk 

determination described here provides a quick and efficient means by which to 

accomplish this task. 

  

Comparison of Results: Amatulli et al. (2006) 

 Amatulli et al. (2006) suggested CART analysis as a reliable method of 

producing fire risk maps at a regional scale. The results of that study showed that 

CART can produce a reasonably accurate map of fire risk. The study presented here 

found similar results.   

 The two studies varied in their methods. Amatulli et al. (2006) chose a 

“kernel-density function” approach, in which the CART analysis was based on a fire 

density estimation, resulting from interpolation of a fire density map. With this 

method, the dependent variable, fire density, as well as all of the predictor variables, 

was placed in raster format, and the values for every cell were entered into the CART 

analysis. The output of this method was a fire density map, predicting the number of 

fires per unit area per unit time. 

 Rather than analyzing each raster cell in an entire landscape, and a value 

determined based on proximity to nearby wildfires, this study used a much smaller set 

of vector point data, representing isolated points on the landscape where wildfires 

either did or did not occur. The output of this study was far less quantitative than that 

of the Amatulli et al. (2006) study. The outputs here were relative fire probabilities. 

An area with a relative fire probability which is twice that of another area is 
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theoretically twice as likely to burn. However, this study makes no quantitative 

estimation of what those probabilities actually are. Both studies omitted a portion of 

the historic wildfire record from the CART analysis and used these points as a test 

sample to successfully verify the accuracy of the resulting risk map. 

 Amatulli et al. (2006) suggest that their technique can be used to create a 

national fire risk map, or a fire risk map at any similarly small scale. This can be done 

efficiently using a cell size of 1-5 kilometers. The state-wide risk assessment 

performed here used various input cell sizes, resulting in an output cell size of 

approximately 265 square meters. Due to ever increasing computation speeds and 

data storage capacities, the spatial resolution of the point-based fire risk estimation 

method described here, as well as the Amatulli et al kernel-density method, is only 

limited by the resolution of the input data.  

 Amatulli et al. (2006) found that human factors had less influence on fire risk 

throughout their study area, the Garano Penninsula of southwest Italy, than natural 

factors, particularly Land Cover, but also Temperature and Rainfall. This study found 

exactly the opposite, with human factors being the most influential on the fire 

potential throughout the state of New Mexico. This difference of results does not 

indicate inaccuracy in either method, as each study used a portion of the historic 

wildfire data as a test sample, verifying the results of the CART analysis. The 

differences do, however, suggest that no broad generalizations can be made about the 

relative contributions of natural and anthropic variables to wildfire risk. The relative 
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weights of these two categories of causative factors vary by location, based on local 

climates, populations, and other geographic factors. 

 While both techniques were shown to create reliable and accurate risk maps, 

the method presented here is simpler and more straightforward. Accuracy assessment 

for the vector-point based approach can be done by simply tallying test sample points 

within each category. 

 The results of the two studies show that wildfire risk assessment based on 

CART analysis is a reliable technique for estimating relative wildfire probabilities 

across a landscape. Combining these results with species richness data or any other 

data on the spatial distribution of ecological or socioeconomic variables is easily 

performed to create a map of the distribution of ecological/economic risks posed by 

wildfire across a landscape. 

 

Conclusions: 

 The methods described here are simple, and can typically be performed with 

existing datasets. Currently, most land management agencies within the United States 

have some form of GIS capabilities. Most of these agencies, particularly the large 

ones, such as the US Forest Service or Bureau of Land Management, employ 

numerous GIS specialists, who will have more than adequate knowledge and skill to 

use this method to predict spatial variation in wildfire danger, allowing forest 

managers to prioritize the land under their jurisdiction for wildfire treatments. 
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 As discussed at the 2003 Portland symposium (O’Laughlin, 2005a), the risks 

of wildfire treatments on ecosystems should also be evaluated. If fuels reduction 

treatments have a negative impact on a species of special interest, then that effect 

must be weighted against the reduced risk to the species that would result from the 

lowered chance of wildfire. However, if the risks associated with intense wildfires are 

greater than those associated with preventative treatment, it will then become 

important for managers to determine which areas are most in need of treatment. This 

study outlined a relatively simple method of making this determination. 

 This study examined the relative risks posed to vertebrate communities by 

wildfire across the state of New Mexico and within the Middle Rio Grande 

ecosystem, but did not analyze the risks associated with wildfire prevention 

treatments. In order to use this sort of parallel risk estimation to determine the 

usefulness of wildfire treatments, one would need to do much more quantitative 

analysis than was performed here.  The relative risk values are only meaningful in 

relation to each other, showing the distribution of the risk posed by wildfire to 

vertebrate communities across the landscape. These relative risk values are not able to 

be compared to risks posed by other management activities or natural threats.  

 One interesting discovery of this study is the heterogeneity of wildfire risk at 

various scales. In the statewide risk map, large blocks are classified into a single risk 

category. Intuitively, there might be variation in fire risk within these blocks. The 

classification tree upon which the state-wide risk classifications were based is a 

pruned down version of the original tree created by the CART analysis. This original 
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tree contained over 100 fire probability classes. The pruning was performed 

automatically by the software, resulting in the 10 probability classes which were later 

reduced to 3. Thus, areas of homogeneous wildfire probability or risk at the state 

scale can display heterogeneous risk patterns at a more localized scale. Future study 

should compare the results of this method of CART-based spatial risk assessment at 

different scales, using the same variables. 

 Another implication of this study is the ability to predict wildfire occurrence 

probabilities without specific data on fuel loading. The Land-Cover layer used for the 

state-wide fire probability classification divided the state into 89 categories based 

primarily on satellite imagery. There was no input layer which represented ground 

fuel loads or biomass. In the past, fuel load data were obtained primarily through field 

examination. While this continues today (Russell and Weber, 2002), hyperspectral 

imaging has recently been used to map fuel loads and biomass (Crabtree et al., 2006). 

However, even satellite based fuel mapping requires in situ and ground truth data. 

 This study shows that a comprehensive map of fuel loads is not essential to 

creating a map of spatial wildfire risk variability. This allows for increased speed in 

the prioritization of wildfire treatment areas. As most wildfire treatments revolve 

around fuels reductions or manipulations, fuel load data will probably be needed 

before treatments can be started. However, just as the relative risk map allows for 

prioritization of wildfire treatments, it will similarly allow for prioritization of fuel 

load mapping sites. Mapping of fuels can begin in areas of high wildfire risk, thus 

allowing for areas of dangerously high fuel loads in high risk areas to be dealt with in 

64 



a quick and efficient manner. In areas where fuel loads have already been mapped, 

this data can be incorporated in the CART analysis, possibly improving the results. 

 One federal objective of wildland fire management is the standardization of 

policies and practices among agencies (O’laughlin, 2005b). The CART assessment 

method described here has great promise of being a widespread tool for the 

prioritization of lands for wildfire treatments. While the methods remain constant, 

each agency can expand the model and add its specific values (e.g. species diversity, 

endangered species presence, human development, tourist areas, etc) to make the 

process suit their specific needs. However, land managers have been encouraged to 

try multiple methods of risk assessment in order to discover which methods prove 

more successful than others (O'laughlin, 2005b). For this reason, the method of 

assessing spatial distribution of risk presented here is not final. Not only should other 

methods be developed, tested, and compared to the CART analysis assessment, but 

this method itself should continue to be refined and improved. 
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