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In this study retrievals of forest canopy height were obtained through adjustment of a simple geometric-
optical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle
Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution
was partly isolated prior to inversion using regression relationships with the isotropic, geometric, and
volume scattering kernel weights of a Li-Ross kernel-driven bidirectional reflectance distribution function
(BRDF) model. The height retrievals were assessed using discrete return lidar data acquired over sites in
Colorado as part of the Cold Land Processes Experiment (CLPX) and used with fractional crown cover
retrievals to obtain aboveground woody biomass estimates. For all model runs with reasonable backgrounds
and initial b/r (vertical to horizontal crown radii) values b2.0, root mean square error (RMSE) distributions
were centered between 2.5 and 3.7 m while R2 distributions were centered between 0.4 and 0.7. The MISR/
GO aboveground biomass estimates predicted via regression on fractional cover and mean canopy height for
the CLPX sites showed good agreement with U.S. Forest Service Interior West map data (adjusted R2=0.84).
The implication is that multiangle sensors such as MISR can provide spatially contiguous retrievals of forest
canopy height, cover, and aboveground woody biomass that are potentially useful in mapping distributions
of aboveground carbon stocks, tracking disturbance, and in initializing, constraining, and validating
ecosystem models. This is important because the MISR record is spatially comprehensive and extends back to
the year 2000 and the launch of the NASA Earth Observing System (EOS) Terra satellite; it might thus provide
a ~10-year baseline record that would enhance exploitation of data from the NASA Deformation, Ecosystem
Structure and Dynamics of Ice (DESDynI) mission, as well as furthering realization of synergies with active
instruments.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Mapped estimates of forest canopy height, fractional cover, and
aboveground woody biomass are relevant to important science
questions regarding carbon storage and cycling, susceptibility to
wildfire, gaseous and particulate emissions from wildfire, changes in
structure from disturbance (pathogens, insect outbreaks, wildfire,
storms, forest management practices such as thinning and logging),
and assessment of biodiversity and wildlife habitat. To be useful these
must be available over large areas, on a regular basis, and with as long
a record as possible. Globally, forest has the largest magnitude and
absolute uncertainty in carbon fluxes after fossil fuel emissions and is
currently a sink (CCSP, 2007). However there is concern that with
rapid climate change the terrestrial forest sink might be reduced in
magnitude — or even become a source on decadal timescales — as a
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result of both deforestation and degradation (e.g., Kurz et al., 2008).
Regular mapping of the spatial distribution of aboveground woody
biomass is one way to estimate changes in carbon fluxes between the
biosphere and the atmosphere. Currently estimates are often made
using averages based on rates of land use change (deforestation and
reforestation; Olander et al., 2008; Canadell et al., 2007); that is,
reductions in forest carbon storage are often assumed to be the result
of deforestation through clearing for agricultural crops or timber.
However emissions from forest degradation are highly uncertain and
could either offset emissions from deforestation or more than double
them (Houghton and Goetz, 2008).

Changes in forest aboveground carbon storage from disturbance
might be regarded as merely transient if recovery occurs over the
course of a few decades and carbon gains are the same as the initial
losses. However if trends in disturbance are driven by decadal changes
in climate then they are likely to affect storage on timescales that
matter to society. This now seems to be the case: the effects of recent
climate change on the forests of the western United States have been
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seen not only through increased susceptibility to fire (Running, 2006;
Westerling et al., 2006) but also from drought stress (van Mantgem
et al., 2009), with related insect outbreaks, such as the explosion in
the distribution of western pine beetle (Dendroctonus brevicomis
LeConte) and ensuing high rates of pine mortality in both the western
United States and Canada since the early 2000s (McKenzie et al., 2009;
Kurz et al., 2008). It is thus important that changes in C storage in
forest are tracked as accurately as possible.

Canopy height is a vegetation structure metric that is useful in
obtaining more accurate estimates of aboveground woody biomass
and is a key indicator of successional status (Wofsy et al., 2008). This
information must be available in a spatially comprehensive form,
however there are only three remote sensing technologies that are
able to map canopy height contiguously over large areas: lidar, radar,
and multi-angle imaging. All three technologies have limitations in
terms of precision, accuracy, calibration requirements, and spatial and
temporal sampling and coverage. For repetitive mapping over large
areas, active instruments (lidar, radar) on spaceborne platforms are
the future technologies of choice. This is the motivation behind the 5-
year NASA Deformation, Ecosystem Structure and Dynamics of Ice
(DESDynI) mission that will use full waveform, multiple beam lidar
and L-band interferometric synthetic aperture radar to map forest
structure and biomass globally, with launch expected some time in the
period 2010–2015.

For mapping trends in canopy height and biomass over large areas,
moderate resolution multiangle imaging is one option, although the
data are difficult to interpret and the results difficult to validate
because of the large ground resolution element (230–250m). While it
is known that canopy structure information is encapsulated in
multiangle reflectance data (Nolin, 2004) and may be accessed with
physical or semi-empirical models, empirical methods have provided
the highest accuracies in estimating canopy heights to date. For
example, Kimes et al. (2006) used a neural network with multiangle
reflectance data from the airborne version of MISR (AirMISR), trained
by height data from the NASA Laser Vegetation Imaging Sensor
(LVIS, a waveform lidar) to obtain accurate canopy height estimates
(R2=~0.9). However, AirMISR was flown in the solar principal plane
(PP) inwhich the canopy structure signal is strongest (as well as in the
cross-PP) but the MISR viewing plane is not close to the PP at mid-
latitudes. Similarly, Heiskanen (2006) employed feed-forward multi-
layer neural networks to estimate forest heights fromMISRmultiangle
and multispectral data in a tundra-taiga transition zone, with good
results: using biotope inventory data with a minimum mapping unit
of 1 ha as reference, results for 275 m top-of-atmosphere reflectance
and 1.1 km surface reflectance data gave RMSEs of 1.98 m and 1.29 m,
respectively, and R2 of 0.71 and 0.83, respectively (N=61,756 and
3499, respectively). However, empirical methods may be limited in
that they rely entirely on calibration, or “training”, and may suffer
from extrapolation error when applied outside the domain for which
they were trained.

Physical canopy reflectance model inversion with multiangle data
has been attempted but it has not been straightforward to extract
information in a way that is both meaningful and measurable
(Widlowski et al., 2004). Schull et al. (2007) demonstrated how
AirMISR data acquired over a mixed deciduous broadleaf and ever-
green needle leaf forest (Howland Forest, Maine) can be interpreted
using canopy spectral invariant theory. They compared the results
with those from multivariate linear regression models and estimates
from LVIS data and obtained coefficients of determination of 0.4–0.8.
While use of canopy spectral invariant theory holds much promise
there are some assumptions that may make mapping difficult in
practice; and in particular the assumption of a black (non-reflecting)
background. This probably introduces only small errors for environ-
ments with dark backgrounds such as the Howland Forest site but it
might severely impact estimates in regions with brighter soils and
sparser and/or highly variable understories.
Geometric-optical modeling is another physical modeling approach
that has some attractive features. The ability to obtain meaningful
canopy structural parameters using data from MISR in a geometric-
optical (GO) modeling framework was demonstrated in a previous
study in which retrievals were assessed against United States Forest
Service (USFS) cover and height maps over ~200,000 km2 in New
Mexico and Arizona (Chopping et al., 2008a). Retrieved distributions of
crown cover,mean canopyheight, andwoodybiomass for forested areas
showed goodmatcheswith data fromUSFS InteriorWest (FS-IW)maps,
with R2 values of 0.78, 0.69, and 0.81 (N=576) and absolute mean
errors of 0.10, 2.2m, and4.5 tonsacre-1 (10.1Mgha-1), respectively, after
filtering for high root mean square error (RMSE) on model fitting, the
effects of topographic shading, and the removal of a very small number
of outliers. Although the matches between the USFS Interior West (FS-
IW;U.S. Forest Service, 2005) andMISR/GOheight and covermapswere
good, there remains the question of error in the former, especially since
it is based partly on combining Moderate Resolution Imaging Spectro-
radiometer (MODIS) data with Forest Inventory and Analysis plot data
and a number of environmental and climate variables in predictive non-
parametric models (e.g., Ruefenacht et al., 2004; Blackard and Moisen,
2005). Furthermore, the FS-IW maps were not intended to be used for
validation and may not have high accuracies; for this reason it has been
necessary to seek other means of evaluating the results from GOmodel
inversions with MISR data. Use of USFS FIA survey data is problematic
because of the difference in scale: the plots are 36m in diameter and do
not provide an adequate means of assessing moderate resolution data,
especially in heterogeneous canopies. It is clearly not practical to
attempt to obtain ground-based data on canopy height for moderate
resolution data. For these reasons, lidar data acquired from the air
provide the best means of adequately assessing MISR retrievals. In this
study heights from a high resolution discrete return lidar were used.

To enable practical GO model inversion with multiangle data it is
necessary to estimate background reflectance anisotropy as well as
magnitude (Gemmell, 2000). Most studies that exploit GO models do
not do so using multi-angle data (e.g., Peddle et al., 1999); most
attempts to isolate the background response in any context do so in
the spectral domain (e.g., Spanner et al., 1990, Hall et al., 1995, Schlerf
& Atzberger, 2006); some are theoretical or simulation studies (e.g.,
Ranson et al., 1986); and many dealing with canopy reflectance
modeling assume that the background is simply “soil”, or that it is
uniform. There are no studies of which we are aware that deal with
extracting estimates of the background BRDF (or rather, the slice of it
in the instrument viewing plane) in a dynamic way in the context of
model inversion, as here. For example, Peltoniemi et al. (2005)
investigate the spectral and directional properties of a forest
understory using a field goniometer to sample the BRDF with a view
to developing an empirical and/or theoretical understory model.
Canisius and Chen (2007) report a method for extraction of forest
background reflectance using the Four-Scale model andMISR data and
assumed a Lambertian background: their objective was to obtain
isotropic spectral reflectancemagnitudes. In contrast, Ni and Li (2000)
recognized the need to incorporate an anisotropic background but
represented this using a static BRDF; that is, one that is not spatially
dynamic.

2. Methods

2.1. Study area

TheMISRdata used in this studycorrespond to the State of Colorado
and parts of southernWyoming andwestern Nebraska, USA, an area of
~211,000 km2, with some missing data where MISR aerosol/surface
retrievals failed as a result of cloud or other atmospheric anomalies
(contrails, aerosols, topographic shading). For the assessment of the
retrievals, lidar ground and canopy elevation data and orthoimagery
for the Cold Land Processes Experiment (CLPX) sites that correspond



Table 1
Background calibration locations within clpx sites.

Code # sites (used)a Designation Type

FF 12 (2) Fraser, Fool Creek Forest
FS 16 (2) Fraser, St.Louis Creek Forest
RB 9 (1) Rabbit Ears, Buffalo Pass Forest
RS 9 (1) Rabbit Ears, Spring Creek Forest
RW 12 (1) Rabbit Ears, Walton Creek Forest
LSOS 12 (1) Fraser, Local Scale Observation Site Forest
NI 12 (2) North Park, Illinois River Grasslandb

NM 16 (3) North Park, Michigan River Grassland
NP 9 1(1) North Park, Potter Creek Grassland

aAreas of 250 m2 within which there is a mapped MISR cell (sites used in background
calibration).
bThe only CLPX grassland site that has almost no woody plants.
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with the mapped MISR pixels were acquired (Fig. 1). These sites are in
the RockyMountains in north central Colorado. Forest types present in
the CLPX sites include: fir–spruce, aspen–birch, western hardwoods,
pinyon–juniper, ponderosa pine, lodgepole pine, as well as non-forest
(grasslands with varying shrub cover). The CLPX sites are located in
three isolated sub-regions — termed North Park, Rabbit Ears, and
Fraser — that have different topography and forest characteristics
(Table 1). North Park is mainly sage–grassland with generally low
topographic relief and shallow drainage and some scattered shrubs
and trees. The Rabbit Ears area is a higher elevation regionwith rolling
topography. Land cover types aremixed coniferous–deciduous forests,
within which trees tend to form large clumps (sometimes in long
ribbon patterns perpendicular to the direction of the prevailing wind),
with open meadows in between. The Fraser area has the highest relief
of the three areas and land cover ismostly coniferous, subalpine forest,
with alpine tundra at the highest elevations. Some locationswithin the
Fraser site were subject to clear-cutting in the 1950s that has resulted
in a matrix of high and low stands in some places.

2.2. MISR data sets and processing

MISR consists of nine pushbroom cameras arranged to view along-
track that acquire image datawith nominal view zenith angles relative
to the surface reference ellipsoid of 0.0°, ±26.1°, ±45.6°, ±60.0°, and
±70.5° (forward and aft of the Terra satellite) in four spectral bands
(446, 558, 672, and 866 nm). The 672 nm (red) band images are
acquired with a nominal maximum cross-track ground spatial
resolution of 275 m in all nine cameras and all bands are acquired at
this resolution in the nadir camera (Diner et al., 1999). This study
Fig. 1. Locations of the CLPX sites superimposed on the Forest Service InteriorWest (FS-IW) h
the area mapped with MISR. Only areas considered forest are included in the Forest Service
employed a newmethod for extracting and processingMISR data from
the Hierarchical Data Format (HDF) distribution files that are obtained
using the MISR Order and Customization Tool hosted at the NASA
Langley Atmospheric Science Data Center (http://l0dup05.larc.nasa.
gov/MISR/cgi-bin/MISR/main.cgi). Instead of performing atmo-
spheric corrections after extraction in order to obtain surface reflec-
tance factor estimates, a regression algorithmwas developed by MISR
scientists at NASA JPL that exploits the fact that the 1.1 km data are
routinely screened and corrected as part of the Land Surface product.
This efficient algorithm was installed as part of the MISR Toolkit and
routines were constructed that apply the regression and reproject the
data to a raster image grid of a chosen size and interval in any common
map projection. The MISR Toolkit-based routines require four MISR
data products: the MISR level 1B2 MI1B2 T Terrain-projected Spectral
eight map (extent shown is the black area in the inset). The gray area in the inset shows
map: areas shown in white either have heights b1 m or are non-forest.

http://l0dup05.larc.nasa.gov/MISR/cgi-bin/MISR/main.cgi
http://l0dup05.larc.nasa.gov/MISR/cgi-bin/MISR/main.cgi
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Radiance product; the MISR Level 1B2 MI1B2GEOP Geometric
Parameters product; theMISR Level 2MIL2ASLS Land Surface product;
and theMIANCAGPAncillary Geographic product. TheMI1B2T product
is the terrain-projected top-of-atmosphere spectral radiance with a
nominal 275 m spatial resolution in the nadir multispectral bands and
off-nadir red band (Diner et al., 1999). The MI1B2GEOP product
provides grids of solar azimuth, solar zenith, and nine viewing azimuth
and zenith angles at 17.6 km resolution. The Land Surface product
provides surface bihemispherical and directional-hemispherical
reflectance (albedo), hemispherical directional and bidirectional
reflectance factor (BRF), BRF model parameters, leaf-area index
(LAI), fraction of photosynthetically active radiation, and normalized
difference vegetation index on a 1.1 km grid. The MISR Ancillary
Geographic product provides geographical locations, elevation data,
surface azimuths, and a land/water mask, on 1.1 km and 17.6 km
resolution grids.

MISR Terrain-projected spectral radiance datawere acquired for an
August 10, 2002 Terra overpass (orbit 014073, path 34, blocks 57–60.
The standard MISR algorithm uses two separate values for the surface
albedo parameter: 0.015 for land or shallow/in-land/coastal waters
and 0.0 for deep ocean (Diner et al., 2008, section 3.5.4). The land/
inland water value used in the standard algorithm is too high for the
dark lakes in this scene, so the surface albedo parameter was set to
zero across the entire scene to increase coverage in the Land product
that is required to obtain surface Terrain-projected BRFs. Themodified
Land product was used with MISR Toolkit routines to calculate surface
reflectance estimates and map these to the Universal Transverse
Mercator map projection, WGS84 spheroid/datum, zone 13N, with a
grid interval of 250 m.

2.3. Lidar reference data and sites

High resolution discrete return lidar data and associated orthoi-
magery from the 2003 CLPX-Airborne Infrared Orthophotography and
LIDAR Topographic Mapping campaign — part of the Cold Land
Processes Field Experiment (CLPX) — were used, (Miller, 2003). The
lidar instrument was an Azimuth Corporation ALS40 24 KHz system,
now called the Leica ALS40. The instrument records the first and last
returns per laser pulse, along with intensity, with a user-selected off-
nadir scanning angle. The data for the CLPX campaigns were acquired
at approximately 1372 m above mean terrain, normalized to ground
controls, and processed to remove noise and redundancies. Horizontal
spacing of the data is approximately 1.5 m, with approximately 0.05 m
vertical tolerances. The data were obtained from the CLPX archive at
the National Snow and Ice Data Center (NSIDC, Boulder, Colorado) as
elevations, filtered into ground and top-of-vegetation data sets in an
ASCII XYZ format. The CLPX sites for which useful lidar data are
available, their codes, and their vegetation types are listed in Table 1.
Each of these 107 sites completely encompasses 9 - 12MISR cells, 15 of
which were selected as background calibration sites.

In order to obtain estimates of mean canopy height corresponding
to the mapped MISR imagery, a surface digital elevation model (DEM)
was first constructed via interpolation on the ground elevation data.
For each site the ground elevations in the DEM were then subtracted
from the corresponding vegetation elevations, with checks for
anomalies (e.g., where either of the elevations was out of range), to
produce a 2 m spatial resolution tree height raster image. Statistics for
all MISR raster cells fully within the CLPX lidar-derived tree height
images were extracted using an index image in which each raster cell
holds an unique, ordinal identifier.

2.4. Geometric-optical model

Geometric-optical models are able to resolve statistical distribu-
tions of discrete objects within an instrument's instantaneous field-of-
view (IFOV) (Strahler et al., 2005). Simple geometric-optical (GO)
models treat the surface as an assemblage of discrete objects of equal
radius, shape and height, evenly distributed within a spatial unit. A
tree or shrub crown is represented by a geometric primitive (a
spheroid in this case) whose center is located at a specified mean
height above a (nominally diffuse scattering) background. These
models predict the top-of-canopy reflectance response to important
canopy physical parameters (plant number density, foliage volume,
mean canopy crown height, radius, and crown shape, background
brightness and anisotropy) as a linear combination of the contribu-
tions from sunlit and viewed, and shaded and viewed crown and
background components (Li and Strahler, 1985; Chen et al., 2000), as
Eq. (1):

R = G:kG + C:kC + T :kT + Z:kZ ð1Þ

where R is bidirectional spectral reflectance; kg, kc, kt and kz are the GO
modeled proportions of sunlit background, sunlit crown, shaded crown
and shaded background, respectively; and G, C, T, and Z are the
contributions of the sunlit background, sunlit crown, shaded crown, and
shaded background, respectively. GO models are particularly appro-
priate for the exploitation of solar wavelength remote sensing data
acquired at differing viewing and/or illumination angles because the
proportions of sunlit and shaded crown and background in the remote
sensing instrument ground-projected IFOV vary with viewing and
illumination angles and canopy configuration. The simple geometric
model (SGM), a GO model incorporating a dynamic background and a
crown volume scattering term, was used (Chopping et al., 2006;
Chopping et al., 2008a,c). It is formulated as Eq. (2):

R = GWalthall ϑi;ϑv;φð Þ:kG ϑi;ϑv;φð Þ + CRoss ϑi;ϑv;φð Þ:kC ϑi;ϑv;φð Þ ð2Þ

whereϑi,ϑv andφ are the view zenith, solar zenith and relative azimuth
angles, respectively; kG and kC are the calculated proportions of sunlit
and viewed background and crown, respectively; GWalthall is the
background contribution from the modified Walthall model (Walthall
et al., 1985; Nilson and Kuusk, 1989); and CRoss is the simplified Ross
turbid medium approximation for plane parallel canopies (Ross, 1981).
The shaded components T and Z (Eq. (1)) are discarded; they are
assumed black, as in the kernel-driven bidirectional reflectance
distribution function (BRDF) models (Roujean et al., 1992; Wanner
et al., 1995). The model's upper canopy parameters are plant number
density (λ), mean crown radius (r), crown vertical to horizontal radius
ratio (b/r), crown center height to vertical radius ratio (h/b), and crown
leaf area index (LAI). Leaf reflectance in the red wavelengths is fixed at
0.09. See Chopping et al., 2006, 2008a for further details on model
derivation.

2.5. Isolation of the background contribution

For optimal GOmodel inversion in arid and semi-arid environments
it is important that the contribution of the background can be
approximated for the illumination/viewing configurations of the
remote sensing observations. In this study, the background includes
everything that is not part of the upper canopy (trees, or in some cases
shrubs) and is typically composed of several elements (bare soil, crusts,
and understory plants such as grasses, forbs, and sub-shrubs)within the
mapped instantaneous field-of-view (IFOV) of the instrument. The
background includes all non-tree features, not just the understory
directly underneath trees; for example, it includes areas of open
grassland adjacent to a forest stand where both are inside the mapped
MISR cell. In order to estimate background brightness and anisotropy in
the various MISR illumination/viewing configurations, linear multiple
regression based on a small number of calibration sites was used
(Choppinget al., 2006, 2008a,b,c,d). The independent variables areBRDF
model isotropic (iso), geometric (geo), and volume scattering (vol)
kernel weights obtained by adjusting the LiSparse-RossThin model
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againstMISR red band bidirectional reflectance factors (BRFs) in all nine
cameras using the Algorithm for Modeling Bidirectional Reflectance
Anisotropies of the Land Surface (AMBRALS) code (Strahler et al.,1996),
with the objective the minimization of absolute RMSE. The multi-
spectral reflectance estimates from the MISR nadir-viewing camera
were not used as this can result in over-fitting and because light in the
shorter wavelengths is more prone to scattering by the atmosphere.

Ideally it would be possible to find a suite of 250 m2 calibration
sites covering the domain of possible background configurations (i.e.,
areas with varying proportions of soil, grasses, or other low
vegetation) that do not include any upper canopy and use the MISR
data for these to calibrate the regressionmodels. However, it is usually
impossible to find 250 m2 areas that do not contain some shrubs or
trees, so background contributions must be extracted using the GO
model. Provided with a set of MISR red band BRFs, estimates of upper
canopy crown cover and approximate b/r ratio, and the GO model, an
optimization algorithm can extract the best-matching background for
each site. For this study, 15 CLPX sites out of a total of 107 were
selected for use in background calibration.

The regression equations were established for a range of forests
canopy/background configurations by fixing number density and
setting mean shrub radius to match fractional crown cover estimated
from unsupervised classification of the CLPX orthoimagery using the
ISODATA algorithm, or in one or two cases, via manual digitization of
Fig. 2. Predicted background brightness in the vicinity of the CLPX North Park and Rabbit Ea
solar principal plane with overhead sun (c) forward-scattering direction (same geometry) (d
the entire area.
the canopy area. Either snow-covered (April) or mostly snow-free
(September) scenes were used in the classifications, depending on the
scene characteristics (e.g., some of the April scenes were acquired as
oblique images and could not be used to estimate cover). The LAI and
h/b model parameters were fixed at 2.08 and 1.0, respectively, for all
sites and b/r was set to 2.0 and 0.2 for forest and grassland sites,
respectively. An optimization algorithm was then used to determine
for each calibration site the best-fitting Walthall model parameters
with respect to the MISR data. This allows the regression of each of the
Walthallmodel parameters on the three independent variables and the
resulting regression equations can be used to obtain estimates of the
background response prior to adjustment of the GO model (Chopping
et al., 2006, 2008a,b,c). This method has been shown to provide
reasonable estimates of the background contribution for desert
grasslands with and without shrubs: the relationship between the
predicted background brightness and the product of understory
fractional cover and mean understory grayscale values was strong
(R2=0.75, Chopping et al., 2008a). Subsequent experiments with
fixed and dynamic backgrounds over NewMexico and Arizona forests
showed that it is necessary to use a dynamic background for accurate
GO model inversions and that extrapolation error is not limiting over
surprisingly large areas (Chopping et al., 2008a,b). Three measures of
background brightness — the Walthall diffuse scattering parameter
and reflectance for a view zenith angle of 45° with the sun overhead in
rs sites (a) Walthall isotropic parameter (b) backscattering direction: VZA=45° in the
) MISR/GO fractional cover (e) MISR/GOmean canopy height (f) canopy height map for



Fig. 4. MISR/GO mean canopy height retrievals plotted against CLPX lidar height
statistics for the same area and calculated in different ways.
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the backscattering and forward-scattering directions and in the solar
principal plane — are shown in Fig. 2a, b, and c, respectively, together
with fractional cover (d) and mean canopy heights (e) for an area
surrounding the North Park and Rabbit Ears CLPX sites. It can be seen
that the background under forested areas is predicted as somewhat
darker than that of the non-forest areas, as expected. In the forward-
scattering direction the background is in general darker and contrast
between forest and non-forest background brightness is lower, as
expected, owing to shadowing by understory plants.

The selection of sites for background calibrationwas not obvious—
partly because the accuracy of the cover estimates varies — so some
effort was necessary to determine the optimal subset. To do this, the
MISR data and Li-Ross kernel weights were extracted for the 15
candidate sites and a series of regression and modeling tests was
performed. In general, background extraction is more difficult for sites
with higher crown cover because the background signal is weaker. In
this study, sites with fractional cover N0.30 proved more challenging
and one site in the Rabbit Ears, Spring Creek (RS) CLPX site with an
estimated fractional cover of 0.38 was eventually excluded. Model
inversion runs were then performed with different sites and settings
and assessed for all calibration sites to seek the best combinationwith
respect to RMSE and R2 against the lidar-based estimates of height and
orthoimagery-based cover estimates, prior to application over the
entire area (most of the state of Colorado and parts of Wyoming and
Nebraska).
Fig. 3. (a) CLPX lidar, MISR/GO, and FS-IW map heights for the 14 sites used for
background calibration. Sites 1–6 are grassland; 7–14 are forest. Lines are for clarity of
reading only (b) fractional woody plant cover (fcov) from FS-IW map, MISR/GO, and
ortho-imagery for the 14 sites used for background calibration. Sites 1–6 are grassland;
7–14 are forest. Lines are included for clarity of reading only.
2.6. Model inversion protocol

In this study, the SGMwas adjusted against theMISR red band data
in all nine views using the Praxis algorithm (Brent,1973; Powell, 1964)
with min(|RMSE|) as the objective function and no constraints or
weighting of the error terms. The LAI, λ, and h/b model parameters
were fixed at 2.08, 0.012, and 2.00, respectively, with r and b/r left as
free parameters set to initial values in the ranges 3.0–6.0 m and 0.5–
Fig. 5. MISR/GO mean canopy height retrievals vs CLPX lidar heights with all values
considered, N=58, all forest sites except Fool Creek (a) September 2003 (b) April 2003.
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2.5, respectively. The r and λ parameters are internally coupled and
the same result is obtained if fractional cover is maintained but these
parameters are varied; thus it is not feasible to adjust both parameters
simultaneously. A model inversion run proceeded by reading from the
multi-angle red reflectance and kernel weight files, submitting these
to the minimization code, and accumulating the results in an output
file. Runs were first performed for the calibration sites only in order to
provide rapid indications of the results with respect to the lidar
heights. To determine the robustness of the inversions (i.e., the quality
of the results that might be obtained with access to only minimal
reference data, and to assess sensitivity to the background contribution
and initial values for the free parameters r and b/r), a series of inversion
runswas subsequently performed for all CLPX siteswith different sets of
background coefficients and systematically-varying r and b/r starting
values. For two backgrounds (#5 and #7) the b/r value used for forest in
the extractions was experimentally set to an unreasonable value of 0.2
(very oblate crown shape), in order to demonstrate the impact of using
poor dynamic backgrounds. In all,model inversion runswere completed
Fig. 6. Lidar mean height (April), MISR/GO mean height, FS-IW fractional cover (fcov), and
(b) ranked by lidar mean height (c) lidar and MISR/GO heights using abs(h+b) for the [bac
fcovN0.99. Lines are included for clarity of reading only.
for 140 combinations of backgrounds (7), r (3.0–6.0 in increments of
1.0) and b/r (0.5–2.5 in increments of 0.5). To process the entire area the
input data were divided into 12 sets of files and two sets processed on
each of six dual-processor XServe machines, with the results files —

containingmodel fitting RMSE, r, b/r, fractional cover, andmean canopy
height— concatenated together at the end of the run. The inversions for
the entire area were performed extremely rapidly, completing in
b30 min (about the same time required to complete inversions of the
Li-Ross BRDF model using AMBRALS). The results were then read into
raster image layers for mapping and analysis. Estimates of aboveground
woody biomass were obtained using regression of the FS-IW biomass
estimates on the MISR/GO fractional cover and mean canopy height
retrievals.

It is important to note that while the r and b/r parameters match
known distributions of woody plant sizes and crown shapes inferred
from vegetation maps (for example, the more oblate crown shape
values for mesquite-dominated areas vs the more spherical crown
shape values for creosotebush-dominated areas; Chopping et al.,
MISR/GO fractional cover (fcov) for all sites (a) quasi-random order within CLPX sites
kground / r / b/r] combination with the lowest RMSE and removing all retrievals where



Fig. 7. Examples of non-trivial heights for non-tree features in the September lidar
vegetation layer, plotted over a near-infrared/red/green false color composite from
ortho-imagery (a) CLPX RS site (b) CLPX RW site.
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2008b), they are effective parameters. Because λ is fixed and r is free,
the model is adjusted to match fractional crown cover. Because h/b is
fixed and r and b/r are adjusted, the inversion effectively provides an
estimate of b, vertical crown radius. This allows the retrieval of an
estimate of h, via h/b×b, noting that h refers to the height of the
center of the crown; the height of the top of a tree is h+b.

In the course of performing repeat model inversion runs on dif-
ferent computers, it was noticed that the sign of b/r and thus h was
occasionally reversed in the low height grassland sites in 11 out of 37
cases. The reasons for this are not clear but inspection of the results
when the absolute value of all h values is taken suggests that this is
owing to a mathematical fitting anomaly; sign reversal is in both
directions (when positive onmachine A, h can be negative onmachine
B, and vice-versa); the values were identical to at least three decimal
places; and heights calculated with absolute values are consistently
within the expected ranges. The MISR/GO height results obtained in
this way are henceforth termedMISR/GOabs(h+b), or denoted by “abs”.

3. Results and discussion

Since the GOmodel is highly simplified and all parameters except r
and b/r are fixed, there are good reasons to expect low accuracy; or, if
there is good accuracy that this is spurious (i.e., not reflecting model
operation but merely a correlate). However the results do not support
either of these contentions. The MISR/GO retrievals and CLPX lidar
height estimates for the calibration sites indicate that MISR/GO height
retrievals are more accurate with respect to the lidar heights than the
FS-IWmap estimates (Fig. 3(a)). Notably, the FS-IWmapmisses forest
completely in sites 7 and 10 and overestimates height for sites 11
through 14. For the forest calibration sites only (N=7), the
coefficients of determination were 0.87 vs CLPX lidar-derived heights,
0.86 vs FS-IW map fractional cover estimates, and 0.23 vs fractional
cover estimated from orthoimagery. This compares with 0.34 vs CLPX
lidar heights and 0.28 vs fractional cover estimated from orthoima-
gery for the FS-IW height and cover data. There was an anomalously
highMISR/GO height retrieval for the Fraser Forest Fool Creek (FF) site
but this is easily isolated because fractional crown cover goes to 1.0, an
infeasible result (Fig. 3(b)). Validation of theMISR/GO retrievals is not
straightforward as the slope of the lidar:MISR relationship, even the
sign, depends on the way the lidar heights are calculated and on the
filtering used to separate ground and vegetation elements (Fig. 4).

For all available CLPX forest sites (N=58, excluding the Fool Creek
sites where infeasible crown cover values were obtained but including
all combinations of backgrounds and initial r and b/r values), typical
R2 values vs April and September lidar heights are ~0.47 and ~0.71,
respectively, while typical RMSE values are ~2 m and ~5 m (Fig. 5).
The MISR/GO height retrievals for shrubs in the North Park grassland
sites do not match well with the lidar data, particularly when the sign
of the result is observed (Fig. 6). This is either owing to a need to
provide separate calibration coefficients optimized for either grass-
land or forest, or to the lidar system's inability to resolve low woody
plants, or both. The MISR/GO retrievals are much better than the FS-
IWmap height estimates with respect to the lidar heights (Fig. 6(a)–(b)).
The MISR/GO cover retrievals are also more consistent with the lidar
height retrievals, while the FS-IW map misses some forest sites
completely (Fig. 6(a)–(b)). As with the single Fool Creek calibration site,
anomalously high MISR/GO height values were obtained for a number
of locations in several of the Fraser Forest sites (#96–107 in the plot).
Again, these can easily be screened out as they correspond to fractional
cover retrievals of 1.0 (Fig. 6(a)–(b)). When the absolute values of h
were used, a better match was obtained with the April lidar heights, with
the exception of the Fool Creek sites (Fig. 6(c)).

It is not known why the retrievals were sometimes very precise
matches to the CLPX lidar data (e.g., sites 41–55 and 67–77) and less
so for other sites but this may depend on the lidar data: the strength of
the relationship depends onwhether the April or September lidar data
are used. There is also a bias in the MISR/GO results when assessed
against the September lidar heights that is not apparent in the
assessment against April lidar heights. Since the September lidar
mean heights are consistently lower than the April mean heights and
by as much as 7.7 m (Fig. 6 (c)), it seems plausible that this might be a
result of the filtering used to divide the lidar elevations into ground
and vegetation sets. Artifacts are clearly visible when the lidar data are
plotted over ortho-imagery (Fig. 7). It is likely that small, non-tree
objects — rocks and/or low plants — were inadvertently included in
the vegetation data set (Fig. 7(a)), resulting in lower average heights
(contrary to what might be expected, since the presence of a
snowpack would result in higher ground elevations and therefore
somewhat lower tree heights when calculated by subtracting the
ground from the vegetation elevations). Most of these small objects
would be covered with snow in April and thus not be identified as
vegetation by the filtering algorithm; they would therefore not
contribute to the means. There are also some linear filtering artifacts
in these data (Fig. 7(b)).

The mosaic of mature and regrowing stands in some of the Fraser
Forest sites may be responsible for the lower lidar mean canopy
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Table 2
RMSE and R2 vs lidar heights for all MISR/GO height retrievals.⁎

RMSE (m) R2

Mean Min Max Mean Min Max

April 2.6 1.4 5.5 0.38 0.10 0.48
April (abs§) 2.0 1.4 3.8 0.44 0.22 0.52
September 3.8 2.8 5.6 0.59 0.24 0.73
September (abs§) 3.6 2.8 5.6 0.66 0.38 0.73

⁎With b/rb2.0 and reasonable dynamic backgrounds.
§Taking the absolute value of MISR height retrievals (see text).
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heights and thus the disagreement with the MISR/GO retrievals
(Fig. 6(a) and (c)). Topography may also play a role (no adjustments
to angles were applied prior to GO model inversions) and the non-
Poisson distribution of trees at the stand scale may violate the GO
assumption of evenly distributed plants; or all three factors may be
partly responsible. The towers that were installed in the CLPX sites
in April result in negligible changes to means as there is only one
per site; and they are only detectable in the statistics for the North
Park grassland sites.

The results of the series of systematic model inversion runs
indicate that the results for forest are robust with respect to the choice
of initial values for the free parameters r and b/r, as long as the
starting value for b/r is b2.0 (Fig. 8). Only 29 out of the 140
[background, r, b/r] combinations resulted in an RMSEN10 and
without exception these resulted from the use of the experimental
backgrounds (#5 and #7) and b/r starting values b2.0. When these
conditions were excluded, RMSE distributions vs April and September
lidar were centered around 2.5 m and 3.7 mwithmaxima of 5.5 m and
5.6 m, respectively (Fig. 8(a)–(d), Table 2) and R2 distributions were
centered around 0.4 and 0.7withminimaof 0.10 and 0.24 (Fig. 9(e)–(h),
Table 2). While the relationships are weaker than those typically
achieved with lidar instruments, RMSE values are comparable over
areas with marked topography or mixed crown shapes and at different
times of year (e.g., Pang et al., 2008; Sun et al., 2008; Lefsky et al.,
2008; Hyde et al., 2007). Note that when the MISR retrievals are poor—
such as when inadequate background coefficients are used— they tend
to be spectacularly poor, suggesting that inadequate model inversions
are easily detectable with a minimal set of reference data.

Representations of typical 250 m2 MISR/GO maps of aboveground
woody biomass, mean canopy height, fractional cover, and model-
fitting RMSE are given in Fig. 10. The missing data in these maps
corresponds to 17.6 km2 blocks where the MISR aerosol/surface
retrievals failed, often because of cloud cover. However there are also
obvious clouds in areas that were not screened out in the MISR
processing, that can be clearly seen from their orientation in the
model-fitting RMSE map (Fig. 10(d)). Including these data compro-
mises inversions for cover and height (Fig. 10(b)–(c)); however the
sensitivity of model-fitting RMSE to atmospheric perturbations
provides a detection mechanism, allowing the compositing of data
from multiple overpasses; this has been found to be effective in
previous mapping exercises (Chopping et al., 2008a). According to the
model-fitting RMSE (maximum across all sites=0.01) none of the
CLPX validation MISR data were impacted by clouds.

The regression equation for estimating abovegroundwoody biomass
from MISR/GO fractional cover and mean canopy height was obtained
using data for CLPX forest siteswith valid FS-IWestimates. The intercept
(−6.2), cover coefficient (41.76), and height coefficient (1.06) were all
significant at the 86% level or better (p=0.0359, 0.0008, and 0.1375,
respectively), with the large coefficient for cover reflecting the strong
dependence of biomass on this attribute, as expected. Both cover and
height had linear relationships with biomass, with the distributions of
residuals approximately normal. MISR/GO aboveground biomass
Fig. 8. RMSE of MISR/GO vs lidar mean canopy heights for all combinations of backgrounds (
2.0, and 2.5) for each r value (a) April with abs(h+b) (b) September with abs(h+b) (c) A
estimates predicted via regression showed good agreement with the
FS-IWmap values (N=39, adjusted R2=0.84), although thesemay not
themselves be accurate.

4. Conclusions

This study shows that multiangle, mono-spectral data from MISR
can be used for mapping forest canopy height over large areas and at
low cost, with implications for the mapping of aboveground woody
biomass. A limitation of the previous study (Chopping et al., 2008a)
was that the U.S. Forest Service reference data used were not intended
for validation purposes: the 2005 Interior West forest maps were
released as draft data sets intended for review. This study has shown
that when assessed against high resolution discrete-return lidar
height estimates in central Colorado, accurate forest canopy heights
can be retrieved using only MISR red band data in a GO modeling
framework. It is important to note that theMISR height retrievals were
obtained independently from the lidar data: the results are model-
based, not empirical fits to data, or trained in anyway. Themultiangle/
GO model approach offers some attractive features that include good
accuracy vs lidar-based height estimates; excellent coverage; parsi-
mony, since only red band data are required; low cost, since it exploits
existing NASA Earth Observing System data; rapidity; limited manual
intervention, with one background coefficient set adequate for large
areas; and the ability to map shrubs as well as forest. The approach
also has several limitations: model inversion can provide infeasible
values, although these can usually be identified and screened out; the
method is unsuitable for closed canopies such as those of tropical and
other dense forest; it is not possible to decompose fractional cover into
number density and mean crown radius; and retrievals are probably
less precise in the vertical dimension than those from large footprint
lidar.

Application to contiguous, wall-to-wall mapping over large areas
(e.g., the western United States) depends on two conditions. First,
MISR data from multiple Terra orbits are required to compensate for
missing surface retrievals owing to clouds, contrails (and their
shadows) and aerosol retrieval failures. Previous work has shown
that compositing on minimum model-fitting error is an efficient way
to preferentially select the least contaminated observation because
even very small deviations from a surface angular signature result in
relatively large RMSE values (Chopping et al., 2008a,b). Second, a
sparse grid of background calibration regression coefficient sets is
required, although in themapping experiments performed to date one
set seems adequate for large areas that have similar soil and
understory vegetation characteristics (e.g., Arizona and New Mexico).
Such a grid could be easily constructed using data from any site with
fractional canopy cover information, such as the National Science
Foundation LTERs, Ameriflux sites, and/or EOS Land Validation Core
Sites (http://landval.gsfc.nasa.gov), noting that this has to be
performed only once for each kind of background and time of year.
Given the insensitivity to error in the required estimates of fractional
cover for a set of background calibration sites, estimates derived from
any high-resolution imagery may be adequate.

While multiangle remote sensing and associated modeling methods
might be considered somewhat complex, applications have begun to
proliferate in recent years (Diner et al., 2005; Chopping, 2008).
Applications of the approach described here to problems in terrestrial
ecology are diverse and include mapping distributions of aboveground
woodycarbon stocks over large areas; tracking biomass loss and recovery
from fire and other disturbance; and providing a means to reduce
uncertainties in satellite-derived maps of fractional snow cover. This
approach might also serve to provide a year 2000-baseline crown cover,
canopy height, and aboveground biomass record in support of the 5-year
bg-N) and starting values for r indicated on the x-axis and b/r (in the order 0.5, 1.0, 1.5,
pril (d) September.

http://landval.gsfc.nasa.gov
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Fig.10.MISR/GOmaps of (a) abovegroundwoody biomass via regression on Forest Service estimates for the CLPX sites (b) mean canopy height (c) fractional crown cover (d) model-
fitting RMSE, for most of Colorado and parts of Wyoming and Nebraska. The maps were made using a dynamic background using data from all calibration sites except one in the
Rabbit Ears, Spring Creek area and inverting with a [r, b/r] start point of [3.0, 1.0]. Note the correlation betweenmodel-fitting error and surface retrieval failures (gaps in the coverage)
that are owing to the presence of clouds (bright linear features).

Fig. 9. Frequency distributions of RMSE and R2 for MISR/GO vs lidar mean canopy heights (a) April RMSE (b) September RMSE (c) April RMSE using abs(h+b) (d) September RMSE
using abs(h+b) (e) April R2 (f) September R2 (g) April R2 using abs(h+b) (h) September R2 using abs(h+b).
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NASA DESDynI mission, noting that the ability to map primary canopy
structure parameters using aGOapproachdoesnotdetract fromtheneed
to deploy active instruments for global mapping of vegetation structure,
especially for closed canopy tropical forest. DESDynI will also provide
information on the finer scale horizontal distributions of structural
parameters, as it will providemapswith amuch higher spatial resolution
(~25 m); and a variety of metrics can be extracted fromwaveforms. On
the other hand, the short duration of the mission limits the extent to
which it might capture all important patterns of biomass loss and
recovery. For example, extreme events such as the 2004 Alaskawildfires
(Pfister et al., 2005) may or may not occur within the lifetime of the
mission. Futuremultiangle imagerswith IFOVs of around100m, together
with canopy structure information from active instruments will help to
provide a more complete and accurate picture of terrestrial carbon
storage in the terrestrial biosphere, as well as forest dynamics. The
use of multiangle red band data fromMISR andMODIS together in GO
model inversion may also prove useful and early results with MODIS
alone have shownpromise (Chopping et al., 2009, 2008c), although it
remains to be seen whether including MODIS data will enhance the
MISR-based results.
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