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Numerically stable algorithm for combining census and sample estimates with the 
multivariate composite estimator 

 
R.L. Czaplewski1 

 
Introduction  
 
The minimum variance multivariate composite estimator is a relatively simple sequential 
estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability 
sample of expensive field data with multiple censuses and/or samples of relatively inexpensive 
multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite 
estimator is vulnerable to numerical errors, which can cause infeasible or unreliable estimates 
(Grewal and Andrews 2001:Chapter 6). Numerical errors can exceed random estimation errors, 
which is especially dangerous if undetected (Bierman 1977:97). These problems are well known 
in the Kalman filter literature (e.g., Maybeck 1979), which is a generalization of the multivariate 
composite estimator. U−D factorization is a numerically robust solution (Bierman 1977).  
 
The following example uses the paper by Gallego and Bamps (2008), who sought to improve 
statistical estimates from the LUCASi sample survey program of land use and land cover for an 
analysis domain. They formed strata based on the full-coverage remotely sensed CORINEii map, 
which has 12 land cover categories (Table 1). They applied post-stratification to the LUCAS 
Primarily Sampling Units (PSUs), which include Secondary Sampling Units (SSUs) that are 
cross-classified into 9 LUCAS categoriesi of land use and 12 CORINE categoriesii of land cover 
(Table 1). The following example applies the multivariate composite estimator as an alternative 
to post-stratification, including U−D factorization to solve to associated numerical problems. 
 
Estimators 
 
The objective of the multivariate composite estimator is to reduce random error in the estimated 
area for each of the 9 LUCAS land use categories. This is accomplished using the difference 
between the census and sample statisticsiii for each of the 12 categories of land cover in the 
CORINE map. The degree to which the error is reduced depends upon the strength of 
associations among the CORINE and LUCAS categorical variables in the LUCAS sample.  
 
The CORINE land use map is composed of polygons with a minimum size of 25-ha. Each 
polygon is classified into one of 12 categoriesii by a photo-interpreter. If polygon k is classified 
as category r, then element [xr]k of the 12−by−1 vector xk equals the area of polygon k, while all 
remaining elements [xi≠r]k =0. Complete enumeration of all M polygons in the analysis domain 
yields the vector constant tCORINE for the population totals from the CORINE land use map: 
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Equation 1 defines the “observation vector” in the Kalman filter for the analysis domain. It has a 
12−by−12 covariance matrixiv equal to zero because the census of CORINE polygons is assumed 
to produce exact constants for the population totals, without sampling or enumeration errors. 
 
Unlike the census of CORINE polygons, LUCAS uses a systematic sample. The sample size is 
m=1,114 PSUsv. Each 90-ha PSU j is sub-sampled with nj=10 “points” or SSUs. 1≤nj≤9 if PSU j 
straddles the domain boundary. Gallego and Bamps use the ratio estimator with a univariate 
binary response yij, within each stratum, where yij =1 if SSU point i in PSU j has land cover c, 
and yij =0 otherwise. The multivariate version of this ratio estimator is defined as: 
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where (yq)ij=1 if SSU point i in PSU j is classified as LUCAS category q (=0 otherwise), and 
(xr)ij=1 if SSU point i in PSU j is classified as CORINE category r (=0 otherwise)vi. Vector 
estimate LUCASt̂ is equivalent to the “state vector” in the Kalman filter (Maybeck 1979:26).  The 

vector partition [ ]LUCASXt̂ contains the areal estimates for each CORINE category in the LUCAS 
sample, which corresponds to the first row margin in Table 1, where [ ]12912 I0H ×= . The 

column margin is denoted [ ]LUCASYt̂ , which is the remaining partition of vector estimate LUCASt̂ . It 
is the estimated area for each of 9 LUCAS categories in the LUCAS sample. Improving the 
precision of [ ]LUCASXt̂ will more precisely predict [ ]LUCASYt̂ , which is the objective.  
 
The estimated sample covariance matrixvii for LUCASt̂ uses a multivariate version of Matérn’s 
(1986) variance approximation for systematic sampling in two dimensions: 
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where A is the total area of the analysis domain, j' indexes one of the 8 nearest-neighbors in 
geographic space to PSU j, and δj,j' is the inverse geographic distance between PSUs  j and j'.  

 

From Maybeck (1979:217), the multivariate composite estimator is defined in Eqs. 4 to 6 as: 
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K is the 21–by–12 matrix weight placed on the 12–by–1 CORINE census vector tCORINE, and 
(I−KH) is the 21–by–21 matrix weight placed on the 21–by–1 LUCAS sample vector LUCASt̂ : 
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Equations 4 to 6 would be sufficient in a perfect world. Regrettably, the inverse of the 12–by–12 
covariance matrix ( )HtVH ′X

ˆˆ  in Eq. 6 is infeasible if it is positive-semidefinite, as is the case with 
categorical variables. Also, numerical problems are common with inverses of large matrices. 
Numerical errors can even produce an indefinite covariance matrix in ill-conditioned cases. 
 
U−D factorization (Bierman 1977) is a robust solution to these structural and numerical 
problems. It directly factors a positive-semidefinite sample covariance matrix ( )LUCAS

ˆˆ tV  into 
UD0U', where U is a unit upper triangular matrix with 1’s along the diagonal, and D0 is a 
diagonal matrix with non-negative elements (Grewal and Andrews 2001). The algorithm starts 
with the U−D decomposition of ( )LUCAS

ˆˆ tV  given by Maybeck 1979:392. Bierman’s solution 
requires scalar observations, but the CORINE census is a vector of 12 observations (tCORINE in Eq. 
1). However, each census observation is mutually independent because each is a known constant. 
The U−D algorithm is applied sequentially, i=1,…,12 times, once for each element of tCORINE. 
Bierman (1977) derived the following identities based on modified Cholesky factors. Let the 21–
by–1 vector ii hUv ′′= , where hi is the ith row of H. The U−D expressions for Eqs. 5 and 6 are:  
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where ( ) ( ) UUDtVtV ′== 0LUCAS0COMPOSITE
ˆˆˆˆ . Maybeck (1979:394) gives a solution for K in Eq. 8. 

Both post-stratification and the multivariate composite estimation are about 1.4-times more 
efficient than the LUCAS sample survey estimates without CORINE auxiliary constants. 
 
Discussion and Conclusions 
 
The multivariate composite estimator, which is a special case of the multivariate Kalman filter, is 
an alternative to post-stratification. Auxiliary census data may be fully used, even when 
heterogeneous primary sampling units occur in multiple remotely sensed “strata”. Gallego and 
Bamps (2008) were forced to condense 12 CORINE classes into 4 aggregated categories to 
assure M homogeneous PSUs. “Deep post-stratification” requires cross-classification over 
multiple categorical variables, which can generate numerous strata with small sample sizes. 
Cross-classification is not necessary with the composite estimator because each categorical map 
variable may be sequentially processed separately with Eqs. 7 and 8. The multivariate composite 
estimator can combine any design-based estimate (e.g., LUCASt̂  in Eqs. 2 and 3) with more 
complex design elements, many of which remain problematic in sample surveys today. For 
example, calibration estimators could accommodate systematic sampling of heterogeneous 
clusters plots or multistage designs if imbedded within a multivariate composite estimator. In 
general, the composite estimator can be more efficient because it can use all information 
available in remotely sensed data (Czaplewski 2001), whereas stratification typically uses a 
small fraction of these data (Mandallaz 2008:89). However, any application of the Kalman filter 
must consider associated numerical hazards. The methods replicated here have provided 
successful solutions for decades in diverse engineering and econometric applications.  
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Table 1. Proportion of 15 nations in the European Union cross-classified by land cover and land use categories from the CORINE map 
and the LUCAS sample, which is based on Gallego and Bamps (2008). Includes results of multivariate composite estimator.  

 LUCAS classesi (field classification of sample points) 
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CORINE remotely sensed map classesii 
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Est. CVa 

Artificial surfaces 0.037 0.002 0.002 0.018 0 0.001 0.005 0.009 0.001 0.075 7.4% 0.077 
Arable non irrigated cropland 0.009 0.113 0.028 0.024 0.002 0.003 0.007 0.009 0.003 0.198 4.2% 0.180 

Rice and arable irrigated cropland 0.002 0.006 0.002 0 0 0 0 0.001 0 0.011 19.9% 0.012 
Pastures 0 0.001 0.001 0.007 0 0 0 0.001 0 0.010 20.8% 0.118 

Natural grassland 0 0 0 0.005 0 0 0.001 0.006 0 0.012 19.0% 0.040 
Vineyards, fruits, arable and permanent crops 0.003 0.015 0.007 0.011 0.011 0.033 0.004 0.012 0.003 0.099 6.3% 0.025 

Olive trees 0.006 0.005 0.003 0.007 0.070 0.005 0.006 0.013 0 0.115 5.8% 0.028 
Complex agricultural landscape 0.004 0.011 0.007 0.012 0.003 0.005 0.002 0.006 0.001 0.051 9.0% 0.070 

Agriculture, agroforestry, natural vegetation 0.021 0.021 0 0 0 0 0.127 0.021 0 0.190 4.3% 0.061 
Forest 0.001 0 0 0.001 0 0 0.033 0.004 0.001 0.040 10.3% 0.192 

Other natural vegetation, open spaces 0.002 0.001 0.001 0.026 0.002 0.001 0.033 0.080 0.003 0.149 5.0% 0.147 
Water and wetland 0.001 0 0 0.012 0 0 0.002 0.009 0.026 0.050 9.1% 0.050 

LUCAS sample 
estimate  
(Eq. 2) 

[ ]LUCASYt̂  Estimate 0.086 0.175 0.051 0.123 0.088 0.048 0.220 0.171 0.038 1.000 1.000 

CVa 6.8% 4.5% 9.0% 5.6% 6.7% 9.3% 3.9% 4.6% 10.5%  
Composite 
estimator 
(Eq. 8) 

[ ]
[ ] COMPOSITE9

COMPOSITEY

ˆ

ˆ

t0I

t =  Estimate 0.071 0.151 0.055 0.203 0.028 0.021 0.254 0.179 0.040 1.000  

CVa 6.2% 3.8% 8.7% 5.3% 5.0% 8.3% 3.0% 4.2% 8.6%  
a CV = Coefficient of variation relative to [ ]LUCASYt̂  in Eqs. 2 and 3. 
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Endnotes 
                                                 
i  LUCAS (Land Use/Cover Area-frame Survey) is a area-frame sample survey. It has been conducted by Eurostat 

since 2001. The objective is consistent monitoring of the status and change land use and land cover. Analyses of 
interactions among agriculture, the environment, and the landscape and used to as input to agricultural and 
environmental policy making within the European Commission (http://www.lucas-europa.info). There are 57 
categories of land cover and 14 categories of land use, which are summarized into 9 categories in Table 1.  

ii  CORINE (CO-ordination of INformation on the Environment) is a land use and land cover mapping program that 
has been coordinated by the European Environment Agency since 1985. The CORINE database consists of 
polygons at the scale of 1:100,000 created by interpreting satellite images. Each polygon is classified into one of 
44 classes of urban areas, crops, meadows, forests and natural vegetation, wetlands and water, which are 
summarized into 12 broad classes in Table 1. See http://www.eea.europa.eu/publications/COR0-landcover. 

iii  Every LUCAS SSU is geospatially intersected with the corresponding CORINE polygon using a GIS. 
iv  V(tCORINE)=0; therefore, R=0 in Maybeck (1979:204) 
v  Gallego and Bamps (2008) did not report sample size. The approximation here is merely an example.  
vi  This simple example uses the (12+9) –by–1 vector version of the margins in Table 1. A more efficient application 

would use the full (12×9=108)–by–1 vector version of the full contingency table (Czaplewski 2001). 
vii Gallego and Bamps (2008) do not report their covariance matrix. Rather, the multinomial distribution is used here 

as a hypothetical. The ith diagonal element of ( )tV ˆˆ  equals ( ) ( ) 1114ˆ1ˆ5.0 ii tt −  and the ijth off−diagonal element 
equals ( ) 1114ˆˆ

ji ttd − . A design effect of 0.5 approximates the efficiency gained from cluster plots. 


