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Distance sampling is a survey technique for estimating the abundance or density 

of wild animal populations.  Detection probabilities of animals inherently differ by species, 

age class, habitats, or sex.  By incorporating the change in an observer’s ability to detect a 

particular class of animals as a function of distance, distance sampling leads to density 

estimates that are comparable across different species, ages, habitats, sexes, etc.  Increasing 

interest in evaluating the effects of management practices on animal populations in an 

experimental context has led to a need for suitable methods of analysis of distance sampling 

data.  We outline a two-stage approach for analysing distance sampling data from 

designed experiments, in which a two-step bootstrap is used to quantify precision and 

identify treatment effects.  The approach is illustrated using data from a before-after 

control-impact experiment designed to assess the effects of large-scale prescribed fire 

treatments on bird densities in ponderosa pine forests of the southwestern United States. 
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1. INTRODUCTION 

 

Distance sampling (Buckland et al. 2001, 2004) comprises a suite of methods for 

estimating animal density.  The most commonly-used methods are line and point transect 

sampling.  Increasingly, the methods are being used in the context of designed 

experiments, for example to assess the impact of forest restoration and fuel reduction 

activities on bird communities (Dickson et al. in press;  Russell et al. in press). 

When the goal of a distance sampling study is to estimate overall abundance in a 

region, there is no particular need to model heterogeneity in probability of detection of 

animals, provided that the key assumption that animals on the line or at the point are 

certain to be detected is met.  This arises from the pooling robustness property of distance 

sampling estimates, a proof of which is given by Buckland et al. (2004:389-392).  

However, in the context of designed experiments, animal densities are typically needed 

by plot, and plot-specific estimates may be biased in the presence of unmodelled 

heterogeneity in the detection probabilities, unless a separate detection function (which 

expresses the probability of detection as a function of distance from the line or point) is 

estimated for each plot.  Few studies are sufficiently large to allow this, so that the natural 

way to analyse data from designed experiments is to use multiple-covariate distance 

sampling (Marques and Buckland 2003, 2004;  Marques et al. 2007).  If detection is not 

certain on the line or point, then mark-recapture distance sampling (Laake and Borchers 

2004;  Borchers et al. 2006) might be used.  In either case, a single detection function 

model is fitted to observations from all plots, so that plot-specific density estimates are 

not independent.  In this paper, we develop a strategy for analysing such data. 



Commonly in designed distance sampling experiments, multiple species are 

recorded.  The analyses may have more power for detecting treatment effects if data for 

species that are expected to show a similar response to treatment are pooled in a single 

analysis.  This can be achieved in the above context without having to assume equal 

detectability across species by including species as a factor-type covariate in the multiple-

covariate distance sampling analysis (Alldredge et al. 2007;  Marques et al. 2007).  We 

illustrate our approach using an experiment to assess the effects of prescribed fire treatments 

on bird densities in ponderosa pine- (Pinus ponderosa) dominated forests in the southwestern 

United States using a before-after control-impact (BACI) study (Stewart-Oaten and Bence 

2001). 

We selected two species of warbler common in ponderosa pine forests of the 

Southwest, Grace’s warbler (Dendroica graciae) and yellow-rumped warbler (Dendroica 

coronata), to demonstrate our methodology.  Both species are foliage insectivores and nest in 

open cup nests located in the canopy.  In their review of fire effects on avian communities in 

the southwestern United States, Bock and Block (2005) report negative responses of both 

species to wildfire.  We expected declines in these species after prescribed fire due to 

reduced opportunities for foraging and nesting. 

 

2. METHODS 

In the following, we assume that the units for analysis are plots (e.g., a prescribed 

fire treatment), where each plot has a number of line or point transects randomly placed 

within the plot.  Typically, lines or points will be systematically placed through the plot, 

but assumed random.  See Fewster et al. (in press) for a detailed discussion of this.  

Commonly, as in our example below, the same plot may be surveyed in more than one 



time period, say year.  In that case, the units for analysis will be a ‘plot-year’.  For 

simplicity, we simply refer to these units as ‘plots’. 

The basic data in distance sampling experiments are, for each plot, a count of 

number of animals or animal clusters detected, together with distances of detections from 

the line or point for estimating detectability.  If all animals have the same probability of 

detection, the counts are estimates of relative abundance in their own right, so that we can 

simply analyse them, for example using Poisson regression (Brand and George, 2001);  if 

effort varies between plots, the log link function of this model enables this to be 

accommodated using an appropriate offset term.  We consider here how that strategy 

might be extended to the more plausible case of variable detectability. 

 

2.1 LINE TRANSECT SAMPLING 

Suppose we have K plots, laid out according to some design, and consider first 

line transect sampling.  We will suppose that animals occur in clusters;  if they do not, 

then cluster size is set to unity in the following.  We can estimate density in plot k as 
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where total effort conducted on plot k (total line length if each line is covered once) =kl

 number of animal clusters detected on plot k =kn

 number of animals in i=is th detected cluster on plot k  



 estimated pdf of distance y from the line for i=)|(ˆ
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plot k, for which covariates  were recorded iz
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The above result is obtained by converting the expression for M̂  from section 4.2 

of Marques and Buckland (2003) into a density, by dividing through by the covered area, 

, where w is the truncation distance for y (i.e. it is the half-width of the covered 

strip). 
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If the  were known constants, it would be natural to model the counts using a 

generalized linear model (GLM) with a Poisson or negative binomial error distribution, a 

log link function and an offset of 

kH

( )kke lH 2/log− : 

  ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=
kke

p

j
jjkk lHxnE 2/logexp)(

1

β

where the x’s are determined by the design matrix, and the β  are the corresponding 

parameters.  We will consider how to accommodate uncertainty in estimation of  

below. 
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2.2 POINT TRANSECT SAMPLING 

For point transect sampling, (2.1) is replaced by 
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where total effort conducted on plot k (number of points on plot multiplied by 

(mean) number of visits per point) 

=ke

 number of animal clusters detected on plot k =kn

 number of animals in i=is th detected cluster on plot k  

 slope of estimated pdf of distance y from the point for i=′= )|(ˆ)|(ˆ
|| iyiy yfyh zz zz

th 
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Equation (2.2) is obtained by dividing Equation (3.44) of Marques and Buckland 

(2004) by the covered area, .  We can now write 2wekπ
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2.3 QUANTIFYING PRECISION 

A two-stage bootstrap allows uncertainty arising from estimating  to be 

accounted for.  For a given bootstrap resample, we first generate a resample of the 

distances of detections from the line or point.  If there is an adequate number of replicate 

kH



lines or points on each plot (say at least ten), this can be achieved by resampling lines or 

points with replacement for each plot.  Note that if a line or point is selected for a 

resample, data (including any relevant covariates) from all visits to that line or point are 

included.  If for example the same lines or points are visited in more than one year, this 

strategy ensures that we do not assume that the data recorded from the line or point in 

different years are independent.  For each resample, we re-estimate the  and hence the 

offset.  We also find the counts for each resample on each plot (or each plot-year if for 

example a plot is surveyed each year), and these counts are modelled using a Poisson or 

negative binomial GLM.  At each stage, we could condition on the model selected for the 

original data, or reassess which model was best in each resample, as judged for example 

by Akaike’s information criterion (AIC), to allow for model uncertainty. 

kH

If there is insufficient replication in the design, so that there are too few lines or 

points per plot for the above strategy, the naïve bootstrap might be used, where distances 

 are resampled along with the associated covariates .  Another option is to condition 

on , and generate a parametric bootstrap resample from the fitted model for .  

We then estimate the  for the resample.  Neither of these options generates variation 

in the count, so we cannot now proceed to the second stage as before.  Instead, for each 

resample, we could condition on the estimates of  obtained from stage one, and 

generate a bootstrap resample corresponding to the GLM.  This could be a parametric 

bootstrap resample, obtained by generating bootstrap counts from the fitted model, or the 

probability integral transform resampling method might be used (Bravington 1994; 

Borchers et al. 1997).  The latter method has the advantage that overdispersion is 

preserved in the resamples when a quasi-Poisson GLM is used. 
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3. EXAMPLE: PONDEROSA PINE PRESCRIBED FIRE STUDY 

 

3.1 STUDY DESIGN 

Four National Forests in the southwestern United States were selected as study sites:  

the Kaibab, Coconino, and Apache-Sitgreaves National Forests in Arizona, and the Gila 

National Forest in New Mexico.  On each site, a 247–405-ha prescribed fire treatment plot 

was paired with one (Coconino and Gila) or two (Apache-Sitgreaves and Kaibab) control 

plots of similar extent and vegetation composition.  In our analyses, for sites with two 

control plots, we combine the data on the control plots as if they had been a single 

contiguous plot.  Although overstory vegetation on each site was dominated by ponderosa 

pine, other common tree species included Gambel oak (Quercus gambelii) and alligator 

juniper (Juniperus deppeana) at lower elevations and Douglas fir (Pseudotsuga 

menziesii) at higher elevations in New Mexico (Dickson 2006, Saab et al. 2006).  

The four sites were surveyed for birds annually from 2003 to 2005.  Prescribed fire 

treatments were implemented by US Forest Service District personnel and completed in 

the fall of 2003 (Apache-Sitgreaves and Coconino) and spring of 2004 (Gila and Kaibab).  

Each treatment was characterized by fire behaviors of low to moderate intensity (see also 

Dickson 2006).  For each pair of plots, one was burned and the other was not.  This was 

therefore a BACI design, and we are interested in the treatment by year interaction, as under 

the alternative hypothesis that burning affects bird densities, we expect any change from pre-

burning to post-burning to differ between burn and control plots.  Point count sampling was 

conducted at 25-50 points per plot, where points were located at least 250m apart and 

150m from the edge of the study plot.  Point counts began just after the dawn chorus and 



were completed within five hours.  Each point was surveyed either three or four times 

during the breeding season between late May and early July.  At each point, observers 

recorded all birds detected for five minutes and used a laser rangefinder to estimate the 

distance between the observer and the detected bird as 0-10 m, 10-25 m, 25-50 m, 50-75 

m, 75-100 m and > 100 m (Birds and Burns Network 2003;  Dickson 2006). 

Several covariates that might affect detectability were recorded:  site, plot, cluster 

size (number of birds in a detected group), visit number, observer, species, and year.  

Additionally, information regarding the vegetation surrounding the point count was 

collected including large (>23 cm dbh) tree and snag densities, and fire effects data to 

compute a composite burn severity index (Key and Benson 2005;  see Saab et al. (2006) 

for detailed vegetation sampling description).  

 

3.2 ESTIMATING THE DETECTION FUNCTION 

We analyse here data on two warblers:  Grace’s warbler and the yellow-rumped 

warbler.  As both species were expected to show a similar response to burning, we pooled 

the data from the two species to increase power.  (A more comprehensive analysis would 

also analyse the two species separately.)  A truncation distance of m was found 

to be adequate (Figure 1), leaving 

100=w

2300=n  detections.  (Choice of truncation distance is 

discussed by Buckland et al., 2001:15-17.)  The multiple covariate distance sampling 

(MCDS) engine of Distance (Thomas et al. 2006) was used, and AIC used to identify a 

suitable detection function model (Table 1).  The hazard-rate model with year as a factor 

and tree and snag density as covariates was found to fit the data well (Figure 1).  Note 

that the covariate species was not selected;  the two warbler species gave nearly identical 



estimated detection functions.  Estimated detection probabilities were lower at points 

with high tree density, and slightly lower at points with high snag density. 

 

3.3 MODELLING THE PLOT COUNTS 

The glm command of the statistical package R (R Development Core Team 2007) 

was used to fit a Poisson model to the warbler plot counts (Table 2).  The counts analysed 

were the sum of counts across the two species, the points on the plot, and the visits made 

within a year, giving rise to 24 counts (four sites by two plots per site by three years).  To 

estimate the offset, the hazard-rate detection function model with year as a factor and tree 

and snag density as continuous covariates was used.  The number of visits to each point 

(i.e. the effort) was also included in the offset.  AIC selected the model with all two-

factor interactions but no three-factor interaction (Table 2).  We also tried adding 

covariates (averaged across the points within the plot for each year) – tree density, snag 

density and burn index – to this model, but none led to a reduction in the AIC score, and 

so they were not included.  (Thus covariates were included in the model for detectability, 

and hence in the offset of the count model, but were not included in the linear predictor of 

the count model.)  When a model with the same structure but with a negative binomial 

error distribution was fitted (using the glm.nb command from the MASS package in R, 

Venables and Ripley 2002), the limiting form corresponding to Poisson regression was 

obtained, so results were unaffected.  Similarly, as the residual deviance under this model 

(6.04, Table 2) is almost equal to the degrees of freedom (6), inference is unaffected if a 

quasi-Poisson regression is conducted. 



The above analysis makes no allowance for the estimation of the offset, so that 

both the analytic standard errors and AIC may be unreliable guides to model selection.  

We therefore calculated bootstrap standard errors and 95% and 99% percentile 

confidence intervals for parameters based on 999 bootstrap resamples.  To generate 

nonparametric bootstrap resamples, points were resampled within plots, and each 

resample analysed using the same methods as for the real data.  The bootstrap analyses 

allow for any dependence between counts at the same point across years, and for 

estimation of the offset, and we see that the standard errors are larger on average than the 

analytic ones (Table 3). 

If prescribed burning affected bird density, we would hope to detect a treatment 

by year interaction, because the treatment covariate distinguished between treatment and 

control plots, but did not reflect whether the treatment had yet been applied.  Just two of 

the bootstrap standard errors of Table 3 are (slightly) smaller than the analytic ones, but 

these both correspond to the treatment by year interaction.  Inference is therefore 

unaffected in this case;  we have strong evidence of reduced bird densities on burned 

plots in the year following burning (the year2×treatment2 term of Table 3), and 

moderate evidence that the effect continues into a second year (the year3×treatment2 

term of Table 3).  Our results provide evidence that the among-year differences were not 

consistent across sites, and that an interaction between type of plot (treatment or control) 

and site existed.  Although the analytic results gave strong evidence of a difference 

between treatment and control plots (see the treatment2 term in Table 3), when 

uncertainty arising from estimation of the offset and possible dependence in repeat counts 



at a site across years were taken into account, the 95% bootstrap confidence interval for 

the difference between treatment and control plots (just) included zero. 

 

4. DISCUSSION 

Ecological experiments can be difficult and costly to implement, but inference 

from these studies is stronger than from correlative or observational designs.  Adequate 

replication is often difficult due to the inherent spatial variability in ecosystems, and the 

costs and logistics that limit numbers of replicate plots.  Attempts should be made to 

maximize the number of replicates given available resources, and to minimize ecological 

differences in study locations. 

Developing methods to analyse data resulting from BACI experiments is vital for 

providing land management agencies with guidelines regarding the impacts of their 

management decisions (Block et al. 2001).  In this context, and including the data we 

analysed, Dickson et al. (in press) demonstrated the utility of a BACI design to quantify 

the multi-scale (i.e. plot and point level) response of bird density to prescribed fire using 

spatial mixed effect models.  Similarly, the methods presented in this paper extend 

readily to generalized additive models, and random effects are easily accommodated 

through the use of generalized linear mixed models (an extension of the count models 

advocated by McDonald et al., 2000, to allow for uncertain detectability) or generalized 

additive mixed models.  In our example, we might prefer to make site a random effect, 

which can be achieved by loading the glmm library in R.  To gain full benefit from such 

an approach, it might be preferable to have more pairs of plots in the design, with fewer 



points sampled per plot.  However, the extra costs involved in accessing and burning 

more sites can be substantial. 

In implementing the first stage of the bootstrap resampling to quantify precision 

of  in the prescribed fire study, we conditioned on the hazard-rate detection function 

model with variables tree and snag as continuous covariates and year as a factor, because 

the other models considered all had a ΔAIC value exceeding 4.  Where the choice of 

detection function model is less clear-cut, model uncertainty is readily accommodated in 

the bootstrap by selecting the detection function model with smallest AIC from each 

resample analysis, instead of conditioning on the model selected for the original data.  

Similarly, at stage two of the bootstrap, we could reselect from the possible count models 

using say AIC, although this complicates inference as most parameters would be included 

in the model used to analyse some resamples, but absent from the model used for others.  

It is simpler to use the model selected by AIC based on the real data, then to use the 

bootstrap confidence intervals to assess whether any of the parameters of that model 

could be omitted. 

kH

We have demonstrated a flexible, efficient, and quantitatively robust method of 

analysing ecological experiments to evaluate changes in wildlife abundance in response 

to habitat alterations or other interventions. 
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Table 1.  AIC scores for selected models for the detection function.  Potential continuous 
covariates were shrub stem density, large tree density, snag density, and a burn severity 
index, while factor covariates considered for inclusion were year at three levels (2003, 
2004, 2005) and species at two levels (Grace’s warbler, yellow-rumped warbler).  A 
stepwise procedure was adopted for inclusion of covariates;  the covariate giving rise to 
the greatest improvement in AIC was selected at each step, until no additional covariate 
reduced the AIC score.  The fitted detection function corresponding to the model selected 
by AIC was  where ])ˆ/(exp[1)(ˆ 63.1−−−= σyyg
 ]22.037.00100.00024.0exp[2.56ˆ iiii dcut ++−−=σ , and ti is tree density, ui is snag 
density, ci is 1 if observation i was for year 2003 and 0 otherwise, and di is 1 if 
observation i was for year 2004 and 0 otherwise.  Median tree density was 140 km-2, and 
median snag density 2.5 km-2. 
 
Key function  Continuous covariates  Factor covariates  ΔAIC 
 
 
Half-normal  None    None    25.26 
Half-normal  None    Year    20.63 
Half-normal  Tree    Year    16.94 
Half-normal  Tree, Snag   Year    16.89 
Hazard-rate  None    None    16.57 
Hazard-rate  Tree    None    10.14 
Hazard-rate  Tree, Snag   None      4.69 
Hazard-rate  Tree, Snag   Year      0.00 
 
 
 



Table 2.  Analysis of deviance of warbler analyses, treating the values of the offset as 
known constants, Poisson error model.  Note that the factor ‘treatment’ refers to 
whether a plot is a prescribed fire treatment or a control plot. 
 
                      df    deviance    resid. df    resid. dev.         AIC 
 
Null model                            23   1211.69      
+ site                 3  923.34      20    288.35      
+ year                 2   69.13      18    219.23     
+ treatment            1   11.33      17    207.89     
+ site×year            6   81.64      11    126.25     
+ site×treatment       3  109.51       8     16.74      191.1 
+ year×treatment       2   10.70       6      6.04      184.4 
+ site×year×treatment  6    6.04       0      0.00      190.4 
 
 
 



Table 3.  Poisson model:  estimated coefficients and standard errors.  Linear predictor:  
intercept + site + year + treatment + site×year + site×treatment + 
year×treatment.  Levels of site are Apache-Sitgreaves (site1), Coconino (site2), Gila 
(site3) and Kaibab (site4);  levels of year are 2003 (year1), 2004 (year2) and 2005 
(year3);  levels of treatment are control (treatment1) and burn (treatment2). 
 
Term                                    Estimate         Analytic         Bootstrap 
                                                                   std. error         std. error 
 
Intercept             -11.999      0.212**     0.317** 
site2                   1.485      0.223**     0.310** 
site3                   0.607      0.257*      0.345* 
site4                   1.176      0.230**     0.336** 
year2                   0.729      0.248**     0.311* 
year3                   0.947      0.236**     0.273** 
treatment2             -0.523      0.199**     0.264 
site2×year2             0.004      0.259       0.305 
site3×year2            -0.591      0.290*      0.329 
site4×year2            -0.041      0.268       0.323 
site2×year3            -0.209      0.246       0.264 
site3×year3            -1.680      0.297**     0.340** 
site4×year3            -0.637      0.258*      0.292* 
site2×treatment2        1.105      0.188**     0.268** 
site3×treatment2        1.618      0.232**     0.314** 
site4×treatment2        0.387      0.199       0.289 
year2×treatment2       -0.378      0.116**     0.111** 
year3×treatment2       -0.242      0.116*      0.111* 
 
*Estimate differs significantly from zero (5% level) using z-test (analytic standard error) 
or percentile c.i. (bootstrap) 
**Estimate differs significantly from zero (1% level) using z-test (analytic standard error) 
or percentile c.i. (bootstrap) 
 
 
  
  



Figure 1.  Estimated detection function by year for Grace’s and yellow-rumped warblers, 
pooling over values of continuous covariates tree and snag density.  Years 2003 (top left), 
2004 (top right) and 2005 (bottom left).  Note that the histogram bars represent number of 
detections divided by distance from the point;  this transformation allows the fit of the 
detection function to the data to be assessed visually (Buckland et al., 2001:147-150). 
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