
Accuracy 2010 Symposium, July 20-23, Leicester, UK 
 

- 173 - 
 

Accuracy Assessment with Complex Sampling 
Designs 

Raymond L. Czaplewski 
United States Forest Service 

Rocky Mountain Research Station 
Fort Collins, Colorado USA 

rczaplewski@fs.fed.us 
 

 
Abstract— A reliable accuracy assessment of remotely sensed 
geospatial data requires a sufficiently large probability sample 
of expensive reference data. Complex sampling designs reduce 
cost or increase precision, especially with regional, continental 
and global projects. The General Restriction (GR) Estimator 
and the Recursive Restriction (RR) Estimator separate a 
complex sample survey into simple statistical components, each 
of which is sequentially combined into the final estimate. GR 
and RR produce a design-consistent Empirical Best Linear 
Unbiased Estimator (EBLUE) for any sample survey design, 
regardless of its complexity. 
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I.  INTRODUCTION 
An accuracy assessment provides essential metadata for 

geospatial databases that are produced with remotely sensed 
data, especially at the regional, continental and global scales. 
Strong inference about database accuracy requires a valid 
probability sampling design, a precisely defined sample-
population, sufficient sample size, relevant reference data, 
and a design-consistent estimator (Czaplewski 2003).  

For example, the correlation coefficient is a common 
accuracy assessment statistic for continuous variables (e.g., 
biomass). A simple random sample of point-plots is the 
simplest probability sampling design. Each point-plot has 
two known values: the reference datum (e.g., a single field 
measurement of biomass); and the predictor datum (e.g., a 
single prediction of biomass with remotely sensed data). The 
correlation coefficient estimates the linear association 
between the predicted biomass and reference data expected 
at any point in the sampled population. However, many 
remotely sensed data are classified into categories.  

Categorical data (e.g., forest and nonforest cover) are 
assessed with the error-matrix, which is a contingency table 
cross-classified by reference and predicted categories. Count 
data from a simple random sample of point-plots support 
unbiased estimators of the proportion of the sampled 
population in each cell of the error-matrix (Congalton and 
Green 2009). 

A statistical estimator is unbiased if the mean value of an 
estimated statistic among all possible samples is identical to 
the true population parameter. In practice, only one sample is 
realized. The resulting estimate surely deviates from the 

unknown population parameter. However, as the sample size 
becomes larger, the expected deviation becomes smaller, 
which reduces risk of incorrect inference. Regrettably, an 
adequate sample size is expensive with a simple random 
sample, especially for categorical data with a detailed 
taxonomic scheme or rare taxa. 

A. Complex Sampling Designs 
Complex sample designs can provide more reference data 

at less cost. For example, a field crew can measure ground 
reference data for a 1-ha cluster-plot with little incremental 
cost relative to measuring a single point-plot (e.g. a 1-m2 
“point”). Remotely sensed classifications of land cover for a 
contiguous cluster of pixels may be registered to the 
corresponding cluster-plot measured in the field. Assuming a 
simple random sample of equal-size cluster-plots, estimators 
with raw count data given by Congalton and Green (2009) 
remain unbiased for an error matrix. However, their variance 
estimators assume point-plots, and those estimators produce 
biased variance estimates when applied to raw count data 
from cluster-plots. A biased variance estimator constructs 
confidence intervals that do not faithfully cover the expected 
population parameters at the professed probability level. Any 
conclusions based on those confidence intervals can be 
unintentionally misleading. 

Rare categories are often important (e.g., old-growth 
forest habitat). Simple random sampling will rarely sample a 
rare category, and some rare categories can be entirely 
missing from a sample. Pre-stratification can prescribe a 
reasonable sample size for every rare category identified in 
the geospatial database. Furthermore, pre-stratification can 
use a higher sampling rate for rare and otherwise important 
categories.  

A pre-stratified sampling design also produces raw count 
data for categorical variables, and the estimators in 
Congalton and Green (2009) appear applicable. However, 
those methods produce biased estimators of every proportion 
in the error-matrix in addition to misleading confidence 
intervals. As differences in sampling rates among strata 
become extreme, the bias becomes more serious (Czaplewski 
2003). An unbiased estimator requires differentially 
weighting raw count data to adjust for unequal sampling 
rates (e.g., Stehman and Foody 2009). It is seductively easy 
to ignore these weights and unwittingly produce a 
misleading accuracy assessment. 
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B. Key Lesson  
Here is the key lesson. A statistical estimator can be 

design-unbiased when applied to a valid probability sample. 
However, that same estimator can be biased whenever 
applied to a sample selected with a different sampling design 
or one that uses different sampling units.  

A biased estimator compromises strong inference 
regarding the accuracy of a geospatial database. The bias 
might be inconsequential, but the degree of bias is often 
unknown. Inference based on a biased estimator requires 
unsubstantiated assumptions.  

There can be little difference in the cost of using a simple 
but biased estimator compared to a more complex but 
unbiased estimator. The next section briefly illustrates 
relatively simple estimators for a few complex designs. 

II. RECURSIVE RESTRICTION ESTIMATION 
Knottnerus (2003 §12.2.2) introduced the General 

Restriction (GR) estimator into the sample survey literature. 
The GR estimator is closely related to the static Kalman filter 
(Maybeck 1979). In this setting, GR is a multivariate 
composite estimator that combines two separate sample 
survey components.  

Knottnerus (2003 §12.5) also introduced the Recursive 
Restriction (RR) estimator, which extends the GR estimator 
into more complex applications. The RR estimator separates 
an even more complex design into a sequence of simpler 
estimators. These may include any standard sample survey 
estimator (e.g., Särndal et al. 1992) and intermediate results 
with the GR estimator (Czaplewski 2010).  

The example in the next section uses an accuracy 
assessment of airborne Light Detection And Ranging 
(LiDAR) laser data as predictors of above ground forest 
biomass. Field measurements from a National Forest 
Inventory (NFI) provide ground reference data (e.g., 
McRoberts et al. 2005). The accuracy assessment statistic is 
the correlation coefficient between the predictions of 
biomass with LiDAR data and NFI field measurements.  

In this example, a second independent survey adds a 
large sample of airborne LiDAR data, without the additional 
cost of NFI field data. The GR estimator improves the 
estimated correlation coefficient by combining results from 
the NFI survey with results from this second auxiliary 
LiDAR survey. 

Finally, the example posits a third independent survey 
with a completely different set of sample plots. Spaceborne 
and airborne LiDAR sensor data predict biomass for each 
plot. The RR estimator combines results from the GR 
estimator with results from this third auxiliary survey. 

A. Example of the General Restriction (GR) Estimator  
Consider an accuracy assessment based on the correlation 

between remotely sensed estimates of forest biomass and 
corresponding ground reference data. Measurements for a 
relatively small, simple random sample of 1-ha NFI plots 
provide reference data. In addition, an airborne LiDAR 

sensor acquires data that predict biomass at each NFI field 
plot.  

Each plot (i) has a 3×1 measurement vector: the first 
element is a function of the LiDAR data (X); the second 
element is a function of NFI field measurements (Y); and the 
third element is a function of their cross-product. A simple 
random sample, with a sample size  of nNFI plots, produces 
sufficient statistics for a design-consistent estimator (1) of 
the linear correlation coefficient (rNFI) for the sampled 
population. 

(1) 
A linear Taylor-series approximation (Czaplewski 2010) 
provides a variance estimate for the correlation coefficient 
(rNFI) using the 3×3 covariance matrix (VNFI) for the 3×1 
vector estimate in (1). However, the sample size (nNFI) of NFI 
plots is small, the estimated variance of the correlation 
coefficient is large, and the corresponding confidence 
interval is unacceptably broad in (1).  

How can a more accurate estimate the correlation 
coefficient be made without a substantial increase in the cost 
of ground reference data? One answer is the addition of 
ancillary accuracy assessment data gathered with a less 
expensive protocol. 

Assume auxiliary LiDAR data are acquired for a second 
survey that uses a simple random sample. The sample size 
can be large because LiDAR data are relatively inexpensive, 
and this survey does not include expensive field data. This 
second survey provides an independent unbiased estimator 
for the first element in the 3×1 vector estimate in (1). 
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  (2) 

A multivariate version of Knottnerus’ GR estimator 
combines these two independent surveys. The 3×1 vector 
estimate from the NFI survey (1) is weighted by a 3×3 
matrix (I–kGRh), the scalar LiDAR estimate from the second 
survey (2) is weighted by a 3×1 vector kGR, and the two are 
summed into a single 3×1 GR estimate (3). 

  (3) 

 

VNFI is the 3×3 covariance matrix for the NFI vector estimate 
in (1), vLiDAR is the scalar variance for the LiDAR biomass 
estimate from the second independent sample survey in (2), 
h is a 1×3 indicator vector, and I is the 3×3 identity matrix. 
The weights in the GR estimator (kGR) use the minimum 
variance optimality criterion (Maybeck 1979 p. 232). 
Improved estimates of the first vector element will improve 
precision of the remaining two elements depending on the 
covariances among all three elements (VNFI) from (1). 
Therefore, the estimated correlation coefficient with 
auxiliary LiDAR data (rGR) in (3) is expected to have a 
smaller confidence interval than rNFI in (1), which uses data 
from NFI field plots alone. 

B. Example of the Recursive Restriction (RR) Estimator  
The Recursive Restriction (RR) estimator, which is a 

simple extension of the GR estimator, accommodates 
designs that are more complex. For example, assume broad 
swaths of spaceborne LiDAR data from the Shuttle Radar 
Topographic Mission (SRTM) provide a systematic sample 
of transects for the sampled population. Airborne LiDAR 
data are acquired within each transect. This third 
independent sample1

(4) 

 provides additional auxiliary data. The 
sequential RR estimator uses the SRTM data to improve 
precision of the first element in the GR vector estimator (3).  

 
The estimated correlation coefficient rRR in (4) is expected to 
have a smaller confidence interval than rGE in (3) because the 
SRTM data improves all elements in the 3×1 vector 
estimates used to compute rRR.  

                                                           
1  For the sake of simplicity, the sampling design with spaceborne 

SRTM LiDAR data is treated as a simple random sample in (4). See 
Czaplewski (in press) for methods that are more efficient and suitable to 
two-stage sampling with SRTM transects. These methods improve the 
estimate of biomass with the airborne LiDAR with auxiliary data from the 
spaceborne SRTM  LiDAR. 
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III. DISCUSSION 
More complicated sample surveys can improve cost-

effectiveness (Särndal et al. 1992). Pre-stratification for rare 
or important categories, which served as an example in the 
Introduction, is one example.  

Another example is an accuracy assessment of biomass 
predictions with spaceborne Landsat sensor data. Those 
predictions can be assessed with a large sample of 100-ha 
cluster-plots. Each cluster-plot may be measured with 
airborne LiDAR and/or photogrammetric measurements with 
aerial photographs, and a small sub-sample can be further 
measured in the field.  

The sampled population may be stratified by accessibility 
to more efficiently allocate field sampling. Two or more 
independent surveys with compatible measurement protocols 
can be optimized for special objectives or different 
circumstances.  

Different configurations for sample plots can be 
optimized for each sensor. These may be nested together into 
multi-stage designs that collate predictions from different 
sensors. For example, Frescino et al. (2009) use a 1-ha NFI 
field plot nested within a 50-ha plot that is designed for very 
high-resolution large-scale aerial photography. However, the 
GR and RR estimators apply to more complex designs. 
Consider a full-coverage global geospatial database based on 
the spaceborne MODIS sensor.  The accuracy assessment 
might use a nested sampling unit, where a 106-ha Landsat 
scene is the Primary Sampling Unit. Several 104-ha 
Secondary Sampling Units within each sampled Landsat 
scene are measured with the spaceborne IKONOS sensor. 
Each of those is sub-sampled with several 102-ha Tertiary 
Sampling Units measured with large-scale aerial 
photography, one of which covers a 1-ha NFI field plot as 
the Quaternary Sampling Unit. 

These multi-stage components are not mutually 
independent because sampling units are collocated. 
Czaplewski (2010) extends the multivariate RR estimator to 
multi-stage designs.  He uses results from Maybeck (1979 p. 
247) that accommodate nonzero covariances among 
otherwise separable design components. Similar multivariate 
RR estimation methods provide relatively simple and 
efficient design-consistent estimators that blend multi-phase 
and multi-stage components2

Error matrices estimated with a complex sampling design 
require applicable multivariate methods to estimate 
variances, standard deviations and confidence intervals. 
Czaplewski (1994) derives generalized variance estimators 
for common accuracy assessment statistics. These include 
conditional probabilities, such as users’ and producers’ 
accuracies and the kappa statistic. 

. 

                                                           
2  Czaplewski (2010) discusses the relationship between 

multivariate GR and RR estimators and univariate calibration and 
regression estimators (Särndal et al. 1992). 

IV. CONCLUSION 
Complex sampling designs offer promising opportunities 

to improve accuracy assessments, especially within large 
remote sensing projects. However, complex methods incur 
some risk. An expert statistician can minimize that risk. 
Knottnerus’ GR and RR estimators provide that expert with 
relatively simple, flexible, efficient and unbiased estimators 
for any complex sampling design. 
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