
Chapter 16
Current State of the Art for Statistical 
Modelling of Species Distributions

Troy M. Hegel, Samuel A. Cushman, Jeffrey Evans, and Falk Huettmann

16.1 Introduction

Over the past decade the number of statistical modelling tools available to ecologists 
to model species’ distributions has increased at a rapid pace (e.g. Elith et al. 2006; 
Austin 2007), as have the number of species distribution models (SDM) published 
in the literature (e.g. Scott et al. 2002). Ten years ago, basic logistic regression 
(Hosmer and Lemeshow 2000) was the most common analytical tool (Guisan and 
Zimmermann 2000), whereas ecologists today have at their disposal a much more 
diverse range of analytical approaches. Much of this is due to the increasing availa-
bility of software to implement these methods and the greater computational ability 
of hardware to run them. It is also due to ecologists discovering and implementing 
techniques from other scientific disciplines. Ecologists embarking on an analysis 
may find this range of options daunting and many tools unfamiliar, particularly as 
many of these approaches are not typically covered in introductory university sta-
tistics courses, let alone more advanced ones. This is unfortunate as many of these 
newer tools may be more useful and appropriate for a particular analysis depending 
upon its objective, or given the quantity and quality of data available (Guisan et al. 
2007; Graham et al. 2008; Wisz et al. 2008). Many of these new tools represent a 
paradigm shift (Breiman 2001) in how ecologists approach data analysis. In fact, 

T.M. Hegel (*)
Yukon Government, Environment Yukon, 10 Burns Road, Whitehorse, YT, Canada Y1A 4Y9 
e-mail: troy.hegel@gov.yk.ca

S.A. Cushman
US Forest Service, Rocky Mountain Research Station, 800 E Beckwith, Missoula, 
MT 59801, USA

J. Evans
Senior Landscape Ecologist, The Nature Conservancy, NACR – Science

F. Huettmann
EWHALE lab- Biology and Wildlife Department, Institute of Arctic Biology,
University of Alaska-Fairbanks, 419 IRVING I, Fairbanks, AK 99775-7000, USA 
e-mail: fffh@uaf.edu

S.A. Cushman and F. Huettmann (eds.), Spatial Complexity, Informatics, 273
and Wildlife Conservation
DOI 10.1007/978-4-431-87771-4_16, © Springer 2010



274 T.M. Hegel et al.

for a number of these approaches, referring to them as new is a misnomer since 
they have long been used in other fields and only recently have ecologists become 
increasingly aware of their usefulness (Hochachka et al. 2007; Olden et al. 2008).

The purpose of this chapter is to introduce and provide an overview of the 
 current state of the art of tools for modelling the distribution of species using 
spatially explicit data, with particular reference to mammals. We include statisti-
cal approaches based on data models (e.g. regression) and approaches based on 
algorithmic models (e.g. machine learning, data mining). Breiman (2001) refers to 
these approaches as the two cultures. Our goal is not to recommend one approach 
over another, but rather to provide an introduction to the broad range of tools 
available, of which many ecologists may not be familiar. Our descriptions of these 
approaches are admittedly brief due to the necessity of space, and indeed a complete 
review would require an entire book itself. We hope that our overview provides suf-
ficient information for a starting point to search out more detailed information for 
an analysis. Indeed, we strongly recommend those interested in using any of the 
tools described here to become familiarized with additional resources, which we 
have attempted to provide as references. We avoid a detailed discussion of animal 
and environmental data, as this is covered at length elsewhere in this book (Part III); 
nor do we delve in depth into the theory of animal–habitat relationships which is 
also previously discussed (Part II). We begin by outlining some basic concepts and 
definitions providing an ecological context for SDMs. Following this we briefly 
describe the types of data used for SDMs and how this affects model interpretation. 
Subsequently, we outline statistical modelling tools within the data model realm, 
followed by tools grouped under algorithm models. Finally, we provide an overview 
of a number of approaches for model evaluation.

16.2  Species Distribution Models 
in Their Ecological Context

16.2.1 The Ecological Niche

Ecological theory suggests that species exhibit a unimodal response to limiting 
resources in n-dimensional ecological space (Whittaker 1975; Austin 1985; ter 
Braak 1986). The volume of this ecological space in which an organism can survive 
and reproduce defines its environmental niche (Hutchinson 1957). Many SDMs 
are based on this niche concept, in which the niche is as an n-dimensional hyper-
volume, where axes represent n resources limiting an organism’s fitness. The niche 
is defined by the boundaries of these resources, with the volume itself representing 
the total range of resources providing for the average fitness of an organism to be 
zero or greater. That is, these boundaries identify the range in which a species can 
physiologically persist. Hutchinson (1957) proceeded to differentiate between the 
fundamental niche, described above, and the realized niche in which these resource 
boundaries are reduced due to inter-specific interactions (e.g. competition, predation). 
The fundamental niche can be thus viewed as the theoretical limits of resources 
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allowing an organism to persist, whereas the realized niche is the actual limits of 
resources in which an organism exists. For a sample of additional resources on the 
niche concept readers are referred to Chase and Leibold (2003), Kearney (2006), 
Pulliam (2000), Soberón (2007), and Soberón and Peterson (2005).

Quantification of niche space at the species level is a first step toward predicting 
the distribution, occurrence, or abundance of wildlife species with SDM approaches. 
Often, the large number of factors which compose the niche can be reduced to a 
relative few that explain much of the variance in species responses. This technique 
is heuristically powerful, but it can often obscure relationships between mechanism 
and response. Importantly, without clear linkages between cause and effect, reliable 
extrapolation to new conditions (e.g. different study areas, future predictions) is 
problematic. Therefore, it is preferable to identify limiting factors, which are key 
variables associated with species tolerances that explain substantial proportions of 
variance and make sense in terms of well-understood mechanisms.

16.2.2 Scale and Spatial Complexity

Biophysical gradients are clines in n-dimensional ecological space. In geographical 
space these gradients often form complex patterns across a range of scales. The 
fundamental challenge of using SDMs to predict habitat suitability and occurrence 
in complex landscapes is linking non-spatial niche relationships with the complex 
patterns of how environmental gradients overlay heterogeneous landscapes (Cushman 
et al. 2007). By establishing species optima and tolerances along environmental 
gradients, researchers can quantify the characteristics of each species’ environ-
mental niche. The resulting statistical model can be used to predict the biophysical 
suitability of each location on a landscape for each species. This mapping of 
niche suitability onto complex landscapes is the fundamental task required to predict 
individualistic species responses.

High levels of spatial and temporal variability are typically found in ecological 
systems. This variability in environmental conditions strongly affects the distribution 
and abundance of species and the structure of biological communities across the 
landscape. Details of the spatial and temporal structure of ecosystems are impor-
tant at a range of scales. There is no single correct scale of analysis for SDM. 
The fundamental unit of ecological analysis is the organism (Schneider 1994) and 
fundamental scales are those at which the organism strongly interacts with critical 
or limiting resources in its environment. Each species will respond to factors across 
a range of scales in space and time based on its life history strategy and ecological 
adaptations (Cushman et al. 2007). Ecological responses to environmental gradients 
must be quantified at scales that match the biological interactions of individual 
organisms. Analyses at inappropriate scales risk missing or misconstruing relationships 
between mechanisms and responses (Wiens 1989; Cushman and McGarigal 2003). 
Accounting for multiple interactions across ranges of spatial and temporal scales 
is the fundamental challenge to understanding relationships between species 
distributions and environmental variables in complex landscapes (Levin 1992; 
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Turner et al. 2003). Where data allow, it is advantageous to quantitatively measure 
the relationships among driving factors across a range of scales simultaneously to 
identify these dominant scales and quantify interaction of factors across scale (e.g. 
Cushman and McGarigal 2003). Ideally, ecological analysis will therefore not be 
between hierarchical levels, such as populations, communities, or ecosystems, but 
instead will focus on relationships among organisms and driving processes across 
continuous ranges of scale (Levin 1992; Cushman et al. 2007).

The literature surrounding SDM consists of a myriad of confusing terminology (Hall 
et al. 1997; Mitchell 2005; Kearney 2006). There has historically been two classes of 
SDMs: distribution models (DMs; Soberón and Peterson 2005) that predict the broad scale 
occurrence (i.e. range) of a species over large spatial extents (e.g. globally or continen-
tally), and habitat or resource selection models (RSMs) which predict the occurrence of 
an organism at finer scales, such as within a population’s range. In many instances the 
analytical process of developing either class of model is similar. Ecologically, the differ-
ence between the two is one of scale (Johnson 1980; Wiens 1989). The inferences gained 
and the type of variable used for each class of model may differ substantially because of 
the different ecological processes acting on the organism at each scale.

16.2.3 Non-equilibrium Dynamics and Disturbance

Disturbance is central to ecology (Cooper 1913; Leopold 1933; Watt 1947; Reiners 
and Lang 1979; Turner et al. 2003). Many ecosystems and populations are inher-
ently non-equilibrial or depend on disturbances to maintain community structure 
and ecosystem function (White 1979; Mooney and Godron 1983; Sousa 1984; 
Glenn and Collins 1992; Collins et al. 1998). Linking niche relationships of species 
to environmental variables at appropriate spatial scales is complicated by changing 
biophysical conditions through time, species invasion and succession, and the legacy 
of past disturbances (Cushman et al. 2007). Current environmental conditions will 
not fully explain existing population distribution and abundance due to lack of 
equilibrium or time lags in establishing new equilibria following disturbances. 
For example, Baker (1995) argued that the time required for fire regimes to adjust to 
climatic change may often exceed the time that climate is stable, creating a perpetual 
temporal disequilibrium between climate, fire regimes, fuel loads, and forest structure, 
and thus wildlife habitat related to these ecological processes. Integrating spatial and 
temporal complexity into SDMs requires mechanistic understanding of the key drivers 
that limit species distributions and abundances, including the spatial scales at which 
they operate and temporal lags in their effects (Cushman et al. 2007).

16.2.4 Population Ecology

Often of interest to researchers and managers is the relationship between habitat/
environmental variables and population abundance or density predicted via the 
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probability of occupancy or occurrence (e.g. Boyce and McDonald 1999; He and 
Gaston 2000). For instance, in the case of endangered species managers are often 
tasked with ensuring population persistence. Habitat improvement or protection 
is one tool to achieve this. While intuitively appealing, in practice the relationship 
between habitat quality and population density is not well defined, and demographic 
mechanisms linking habitat to density are needed (Van Horne 1983; Hobbs and Hanley 
1990). For example, areas that are attractive to dispersers yet are not suitable for repro-
duction may have high density yet do not provide the resources for a self-sustaining 
population. Pulliam (2000) notes that species may be present in unsuitable habitat 
and absent in suitable habitat and thus without a mechanistic understanding of what 
is occurring in a system, simple relationships between habitat and density can lead to 
incorrect inference regarding the importance of environmental resources to a species. 
Management based on this information could result in the enhancement or protection 
of habitat entirely unsuitable for a population’s (or species) long-term persistence.

With the recent development of individual-based RSMs, the mechanistic rela-
tionship between habitat and population density may be more forthcoming. How an 
individual uses the landscape (i.e. selects resources) should influence its individual 
fitness (e.g. Buskirk and Millspaugh 2006). Focusing on individuals allows for the 
development of the mechanistic relationships between environmental variables 
(habitat) and the demographic parameters affecting population growth. For example, 
McLoughlin et al. (2006) related lifetime reproductive success of red deer (Cervus 
elaphus) in Scotland to the selection coefficients from a RSM and McLoughlin 
et al. (2005) report a relationship between predation mortality and resource selection 
in woodland caribou (Rangifer tarandus caribou) in Canada. Studies such as these 
enable us to understand how habitat influences populations through its effect on 
demographic parameters. Boyce and McDonald (1999) suggested that population 
density could be predicted from environmental variables using RSMs. However, 
recent work by Johnson and Seip (2008) indicates this is tenuous and requires a 
number of assumptions (e.g. population at equilibrium) and that a range of factors 
can confound predictions. For example, they found that when populations were well 
below ecological carrying capacity, model predictions of density based on habitat 
were overestimated since there was ample suitable habitat with no animals present. 
Hence, caution is warranted when making any assumption regarding population 
density or abundance based on occupancy or occurrence measures.

16.3 Data Types, Model Types, and Interpretation

16.3.1 Data Terminology and Application

In developing SDMs, data can come in a number of forms and can represent 
spatially referenced occurrences (e.g. single locations) or abundances (e.g. animal 
counts). Counts, or densities, of animals within some defined area (e.g. 1 km2 pixel) 
can be modelled as a function of environmental characteristics within that area (e.g. 
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see Section 16.4.1.3). More traditionally however it is the binary variable, presence/
absence, which is modelled. Identifying the presence of a species, or individual, at 
a location is relatively straight forward. Of much greater issue is the identification 
or confirmation of absence (MacKenzie 2005). How does one know that a species 
truly is absent from an area and that its absence is not due to sampling issues? For 
example, can absence be inferred from a lack of sighting in just one sample? Indeed, 
true absences may be very difficult to detect in nature. Thus, if one has a sample of 
used (or presence) locations (we use the terms use and presence interchangeably) 
and a sample of absence locations in which the surety of absences is questionable, 
modelling approaches to differentiate and predict the two may be problematic.

If a random sample of presences and true absences are used as data, model 
predictions can be inferred as absolute probabilities (i.e. the absolute probability 
that a species will occur on some unit based on its environmental characteristics). 
Manly et al. (2002) classify such a model as a resource selection probability func-
tion (RSPF). Often, true absences cannot realistically be assumed and yet many 
modelling approaches require a binary dependent variable. One approach to deal 
with these situations is to use pseudo-absences. Pseudo-absences most often 
represent the habitat available for an organism to select. Thus, it is assumed that 
pseudo-absences inherently include both used and unused locations. While model 
estimation using use and pseudo-absence data (other terms include use/availability) 
occurs similar to a use/non-use approach, model predictions cannot be consid-
ered as absolute probabilities. Rather, model predictions are inferred as relative 
probabilities and hence different landscape units can be compared relative to one 
another, but not in absolute terms. Manly et al. (2002) term such models as resource 
selection functions (RSF) and note that a RSF is directly proportional to a RSPF by 
some unknown constant. Whereas predictions for landscape or habitat units can be 
quantified probabilistically from a RSPF, these same units should only be ranked or 
indexed based on predictions from a RSF. A third situation applicable to some model-
ling approaches is termed presence-only. These types of models (e.g. see ENFA 
and Maxent below) do not require the user to explicitly provide a binary response 
variable; rather, only the used locations are entered. The modelling procedure 
then generates an availability sample for comparison. However, model predictions 
and output must still be interpreted appropriately because used locations were not 
compared to true absences. Specific requirements and assumptions of each modelling 
approach are further described in subsequent sections. A number of resources are 
available describing data collection and study designs. Manly et al. (2002) and 
Thomas and Taylor (1990, 2006) are good resources for those interested in RSMs. 
Hirzel and Guisan (2002) discuss sampling strategies for habitat models (i.e. DMs) 
and Graham et al. (2004) discuss the use of museum-based informatics.

16.3.2 Model Types

For local or regional natural resource managers, RSMs are typically the type of model 
of interest, particularly for wide-ranging, generalist species [e.g. elk (C. elaphus), 
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coyotes (Canis latrans)], where landscape use in a specific area (e.g. for one population) 
is of management concern (e.g. Sawyer et al. 2006). SDMs have been used to inves-
tigate patterns of geographic invasion (Peterson 2003) and changes in species ranges 
due to climate change (e.g. Beaumont et al. 2007), and Guisan and Thuiller (2005) 
provide a thorough review of SDMs and their potential for broader ecological insight. 
Although ecologically the differences between SDMs and RSMs may be substantial, 
the types of data (i.e. use/availability, use/non-use) used for either class of model can 
be similar. Hence, the tools we describe here can often be applied to either class of 
model. However, based on the published literature ecologists developing SDMs seemingly 
use a much broader array of analytical tools from both the data- and algorithm-based 
approaches (e.g. Elith et al. 2006), than have ecologists developing RSMs who have 
adopted data-based models more frequently (e.g. Huzurbazar 2003).

The tools we discuss here are most applicable for correlative models (Soberón 
and Peterson 2005) rather than a physiological mechanistic approach (Guisan 
and Zimmermann 2000) since the data are typically animal observation data (e.g. 
presence/absence) in which occurrence is correlated with environmental condi-
tions which we infer has some relation to fitness, although this relationship is 
unspecified. Indeed, the tools we describe here are more appropriate for general 
distributional models (RSMs or DMs) rather than formal ecological niche models 
(Peterson 2006). Ultimately, it is up to the researcher to define the objectives of a 
study prior to any data analysis. While these analytical tools can certainly help with 
completing these objectives, they most certainly cannot define them.

16.4 Data-Based Models

16.4.1 Generalized Linear Models

Many of the first statistical approaches to species distribution modelling used 
generalized linear models (GLM; McCullagh and Nelder 1989; Guisan and 
Zimmermann 2000). Through the use of a link function (e.g. logit, log), GLMs 
allow a non-Gaussian response variable to be modelled as a linear function of 
some predictor variable(s). A linear predictor Xb, where X represents a vector of 
predictors and b represents a vector of estimated parameters plus an intercept (a), 
is transformed via the link function to predict a response. For example, the log link 
function is often used with count data and the Poisson distributional family, and 
model predictions (m) are estimated by:

 ( ) ( )( )µ µ= β = βeexp which is equivalent to log ,X X  (16.l)

( ) ββ =where exp e .XX

Nonlinear relationships can be modelled through the use of quadratic, cubic, or 
higher-order terms. Rather than assuming that the error term of the model is 
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normally distributed, as in ordinary least-squares linear regression, GLMs allow 
errors to be distributed following a number of other distributional families including 
binomial, Poisson, or negative-binomial; hence GLMs are parametric models. 
Model parameters (coefficients) are estimated via maximum likelihood and 
represent the change in the response following a one-unit change in predictor. 
Parameters in models with multiple predictors are interpreted the same way, but 
with all other predictors held constant.

Selecting between two, or among multiple, models with differing specifications 
of predictor variables is termed model selection. Two nested models (i.e. when one 
model represents a subset of another) can be compared using a likelihood-ratio test 
(LRT). Information-theoretic (IT) criteria (e.g. AIC; Burnham and Anderson 2002) 
allow for simultaneous multi-model comparison of both nested and non-nested 
models and avoids the need to carry out many pairwise LRTs, which are only valid 
for nested models. Further, IT criteria such as AIC allow models to be weighted 
and ranked relative to the entire set of models under consideration. From these 
weights, models can be averaged and the relative influence of individual predictors 
compared. Model selection using IT criteria is based on the principle of parsimony. 
Models with higher log-likelihoods indicate they fit the data better than those with 
lower log-likelihoods. However, any increase any predictors will also increase the 
log-likelihood, even if only by a minute amount. Therefore, IT criteria penalize 
a model based on its number of estimated parameters. Thus balancing between 
an overfit model (i.e. too many predictors) with one having too few predictors to 
be meaningful and not explaining sufficient variability in the data. Burnham and 
Anderson (2002) discuss a small sample size version, AICc, when the ratio of the 
number of observations (data) to the number of estimated parameters is <40, and 
argue that this should always be used. They also describe a quasi-AIC (QAIC) 
which they suggest should be used when overdispersion (i.e. greater variance than 
expected) in the data is suspected, common in count data (Gelman and Hill 2007).

Models not meeting the assumptions of GLMs (McCullagh and Nelder 1989) 
may result in biased or overly optimistic (i.e. deflated standard errors) estimates. 
Perhaps the most critical assumption is that of independent observations. Roughly, 
this refers to each observation contributing equally to the model. If two or more obser-
vations are not independent (i.e. correlated in some way) due to, for example, temporal 
sampling issues (e.g. telemetry observations collected close together in time), or 
repeated observations from the same individual in which those data are correlated 
to a greater degree than data across individuals, parameter estimates may be biased 
and measures of precision may be biased low (Dormann 2007). For instances in which 
data can be grouped, say within individuals or groups, there are methods to deal with 
this lack of independence such as robust sandwich estimators (e.g. Nielsen et al. 
2002), however mixed models (see below) may be a better option (Gillies et al. 2006), 
particularly when these groups are unbalanced (i.e. unequal sizes). Collinearity 
between predictor variables can also seriously affect estimates through biased 
parameters and deflated standard errors. Prior to inclusion of predictor variables in 
a model, their correlation should be assessed and if collinearity is detected, one of 
the variables removed. The choice of collinearity threshold is somewhat arbitrary. 
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A correlation of r > 0.9 should be a serious concern, and a correlation of r > 0.7 
should be examined closely. Variance inflation factors (VIF; VIF = 1/1−R2), or 
tolerance (1/VIF), can be used after model fitting to assess how much the variance 
of an estimate is inflated due to collinearity among variables in the model. One rule 
of thumb indicating strong collinearity is VIF > 10 (Chatterjee and Hadi 2006), 
which is equivalent to r = 0.95.

16.4.1.1 Logistic Regression

Ordinary logistic regression (OLR; Hosmer and Lemeshow 2000) has been the 
traditional workhorse for estimating SDMs (e.g. Guisan and Zimmermann 2000, 
Guisan et al. 2002). Logistic regression is an intuitive approach as it uses binary (e.g. 
presence/absence) data as the dependent variable. The mean of these binary data is 
modelled as a binomial probability distribution and the relationship between some 
predictor(s) (e.g. landscape variables) and the probability of an event (e.g. an occur-
rence) is linearized through the use of the logit link function (16.2), which ensures the 
transformation of Xb to a probability of occurrence (m) ranges between 0 and 1.

 ( ) ( )( )µ = β + βexp / 1 expX X  (16.2)

By definition, OLR assumes the use of the logit link function; however in a GLM 
framework other link functions are available such as the probit, complimentary 
log–log, and log–log. The majority of SDMs have used the logit link function and 
hence we restrict our discussion to logistic regression.

When a random sample of true presence/absence data are used, m is an absolute 
probability (i.e. the model is a RSPF) and inferences and predictions based on 
estimated model parameters are straight forward. In situations where a sample of 
used and a separate sample of unused (or available) locations are the dependent 
variable, a case-control approach is appropriate (Manly et al. 2002; Keating and 
Cherry 2004). Since the dependent data were not collected as one random sample 
representative of the overall population, an adjustment must be made to Eq. (16.2) 
to account for sampling fractions (i.e. the proportion of used locations in the sample 
relative to the total number of used locations in the population). Without this adjust-
ment probabilities will be biased (Keating and Cherry 2004). In practice, knowing 
these sampling fractions in an ecological setting may be virtually impossible. 
Without knowing these sampling fractions the intercept parameter cannot be esti-
mated (Manly et al. 2002), or more specifically, the intercept parameter estimated 
in a GLM framework is biased and should not be used.

When presence/pseudo-absence (use/availability) data are used, m is a relative 
value (i.e. the model is a RSF). Manly et al. (2002) suggest the use of an expo-
nential model (16.1) as a recommended form of the RSF. They suggest estimating 
model parameters (b) by logistic regression and using them in the exponential RSF 
rather than the logistic model (16.2). This assumes Xb ≤ 0 to yield a valid prob-
ability model. However, because sampling fractions are not known, the estimated 
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intercept parameter is not valid and therefore not included in the RSF. Keating and 
Cherry (2004) critiqued the use of OLR for use/availability RSMs and noted in their 
simulation study that: RSFs were not always directly proportional to RSPFs, RSFs 
did not always rank resource units properly, parameter estimates obtained via OLR 
do not always result in Xb ≤ 0, and even small levels of contamination (i.e. numbers 
of used locations in the availability sample) can yield invalid parameter estimates. 
Johnson et al. (2006) demonstrated empirically that: the likelihood for a use/
availability model is valid and is closely related to a logistic discriminate function 
and hence yields valid log-likelihoods and parameter estimates, RSFs are generally 
proportional to RSPFs with relatively high (>50%) levels of overlap (i.e. when a 
used location is found in both the used and available samples), and parameter 
estimates were generally stable with high (∼50%) levels of data contamination.

The decision to adopt a use/non-use versus a use/availability approach, and 
hence develop a RSPF or RSF respectively, is not trivial and has both biological 
and analytical consequences. Non-use implies that a site or location was sampled 
and an organism was not present. The justification of assuming the non-use of a 
site is important as the absence of an organism may be due to sampling effort or 
bias rather than true lack of occurrence. Indeed, particularly for RSMs, it is diffi-
cult to envision many instances in which true absence can definitively be assumed 
(MacKenzie 2005; see Section 16.4.1.4 below for methods to deal with detection). 
The use of logistic regression assumes that the detection of an organism is perfect, 
and hence the differentiation between RSFs and RSPFs does have implications. 
Since predictions from a RSF are relative, maps, for example, can only identify 
relative rankings of suitable habitat. To conceptualize this, imagine a hypothetical 
RSF with the only predictor being categories from a landcover map. If category z 
is chosen as the reference category during maximum likelihood estimation, the 
parameter estimates for all other categories are interpreted relative to it (Hosmer 
and Lemeshow 2000). After removing the intercept from the linear predictor and 
calculating m in category z, the result is zero, or more specifically there is no result 
as there would be nothing to calculate (i.e. it is nonidentifiable; Lele and Keim 
2006). Treating this value as a true probability could have serious implications from 
a management perspective.

Parameters estimated from logistic regression are simple to interpret and can 
be described in two ways. First, the parameter value (b

i
) can be used to identify the 

change in m (16.2) with a one-unit change in the value of the independent variable i. 
Parameters can also be interpreted as an odds ratio, exp(b

i
). The odds ratio is the 

factor by which the odds of an event occurring changes with a one unit change in 
the independent variable i. The choice of how one interprets these parameters is 
largely based on the research objectives.

We have devoted substantial space to the discussion of logistic regression 
models largely because they have been, and still are, used frequently by ecologists. 
As will be evident in the proceeding sections, many newer approaches accommo-
date many of the limiting issues with OLR. Further, many of the details presented 
here are applicable for other data-based models, such as collinearity, independence, 
and model selection.
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16.4.1.2 Conditional Logistic Regression

An alternative to OLR is the use of conditional logistic regression (CLR). 
CLR models use data that are matched, in which a used (presence) location is 
specifically matched to a number of unused, or available, locations to create 
a group (stratum), and results of the model are conditional upon each group. 
These approaches have been used to deal with situations in which habitat avail-
ability changes during the course of a study (Arthur et al. 1996), and to deal 
with potential temporal autocorrelation arising from data collected from GPS 
radio-telemetry data (Johnson et al. 2004). Such models are known as discrete 
choice models (DCM; Manly et al. 2002), conditional fixed-effects logistic 
regression (CFE; Johnson et al. 2004), or case-control models (Pearce and 
Boyce 2006). Johnson et al. (2004) used CFE to develop a RSM for caribou in 
northern British Columbia, Canada. They created a group for each telemetry 
observation, with 10 random locations representing available resources. These 
ten random locations were generated within a circle whose area was determined 
by the location of the previous observation. While they used ten locations, this 
is somewhat of an arbitrary decision, as is any sample size selection for pseudo-
absence data. This approach would be most useful when some inherent lack of 
independence in the data is present; common with GPS radio-telemetry data. 
Interpretation of model coefficients is the same as for OLR, yet may be viewed 
as more reliable given that the natural clustering in the data is accounted for. 
In CFE, there is no intercept estimated since the model is conditioned on each 
stratum. Arthur et al. (1996) developed a RSM for polar bears (Ursus mar-
itimus) that was essentially a DCM (Manly et al. 2002) which accounted for 
changing sea ice availability over time. The application of these types of models 
in which availability is matched to a specific used location may be especially 
well suited for modelling species distribution in changing environments. Some 
detailed references for those interested in CLR models include Cooper and 
Millspaugh (1999), Craiu et al. (2008), Manly et al. (2002), McCracken et al. 
(1998), and McDonald et al. (2006).

16.4.1.3 Count-Based Models

An alternative to modelling a binary response, as in logistic regression, the 
abundance (counts) of animals or observations can be modelled as a function of 
some environmental features (Pearce and Ferrier 2001; Potts and Elith 2006). 
GLMs readily provide for this by using either a Poisson or negative-binomial 
distribution, typically with a log link function (McCullagh and Nelder 1989; 
Long 1997). Negative-binomial models are often used over Poisson models 
because they estimate an overdispersion parameter. Manly et al. (2002) describe 
a log-linear modelling approach in which counts of observations are recorded in 
categorical habitat types. The probability of use of (m) an individual habitat type 
(i) can be predicted by:
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 ( )µ B exp X ,i i i i= β  (16.3)

where B
i
 is the overall proportion of habitat type i available in the study area. 

Counts of observations can be related to continuous environmental variables also. 
Millspaugh et al. (2006) used counts of observations from GPS radio-collared 
elk within randomly placed units (circles or squares) on the landscape and used a 
Poisson regression model to estimate an RSF. They used an offset term (a variable 
with a coefficient fixed to 1.0) of the total number of observations across the entire 
landscape to ensure that model predictions were probabilities rather than counts of 
observations. In many ecological datasets there can be a high frequency of zeros 
(Martin et al. 2005). Because these data may not conform to the assumptions of 
the Poisson or negative-binomial distributions, a number of approaches have been 
developed to deal with these extra zeros including zero-inflated and hurdle models 
(Welsh et al. 1996; Fletcher et al. 2005; Potts and Elith 2006). Nielsen et al. (2005) 
compared logistic regression predictions of occupancy with predictions from a 
zero-inflated model of moose (Alces alces) abundance and found that probability 
of occurrence predicted abundance well at low densities. However, they concluded 
that different environmental factors were involved in predicting distribution and 
abundance at higher densities. Potts and Elith (2006) provide a good introduction 
of count-based models in an ecological context and Long (1997) and Cameron and 
Trivedi (1998) provide good statistical overviews.

16.4.1.4 Resource Utilization Functions

A relatively new approach for modelling species distributions is the resource 
utilization function (RUF; Hepinstall et al. 2004; Marzluff et al. 2004; Millspaugh 
et al. 2006). The RUF incorporates more broad-scale space use patterns (e.g. home 
range) into the development of a RSM. Its benefits include not requiring an unused/
availability sample which may be difficult to adequately identify, and the spatial 
accuracy of animal locations may not be as critical because of the smoothing nature 
of space-use estimators (Rittenhouse et al. 2008). With this approach a utilization 
distribution (UD; Kernohan et al. 2001) must first be estimated which uses the 
spatial location of animal observations to estimate the intensity (or probability) of 
use within, for example, an animal’s home range. Hence, the location data for this 
approach must be suitable to adequately estimate a UD. The UD estimates this 
intensity of use based strictly on the spatial distribution of the observations and not 
any underlying environmental features. Two methods for estimating UDs include 
kernel approaches (Worton 1989; Seaman and Powell 1996) or local convex hulls 
(Getz and Wilmers 2004; Getz et al. 2007).

A grid is created with each pixel value representing intensity. With the UD esti-
mated, resource (landscape) variables under each pixel are extracted, much in the 
same way in which the values of these variables would be extracted from point data. 
These resources can subsequently be related to intensity of use in a number of ways 
(Millspaugh et al. 2006). Multiple linear regression can be used with the intensity 
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values for each pixel as the dependent variable and the underlying resources as 
predictors and the spatial autocorrelation among pixels accounted for (Marzluff 
et al. 2004). Jachowski (2007) used this approach to develop a RUF for endangered 
black-footed ferrets (Mustela nigripes) in relation to prey distribution. Another 
approach is to categorize the UD values into ranks (i.e. an ordinal measure) and 
use polytymous logistic regression to model these ranks, rather than the actual UD 
values (Rittenhouse et al. 2008).

Another approach is to use the estimated UD in a compositional analysis 
(Aitchison 1986; Aebischer et al. 1993; Millspaugh et al. 2006) which is a multivar-
iate analysis of variance. Under this approach, habitat use is based on the proportion 
of each habitat type within the UD, with each habitat type weighted by the intensity 
of use as determined by the individual values of the UD pixels. Millspaugh et al. 
(2006:391) term this a “weighted compositional analysis” and provide an example 
using radiocollared female elk. These animals exhibit non-random space use within 
their home range which emphasizes the rationale for a weighted compositional 
analysis in which even use within a home range is not assumed, which is the case 
with the original compositional analysis approach described by Aebischer et al. 
(1993). Each habitat type within the UD (i.e. home range) is weighted by the overall 
sum of their associated UD intensity values.

16.4.1.5 Occupancy Models

An assumption with models using presence/absence data is that both presences 
and absences are detected perfectly. This is a rather naïve assumption though, that 
virtually gets violated in nature every single time (Buckland et al. 2001; MacKenzie 
et al. 2002). While presence of a species or individual at a site is relatively easy to 
confirm (e.g. it was directly observed), absence is much more difficult to assume 
because non-detection may be a result of either the sampling approach (i.e., false 
negatives) or that absence was indeed true (MacKenzie 2005). Failure to account for 
imperfect detection of absences can bias model parameter estimates and subsequent 
inferences (Gu and Swihart 2004; MacKenzie 2006; Tyre et al. 2003). MacKenzie 
et al. (2002) introduced an approach (occupancy models) to model occupancy 
rates when detection probability is less than perfect, which is closely related 
to mark-recapture models. While OLR models the probability that a site will 
be occupied based on some covariate(s) assuming perfect detection, occupancy 
models model presence as well as the probability of detection (MacKenzie et al. 
2005) thus reducing bias induced by false-negatives. Logistic regression can be 
used to estimate a RSM of species presence or absence while taking into account 
the detectability of a certain resource unit (MacKenzie 2006). Of note is that to 
estimate detection probability, a site must be visited (i.e. sampled) more than once 
and that for this approach a designed study may be necessary rather than using 
existing observational data in which it may rarely be the case that a site has been 
visited multiple times. MacKenzie and Royle (2005) and Bailey et al. (2007) outline 
sampling strategies and recommendations for designing a site occupancy study. 
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MacKenzie et al. (2005) provide a comprehensive overview of occupancy models 
including study design, statistical estimation, and ecological inferences, and is a 
necessary resource for anyone undertaking this modelling approach. Donovan and 
Hines (2007) provide an on-line tutorial and instruction manual for implementing 
occupancy models. MacKenzie (2006) provides a detailed description of using 
occupancy models to develop RSMs with specific reference to pronghorn antelope 
(Antilocapra americana). Ball et al. (2005) use an occupancy modelling approach to 
evaluate an existing habitat model for Palm Springs ground squirrel (Spermophilus 
tereticaudus chlorus). Occupancy models can be estimated using the wide-ranging 
mark-recapture software Program MARK (Cooch and White 2007) or the specially 
designed program Presence (Mackenzie et al. 2002).

16.4.2 Quantile Regression

Another approach for SDMs not having received much attention (Austin 2007) is 
quantile regression, which has its roots in econometrics (Koenker 2005). Rather 
than assuming that the relationship (i.e. slope) between observations and predictors 
is constant across the range of predictor values (i.e. environmental space), quantile 
regression assumes this relationship changes over different ranges (i.e. quantiles) 
of the predictors (Cade and Noon 2003, Cade et al. 2005). Vaz et al. (2008) used 
this approach in the upper boundaries of organism–environment relationships to 
identify limiting factors for distribution and provide a modelling strategy for using 
quantile regression. These semi-parametric models estimate unique parameters 
relating environmental features to a response across different quantiles of the data. 
Thus, for each quantile of the data a separate coefficient is estimated; having specific 
fits for specific data sections, this can be somewhat equated with approaches used 
by MARS and even mixed-models (see further below). Austin (2007) discusses 
how comparison of these quantile-specific coefficients can be used to assess lim-
iting factors and environmental gradients. These models are an extension of linear 
least-squares models and are most readily fit to continuous response data; however 
Koenker (2005) describes approaches to fit binary and count data, as well as nonlin-
ear models. Additionally, because the data are partitioned into quantiles, a sufficient 
number of observations must be present in each quantile to adequately estimate its 
respective parameter and therefore quantile regression models may be difficult to 
fit with sparse data. Model parameters can be interpreted as in least-squares linear 
models. More applications are needed to assess the validity and specific niche 
where these model types can be used for SDMs.

16.4.3 Generalized Additive Models

An approach similar to GLMs, yet more flexible, are generalized additive models 
(GAM; Hastie and Tibshirani 1990, Wood 2006), which have also been used 
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extensively for developing SDMs (Guisan et al. 2002). While GLMs are somewhat 
restrictive in their assumption of a linear relationship between response and predictor 
variables, GAMs allow for more complex relationships to be estimated, using 
cubic or thin-plate regression splines, and do not assume a linear relationship. 
Tensor-product splines can be used to estimate smooth functions of interactions 
of predictors. Like GLMs, GAMs can use binary data (for SDMs they may 
use presence/absence or use/non-use data) within the binomial family, and link 
functions such as the logit. GAMs can also be used to fit non-binary data and can 
be used with Gaussian continuous data, Poisson distributed count data, and zero-
inflated data (Barry and Welsh 2002). However, unlike GLMs which have a single 
parameter for each predictor variable, GAMs estimate a non-parametric, smooth 
function for one or more of the predictors in a model. A GAM with no smooth 
functions of any predictor variables is identical to a GLM. GAMs can include both 
linear and smooth terms in a model, and selection among models with differing 
specifications of predictors can be used as with GLMs (e.g. AIC).

When fitting GAMs, the primary decision by the analyst is how smooth should 
the relationship be between outcome and predictor. The smoothest relationship is 
a simple straight line (df = 1) and as the response tracks values of the predictor 
variables more closely, the function becomes less smooth (i.e. more complex) and 
the degrees of freedom rise. The main caution with using GAMs is to avoid over-
fitting the data. This essentially becomes a model selection problem of choosing 
the effective degrees of freedom for each smooth term which can be computation-
ally intensive (Wood and Augustin 2002). Hastie and Tibshirani (1996) describe an 
approach called BRUTO which uses a back-fitting procedure using cross-validation 
to identify not only the variables to remain in the final model, but also the effective 
degrees of freedom (i.e. smoothness) for each variable. Wood and Augustin (2002) 
discuss an approach using penalized regression splines to carry out integrated 
model selection through generalized cross-validation to select the appropriate 
degree of smoothing. Interpreting and communicating the results and parameter 
estimates from a GAM is more challenging than GLMs. If inference is the primary 
objective of the SDM, graphical displays of the smooth function relating predictor 
to response(s) may be the most useful approach as this visual representation is 
likely easier to understand than would a written description, particularly for com-
plex relationships. GAMs do not provide coefficient estimates and standard errors 
for smoothing functions. Rather, the significance of the function itself is evaluated. 
Spatial predictions for use in a GIS are most readily obtained within the statistical 
package used to estimate the GAM, and subsequently exported to the GIS, rather 
than attempting to apply the GAM model directly within a GIS as is readily carried 
out with GLM model parameters.

16.4.4 Bayesian Analysis

Bayesian statistical approaches (e.g. Gelman et al. 2004) are becoming increasingly 
more common in ecological research (Clark 2005; Ellison 2004) and species 
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distribution modelling more specifically (e.g. Gelfand et al. 2006; Latimer et al. 2006). 
All of the more traditional frequentist-based approaches described thus far in this 
section can be analyzed using a Bayesian approach. For example, Wintle and 
Bardos (2006) used a Bayesian autologistic regression model to model habitat 
relationships of the yellow-bellied glider (Petauroides australis) in the presence of 
spatially autocorrelated animal observation data, Thomas et al. (2006) developed a 
Bayesian discrete-choice model to investigate caribou resource selection with cow-
calf pairs treated as random effects (see Section 16.4.5), and La Morgia et al. (2008) 
examined potential impacts of human land use to roe deer (Capreolus capreolus) 
habitat using GAMs in a Bayesian setting. Martin et al. (2005) describe a Bayesian 
approach, and provide code, for a zero-inflated count model. Software BayesX 
(Brezger et al. 2008) provides a software environment for analysing structured 
additive regression models such as GAMS, semiparametric splines, and geographi-
cally weighted regression (GWR), in a Bayesian framework.

One of the difficulties in Bayesian data analysis is in empirically defining 
the posterior distribution of the model parameters. The improvement of Monte 
Carlo techniques have made the posterior distributions of Bayesian models possible 
to approximate from flat (i.e. uniform) prior distributions. Historically, the 
primary criticism of Bayesian approaches is that a model converges on a 
distribution defined by expert opinion, thus returning an answer that was 
pre-defined. By starting a Bayesian model with flat priors and converging on 
an optimal distribution given the data, we can ask the question; what is the 
probability that the resulting model will arrive at the observed result? A flexible 
approach for this type of analysis is Markov Chain Monte Carlo (MCMC) 
with Gibbs Sampling (Casella & George 1992). Gibbs Sampling generates 
samples from the joint probability of two or more variables, thus approximating 
the joint distribution. This approach is useful when the joint distribution is not 
explicitly known. This algorithm is well adapted to sampling the posterior distri-
bution along a MCMC. This approach is implemented in software WinBUGS 
(Lunn et al. 2000).

Bayesian approaches can be valuable because of their flexibility in building 
complex (e.g. hierarchical) models with multiple random effects, their ability 
to incorporate multiple probability distributions, and their ability to incorporate 
prior information about factors influencing a species distribution (Gelman et al. 
2004). Kynn (2005) developed software (Elicitor) to generate prior distributions 
from expert opinion for use in Bayesian species distribution modelling. While 
there are many advantages to adopting a Bayesian approach, it can be challenging 
and likely not recommended for those new to species distribution modelling 
or those without a particularly strong background in statistics. Indeed, there 
are important and non-trivial differences both philosophically and inferentially 
between frequentist and Bayesian approaches that should be recognized prior 
to embarking on this path (Ellison 2004). McCarthy (2007) provides a good 
introductory text with an ecological focus, while Gelman et al. (2004) provide a 
thorough technical overview.
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16.4.5 Random Effects Models

For data collected opportunistically or in a field setting where few variables can be 
controlled for, unobserved heterogeneity (i.e. variability) can be present (Gelman 
and Hill 2007). This may result from variability across year in which some source 
of annual, but unknown, variability may affect the occurrence of a species. In a 
radio-collar telemetry study, the individual may be the source of this heterogeneity 
and while some features of the sampled individuals may be possibly included in the 
modelling framework, other unmeasurable factors (e.g. genetic) may be at play and 
be influencing resource selection by that individual. In these situations where some 
factor may be affecting the process being measured, random effects (or mixed models) 
may be employed (Pinheiro and Bates 2000; Skrondal and Rabe-Hesketh 2004; 
Gelman and Hill 2007). In these models, the unmeasurable factors are treated as a 
random variable in which the individual levels of that variable (e.g. specific years) 
are randomly drawn from the overall distribution of “year”. It is possible to have >1 
random effect which can either be independent of one another (i.e. cross-classified) 
or can be hierarchically organized (e.g. individual within group within the popula-
tion). Models are termed “mixed” when they incorporate both random and fixed 
effects. Fixed effects are those that are unchanging across different levels of the 
random effect (i.e. the slope of the relationship between predictor and response 
is constant). Random effects models are particularly valuable for identifying the 
source of unobserved variability and subsequently accounting for it, thus reducing 
the overall variance of the model. Random effects can be specified as a random 
intercept so that the relationship between predictor and response is constant, but the 
y-intercept is shifted up or down for different levels of the random effect. Random 
effects can also be specified as random coefficients such that for each level of the 
random effect, the slope of the relationship between response and predictor is dif-
ferent. Mobæk et al. (2009) used a mixed modelling approach to examine habitat 
selection by sheep (Ovis aries) across different levels of forage productivity and 
sheep stocking density. In their analysis they considered two random effects; 
individual sheep hierarchically nested within an enclosure.

Random effects models can be used to explicitly account for lack of independ-
ence, for example within telemetry points from the same radio-collared individual. 
They can also deal with unbalanced sample designs, for example where some 
years have more data collected than others. Gillies et al. (2006) describe how ran-
dom effects models can be used to deal with these issues. Further, because random 
effects are assumed to be drawn from a probability distribution, these models can 
be generalized beyond the data used to train them. That is, by treating year as 
a random effect, the model can be used for inference and prediction to years not 
included in the modelling process. This also saves degrees of freedom for param-
eter estimation since each random effect (e.g. individual) does not have a unique 
parameter estimated for it, which in the presence of numerous random effects could 
prove exceptionally large. Given that most data used for SDMs are collected in 
the field, often opportunistically, random effects models may be a valuable tool to 
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account for and quantify unobserved variability in the data. Further, examining the 
random effects parameters themselves can be useful for gaining greater ecological 
insight into processes driving these patterns and can be useful for designing future 
study to investigate these in a more detailed fashion (Afshartous and Wolf 2007).

16.4.6 Ecological Niche Factor Analysis (ENFA)

In situations where species absence data are unavailable, poor, or irrelevant, and 
data consist of presence-only records, Hirzel et al. (2002) developed a multivariate 
approach, and the Biomapper software, called ecological niche factor analysis 
(ENFA) to estimate habitat-suitability. Conceptually, the principle behind ENFA is 
relatively straight forward. The distribution of some environmental, non-categorical, 
predictor variables where the species is present is compared to, and is a subset of, 
the distribution of those same predictors across the entire (i.e. available) study area 
(see Hirzel et al. 2002:Fig. 1). Predictor distributions are normalized prior to analysis 
through a Box-Cox transformation. Four parameters are required: ms and ss are 
the mean and standard deviation of the predictor distribution where the species was 
present respectively, and mG and sG are the mean and standard deviation of the 
predictor distribution for the overall (global) region respectively. Marginality (M) is 
the absolute difference between the means of the two distributions for a predictor. 
It is divided by 1.96*sG to remove any bias from the global distribution and generally 
ensures M ranges between 0 and 1. Specialization (S) is the ratio of sG:ss and 
measures the range of use of a predictor relative to the overall range of that predictor. 
That is, a species that used some environmental feature(s) within a very narrow 
range of its values is considered specialized. An important consideration is that 
M and S are dependent upon how the global area is defined and will change with 
different definitions of the study area, thus inferences are relative to how this study 
area is defined. Sample sizes are dependent on the variability of the predictors in 
the area since it is most important to obtain accurate distributions of predictors. 
With highly variable environments this may require substantial data. For more 
homogeneous environments, fewer data may be required.

To incorporate multiple predictors in multivariate space, principal components 
analysis (PCA) is used in which the first axis (factor) accounts for M across 
all predictors, and subsequent axes maximize S. Suitability for a pixel (cell) 
is estimated by comparing its location on the PCA factors (axes) to the total 
number of cells that are as far or farther from the median value of the axes, and 
then normalized to range between 0 and 1 (Hirzel et al. 2002). A good example of 
the application of ENFA is provided by Sattler et al. (2007) in their model of two 
bat (Pipistrellus spp.) species. Hirzel et al. (2004) describe an approach, which is 
implemented in Biomapper, to convert categorical data into quantitative distance 
and frequency metrics required by ENFA. Biomapper also produces spatially 
explicit data layers for visualization and use in a GIS. Additionally, the R software 
package ‘adehabitat’ (Calenge 2006) also carries out ENFA.
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16.4.7 Generalized Dissimilarity Modelling

A relatively recent approach to SDM is the use of generalized dissimilarity modelling 
(GDM; Ferrier et al. 2007) which was initially used to model turnover in species 
diversity in community ecology (Ferrier 2002). Observed rates of turnover (change) 
between individuals units (e.g. pixels, land units) are compared and modelled as 
a function of environmental characteristics of those units. Because many pairwise 
comparisons can be made, GDM uses a matrix regression approach in which an n × 
n matrix of pairwise dissimilarity measures, for n units, represents the environmental 
predictor variables (non-categorical), and a matrix of the pairwise difference 
in species turnover the response variable. The GDM approach does not assume 
the relationship between response and predictor variables is linear and models 
two types of non-linearity. First, GDM assumes that the separation between the 
response dissimilarity between pixels and the environmental variables is 
curvilinear, rather than linear as in a traditional regression, and uses appropriate 
link and variance functions to model this. Second, GDM assumes that the rate 
at which change occurs is not constant and in fact changes along some environ-
mental gradient. To model this non-linearity GDM uses splines to fit transforming 
functions to each environmental variable. Elith et al. (2006) extend this approach 
beyond modelling species diversity to modelling species distribution. To do this, a 
kernel regression is used on the output of the transformed environmental variables 
from the GDM to predict the likelihood of species occurrence. Using presence/
pseudo-absence data with GDM should be considered cautiously (Ferrier et al. 
2007). Statistical significance testing for choosing when to include (or drop) a 
predictor is carried out using matrix permutations (see Ferrier et al. 2007). Ferrier et al. 
(2007) have also developed the R software package ‘gdm’ for estimating GDMs.

16.4.8 Multivariate Adaptive Regression Splines (MARS)

Friedman (1991) introduced multivariate adaptive regression splines (MARS) as a 
flexible regression approach to model nonlinear relationships and can be used for 
both binary and continuous responses, and continuous and categorical predictors. It 
also bridge’s Breiman’s (2001) two modelling cultures, as it is a data mining tool, 
yet still uses a regression-based framework. It has recently been used to develop 
SDMs but is not yet commonly applied (Leathwick et al. 2005, 2006). MARS builds 
piecewise-linear relationships between the response and predictors, with differing 
slopes in different regions of the predictor variable space, with changes in slope at 
estimated knots. For each knot there is a pair of basis functions which describe the 
slope of the relationship on either side of it. Multiple knots can be present for a 
single predictor. To estimate the model, MARS first fits an overly complex model 
(forward-selection) with too many ‘knots’, including all predictors, which minimizes 
the residual error. MARS also can estimate parameters for interactions between 
two or more predictors, which can provide for an exceptionally complex model, 
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especially considering that interactions may occur only over certain ranges of the 
predictors. These knots are subsequently removed (i.e. pruned) such that those 
knots providing little information to the model are removed (backward-selection). 
Variable (predictor) selection occurs here such that predictors providing little infor-
mation are removed from the model. The final model has the lowest generalized 
cross-validation measure of mean squared error. In this way MARS differs from 
GLMs and GAMs in that model estimation and selection occur simultaneously, 
and a multi-model comparison need not be undertaken by the modeller, as MARS 
itself carries this out. Due to the underlying optimization algorithm, MARS also 
has a great, but yet rarely applied, capability to assess model selection questions 
with linear regression settings. Details of predictor interactions can also be 
specified such that, for example, only pairwise interactions may be considered, or 
that certain predictors cannot interact. Therefore, MARS is also a effective tool to 
assess, and describe specific interactions; a problem that greatly plagues the GLM 
models. Specific tuning parameters that must be specified include the maximum 
number of basis functions initially allowed during forward-selection, which should 
be high (Salford Systems 2001) and the minimum number of observations between 
knots which controls the level of smoothing. Larger spaces between knots results in 
smoother models. Leathwick et al. (2006) compared MARS and GAM models and 
reported similar results between the two approaches, and Elith et al. (2006) reported 
that MARS, with and without predictor interactions, performed modestly compared 
to other approaches. The complexity of a MARS model is related to the amount 
of data used for training it. With sparse data, complex relationships will not be 
able to be estimated (Wisz et al. 2008). MARS appear to be less strong when used 
to predict out of its training space (Huettmann, unpublished). MARS’s strength 
appears to lie in its ability to model multi-responses for community-type data in 
which it shows very strong performance (Elith et al. 2006; Elith and Leathwick 
2007; Leathwick et al. 2006) and a wide array of applications (Huettmann 2007 for 
marine applications).

16.5 Algorithm-Based Approaches

16.5.1 Neural Networks

Artificial Neural Networks (ANN) is a family of statistics that consists of an 
interconnected group of processing nodes (neurons) that can be used in non-linear 
statistical computation. ANN’s are adaptive in nature, changing structure based on 
input that flows through the network. Each node in the network performs a simple 
task and weights between nodes lend structure to the entire network. Learning is 
based on cost constraint and gradient-decent which is an optimization approach 
to find the local minimum. Learning algorithms within ANN’s are highly variable 
and include Evolutionary models, simulated annealing, and nonparametric models. 
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Neural Networks have been around in the machine learning community since the 
1960s onwards. With mathematical and software progress, a push for ANNs came 
in the 1980s. Some ecological applications have used Neural Networks already for 
SDMs and elsewhere (Özesmi and Özesmi1999, Yen et al. 2004). However An 
unsupervised version of a neural net, Self Organizing Maps (SOM) is gaining 
popularity in cluster analysis and visualization (Kohonen 1995). SOM’s utilize 
vector weights and distances between neurons to project the n-dimensional space of 
the input data to a 2 or 3 dimensional map, while maintaining the topology. SOM’s 
are akin to multidimensional scaling and are a robust approach to both unsupervised 
clustering and visualization of high dimensional data.

16.5.2 Classification and Regression Trees

Classification and Regression Trees (CART) are nonparametric greedy algorithms 
that recursively partition the training data into a set of rules (Breiman et al. 1984). 
They have been among the leading algorithms in the machine learning community 
(Breiman 2001). Theoretically, the predicted value may be anything for which a 
function can be defined that returns a measure of impurity and a distance measure 
between impurities. CARTs are a powerful approach that can deal with mixed data 
types and do not violate assumptions of parametric statistics. CARTs can handle 
well correlated data structures. These approaches have gained popularity in 
ecology and elsewhere due to the easy interpretability of the resulting model 
(De’ath and Fabricius 2000). There are a large numbers of variants in CART models 
that apply different splitting criteria, pruning approaches, and validation. Here we 
focus on binary trees (multi-split criteria and mixed multi-split criteria also exist). 
Two common statistics used in splitting are the Gini Impurity Index (Breiman 
et al. 1984) and information gain based on entropy (Quinlan 1993). A criti-
cal parameter in controlling how far a tree grows is complexity. Unfortunately, 
this is a difficult parameter to define and resulting models are quite sensitive to it. 
High complexity will potentially overfit the model and low values can create too 
simple a tree, not adequately explaining the variation. Some prefer to grow a very 
complex tree and then apply an algorithm to prune the tree, thus avoiding over fit. 
Pruning is carried out through a cost-complexity approach. The cost can be defined 
by a metric such as sum of squared errors or deviance with a complexity penalty 
based on the size of the tree. Cross-validation can then be used to choose from the 
candidate trees. CART models are very attractive due to the interpretability of the 
node splits (rules), avoidance of parametric assumptions (i.e. distribution, independ-
ent residuals), and its ability to handle noisy data. It however, should be noted that 
although node splits are easily interpretable, inference from an entire tree, such 
as it occurs in complex ecological applications, is difficult. Pruning makes such 
inferences easier, and even more so, if one simply focuses on the predictions, their 
underlying tree model and the accuracy assessment from such approaches. Overfit 
has also proven to be a problem (Hastie et al. 2001). For a review of CART induc-
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tion see for instance Bell (1996), O’Connor and Jones (1997), De’ath and Fabricius 
(2000) or Kothari and Dong (2001).

16.5.2.1 Bagging

Bagging is an ensemble technique (see entry below) that averages models across 
bootstrap aggregates (Breiman 1996). Bagging as such can virtually be applied to 
any number of machine learning or algorithmic models. Bagging generates n bootstrap 
samples (with replacement), builds a model for each and, then averages the resulting 
models across bootstrap aggregates. The idea behind this method is that the rule of 
large numbers demonstrates that a series of weak learners will reduce variance and 
converge on the true classification without overfitting the data (Breiman 1996). 
A classic example of bagging are Random Forests trees (Breiman 2001); see below. 
Bagging gets even more powerful when combined with boosting.

16.5.2.2 Boosting

Boosting is another ensemble method (see entry below) that uses the previous 
model in the ensemble to improve error, thus boosting accuracy. Commonly the 
CART algorithm is used in Boosting, however many machine learning/algorithmic 
approaches may be implemented. Boosting assigns a weight to each model based 
on classification error. At each iteration, weights are increased on the incorrectly 
classified classes to focus the algorithm on these cases. Together with bagging, 
boosting can get very powerful of an approach to modelling, e.g. in the TreeNet 
algorithm. For applications using the TreeNet algorithm implication see for instance 
Popp et al. (2007) and Craig and Huettmann (2008).

16.5.2.3 Random Forests

Random Forest (Breiman 2001) is a CART method based on Bagging that is 
generating considerable interest in the ecological community (Cutler et al. 2007; 
Magness et al. 2008). The Random Forest algorithm is executed by bootstrapping 
(with replacement) 63% of the data and generating a weak learner based on a 
CART for each bootstrap replicate. Within the pre-set specification (e.g. node depth 
and number of samples per node) each CART is unconstrained (grown to fullest) 
and prediction is accomplished by taking the ‘majority votes’ across all nodes in 
all random trees. At each replicate the data not used [out of bag (OOB)] to construct 
the tree are used for validation, providing a quasi-independent validation of model fit. 
Independent variables are randomly selected at each node and variable importance 
is assessed using the mean decrease in accuracy (MDA) by dividing the standard 
error by the misclassification rate. The number of variables randomly selected at each 
node is defined by m [commonly defined as sqrt(number of independent variables)]. 
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The number of bootstrap replicates should be defined by the stabilization of OOB 
error, however it should be noted that the interaction of variables stabilizes at a 
slower rate than the error (pers. comm. A. Cutler), stressing the necessity of a large 
number of bootstrap replicates. Murphy et al. (accepted) demonstrated that models 
may be improved by a more parsimonious set of variables utilizing a model selection 
criteria based on the variable importance measures. In addition, they observed that 
multi-collinearity can affect model performance. Imbalance between classes has 
proven to reduce the power of ensemble learners (Chawla 2006). There have been 
few suggestions for addressing this problem (Chawla 2006; Chen et al. 2004) based 
on generating synthetic data. Evans and Cushman (2009) developed an iterative 
down-sampling method that proved robust in SDM.

Due to its unique approach to modelling, the use of Random Forest in SDM has 
proven robust and stable. It can handle abundance information, multicategorical 
or binary, e.g. presence and absence data. Prasad et al. (2006) and Rehfeldt et al. 
(2006) both demonstrated the utility of Random Forest for large scale prediction 
of tree species. Random Forest can easily be projected into new variable space, 
making it an appropriate algorithm for projective modeling such as climate change 
(Rehfeldt et al. 2006). Evans and Cushman (2009) predicted the probability of four 
tree species in northern Idaho at a landscape scale, demonstrating the utility of 
Random Forest as a model for SDM at fine scales.

16.5.3 Entropy Maximization

Entropy in information theory is a quantitative measure of randomness (uncertainty) 
in a random variable. The focus in this algorithm is on ‘information’. The loss of 
information in a signal due to randomness is a relevant measure of the information 
contained in the signal. Recently, entropy maximization has shown to be a powerful 
tool in ecology (Harte et al. 2008; Phillips et al. 2006). Maximum entropy is 
indicated when partial information contained in a random variable exhibits the least 
biased (most uniform) distribution given all distributions of independent information 
or constraints. Phillips et al. (2004, 2006) introduced entropy maximization as an 
approach to modelling species distributions and developed associated software 
called Maxent. In the Maxent model a target probability distribution is identified 
based on an optimal convergence on the maximum entropy (Phillips et al. 2006). 
Due to the lack of interaction between independent variables, it is possible to eluci-
date how an independent variable is influencing the focal species. However, since 
the derived probability distribution is dependent on the observed data, sample bias 
can add error to the resulting predictions (Phillips et al. 2006). It is also not clear 
how to control the error component and overfit is an issue.

The Maxent model explicitly assumes that used locations are compared to a 
sample of available locations across the landscape. As such, presence-only data 
can be used in the analysis. Maxent can incorporate both continuous and categorical 
predictors and the functional relationship between predictor and response can take 
a variety of forms including linear and quadratic relationships, as well as threshold 
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and hinge (i.e. piecewise) forms, and interactions between two variables (Phillips 
and Dudík 2008). Categorical variables are treated as indicators. The relationship 
between response and predictor can change at different ranges of the predictor 
values. For example, a single predictor could be related to the response via a 
linear relationship in its lowest range, via an interaction with another predictor 
in its middle range, and via a threshold function within it upper range. For each 
unique relationship between predictor and response, a unique weight is estimated, 
akin to a regression coefficient. Variables providing no information for predicting 
occurrence are weighted at zero. Hence, these models have the potential to become 
highly complex, particularly with increasing numbers of predictors.

Maxent creates a probability distribution across the entire study area, with each 
location (e.g. pixel) receiving a non-negative value, such that the sum of values of 
all locations in the study area equals one. This probability distribution is modelled 
by the predictors, and their various relationships with the response. Maxent 
estimates this model, and variable weights, by finding the combination of predictors, 
and their various functional relationships and interactions, which maximizes the 
log-likelihood of the model. To avoid overfitting and estimating a highly and overly 
complex model, the log-likelihood is penalized by a regularization parameter which 
increases as the complexity of the model increases (Phillips and Dudík 2008). 
Model selection is automated within Maxent and all predictors specified by the 
user, and various functional relationships, are considered; however not all may be 
retained in the final model. In a broad comparative analysis, modelling via entropy 
maximization has been demonstrated to provide models with often higher predictive 
ability than other approaches (Elith et al. 2006). However, Haegeman and Loreau 
(2008) argue that the mechanistic requirements for entropy maximization may not 
be met in all cases thus invalidating the resulting model. They further demonstrate 
that the specification of scales can also dramatically affect the validly of the model. 
Entropy maximization is an immature yet very powerful approach in ecology that 
needs further evaluation. However, care should be used when interpreting results, 
utilizing predictions, and extrapolating results into new variable space.

16.5.4 Genetic Algorithms

Genetic algorithms (GA) are an iterative optimization approach based on evolu-
tionary theory. The GA generates random populations by encoding individuals as 
binary finite length vectors. A fitness, f(x), is assigned to each individual. The algorithm 
seeks to use selective combinations of individuals with optimal f(x) to generate an 
optimization. Through a stochastic process, mutation and cross-over are applied at 
every step to prevent the population from stagnating at a local optima and providing 
optimal combinations, respectively. Cross-over is achieved by selecting two finite 
length vectors with optimal f(x), randomly selecting bits from each and passing the 
result to the next iteration of the model. Mutation occurs when a low probability 
criteria is met, causing bits within the vector to be flipped.
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One widely used GA in niche modelling is the Genetic Algorithm for Rule-Set 
Prediction (GARP; Stockwell and Peters 1999). GARP searches for relationships 
between presence locations and environmental features compared to random locations 
within the overall study area. GARP uses a genetic algorithm, a stochastic optimi-
zation tool, to uncover these relationships, and because the algorithm is stochastic, 
each run of the model can yield a unique solution. The stochasticity derives from 
the random selection of testing and training data used in each iteration of the 
algorithm. Olden et al. (2008) provide a detailed description of genetic algorithms 
in an ecological context. GARP identifies the relationship between presence loca-
tions and environmental features of the landscape via rule sets. The first step of the 
modelling process involves GARP choosing a method from a suite of possibilities. 
These include logistic regression, atomic, bioclimatic envelopes (i.e. range rules), 
or negated range rules.

Briefly, logistic regression is as described in Section 16.4.1.1 whereby the probability 
of presence is estimated for a location on the landscape, envelope (range) rules 
specify the range of some bioclimatic variables within which presence is recorded 
(or conversely for negated range rules non-presence is recorded), and atomic rules 
are those specifying categories or upper/lower thresholds of a variable in which 
presence (or absence) is recorded. Once a method is selected, a rule (i.e. functional 
relationship) is identified and the predictive accuracy of that rule is assessed. This 
process is iterated by identifying new rules until either 2,500 iterations is reached 
or the predictive accuracy of the overall rule-set converges (Anderson et al. 2003). 
Rules are retained if they increase the predictive accuracy of the rule-set. If not, the 
rule is omitted. The final rule-set is then the one used to predict and map the final species 
distribution model. The multiple methods used and potentially large number of rules 
can make interpretation of the final model difficult. Further, recent comparative work 
by Elith et al. (2006) indicates that GARPs predictive performance may not be as 
strong as other methods such as maximum entropy (but see Peterson et al. 2007).

16.5.5 Support Vector Machines (SVM)

A relatively new method in machine learning approaches are support vector 
machines (SVM; Kecman 2005), also known as kernel machines, which have 
recently been applied to SDMs (Drake et al. 2006; Guo et al. 2005; Shan et al. 
2006). Guo et al. (2005) provide a good overview of SVMs, which can be used to 
model presence-only data (one-class SVMs) or presence/absence data (two-class 
SVMs). For one-class models in which only occurrences are predicted, SVMs 
use the predictor variables to find the smallest possible multivariate hyper-
sphere in which all observations are included. In this sense SVMs produce models 
conceptually in line with Hutchinson’s (1957) niche concept (Drake et al. 2006). 
Some outlying points are permitted to be outside the sphere, which is a trade-off (v) 
between its volume and rejected observations. The predictor data are assumed to be 
multivariate spherical and any categorical data must be converted to some numerical 
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format prior to analysis, such as binary dummy coding. It is also recommended that 
data be scaled to range between 0 and 1 or +1 prior to analysis (Hsu et al. 2009). 
To account for the unlikely occurrence of the data being spherically distributed, kernel 
functions are applied to the data. In two-class SVMs, presence and absence are 
predicted by finding a hyperplane, which tries to maximize the separation between 
the two classes. This is termed the margin which is the distance between the nearest 
points in each class. The points on the boundaries of the classes are termed the sup-
port vectors. For one-class SVMs v is the only tuning parameter and for two-class 
SVMs C (a penalty parameter for misclassification) and g (a parameter for the kernel) 
are the tuning parameters. Tuning parameters can either be assessed manually, or 
via a grid search over a vast possible number of parameter combinations and the 
performance measured by cross-validation (Hsu et al. 2009; Dimitriadou et al. 
2009). Drake et al. (2006) demonstrated that SVMs are insensitive to collinearity 
in the predictors and perform equally as well as other SDM modelling approaches, 
even with relatively sparse data (e.g. 40 observations). However, Shan et al. (2006) 
commented that the predictive accuracy of SVMs may be offset by their relatively 
low comprehensibility in their SDM of the southern brown bandicoot (Isoodon 
obesulus). The output of SVMs, rather than parameters or weights, is the hyper-
sphere or hyperplane. The data lying on the boundaries of these features are the 
support vectors, and thus predictions are made on new data by assessing whether 
or not they fall within the hypersphere, or in a specific category on either side of 
the hyperplane. Kecman (2005) notes that in SVMs the concept of parsimony refers 
to output having few support vectors as opposed to fewer model parameters or 
weights. In low dimensions, these features could be visualized but in higher dimen-
sions visualization would be nearly impossible.

16.5.6 Ensemble Models

Ensemble models can offer a complex suite of models and optimization approaches 
for obtaining best possible predictions, and for each pixel. Starting out with high-
performance algorithms, they have received attention as being currently among 
the best possible modeling techniques. However, their underlying software and 
approaches are diverse, and here we can simply present them on a general scheme. 
Ensemble models try to optimize for each case, row, pixel, a prediction that helps to 
improve the overall model accuracy (see the section below on Model Evaluation). 
Having such a ‘truth’ at hand can then allow to reach this goal. A relatively simply 
and straight forward approach to ensemble modeling is to have a ‘suite of model 
algorithms’, an ensemble, compute the best possible predictions for each pixel. 
The ensemble model would then pick the best possible algorithm that minimizes 
the deviation from ‘truth’ to the prediction for each pixel provided by the algorithms 
used in the suite of models. In that case, the absolute performance of the ensemble 
model depends a lot on the algorithms used in the ‘suite’. Such methods are employed 
for instance in the Bayesian Model Averaging (BMA) in R.
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Another, and conceptually even more powerful approach would be to start with 
a powerful suite of modeling algorithms. Then, break the data in an optimized set 
and apply to each section the best possible algorithm that achieves the best predic-
tion for the nature of the data. In a certain way, this resembles the approach used in 
MARS, but allowing for many more modeling algorithms than the linear ones used 
there. Besides the question what algorithms may enter the suite, another crucial 
question is what optimization is used to obtain the optimal section breaks in the 
data (Elder 2003). Many of these questions enter the realm of hyperdimensional 
optimizations (similar to the Traveling Salesman problem), which are not well 
resolved in mathematics, yet. Resolving it though would offer much progress on 
the SDM approach, and to Ecology and global sustainability overall, and that tries 
to find the best possible prediction!

16.6 Model Evaluation

A final and critical stage of any modelling and predictive application is to evaluate 
the final model (Fielding and Bell 1997). Without an assessment of the predic-
tive ability of a model, its utility for either ecological inference, generalization or 
management application is in doubt. One should note that one easily can produce 
and present a prediction surface. But without a relevant accuracy assessment it has 
virtually no scientific value (apart from having compiled and build up the GIS data 
and statistical analysis, helping to form a modelling infrastructure and culture). 
Here we provide a brief overview of a number of approaches which may be of use 
for evaluating the performance of SDMs. It should be noted that almost all true 
spatial model evaluations still have to be performed manually, and that no coher-
ent tool exist to do it automatically all in one approach. Depending on the type 
of data used to estimate a model, different evaluation approaches may required. 
One of the first and classic approaches used is the confusion matrix (Fielding 
and Bell 1997). It is a simple table classifying evaluation data into one of four 
categories; presence and absence correctly predicted or incorrectly predicted. 
The criterion for determining whether a test observation was correctly or incorrectly 
predicted is problematic however as the confusion matrix is a binary approach 
to model evaluation although many modelling approaches generate predictions 
on a continuous scale (e.g. probability of occurrence). Thus, the arbitrary choice of 
cut-off (threshold) for determining occurrence can change the assessment of a 
model substantially (Manel et al. 2001). For example, if a probability of 0.5 were 
used, locations with predicted values of 0.49 and 0.51 would be classified differ-
ently, regardless of their ecological similarity. Further, this approach is usually 
not recommended for use-availability data, as availability data inherently include 
used locations, thus a confusion matrix would underestimate the performance of 
the model. A number of accuracy measures can be derived from the confusion matrix 
including sensitivity/specificity, omission/commission, Kappa, and prevalence, and 
are described in detail in Fielding and Bell (1997).
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One approach used to avoid the arbitrary choice of threshold is the receiver 
operating characteristic curve (ROC; Fielding and Bell 1997; Pearce and Ferrier 
2000; Fawcett 2006). The Kappa statistic and ROC are the two most commonly 
used evaluation metrics in machine learning classification problems. Rather than 
using a single arbitrary threshold, a range of thresholds are used and the proportions 
of correctly and incorrectly classified test data are tabulated. The ROC curve is 
defined as sensitivity plotted against 1-specificity. Sensitivity is a measure of the 
proportion of true positives whereas specificity is the proportion of false negatives 
(commission error). The inherent nature of the correlation between these terms gets 
used to describe model accuracy. An assessment of the balance between sensitiv-
ity and specificity can lend considerable insight into model performance at a class 
level. A curve is developed and the area under the ROC curve (AUC) is used as 
the global metric predicting the overall discriminatory ability of the model, where 
a value of 1.0 indicates a perfectly predicting model and a value of 0.5 implies the 
model predicts no better than chance. However, the ROC approach also requires 
true presences and absences and will also underestimate model performance when 
using use-availability data (Boyce et al. 2002). Phillips et al. (2006) comment that 
the use of the ROC for presence-only modelling approaches (e.g. Maxent) is valid 
if one interprets the AUC metric appropriately, as discriminating between use 
and random use. This is also noted by Anderson et al. (2003) for interpretation of 
confusion matrices.

Manel et al. (2001) and Lobo et al. (2007) critique the ROC as a measure of model 
performance. Reasons for this are: 1) the error components are weighted equally 
(Peterson et al. 2008); 2) can over-value a models of rare species (Manel et al. 
2001); and 3) certain modelling techniques do not predict across the spectrum of 
probabilities thus, violating the assumption that the specificity spans the entire range 
of probabilities (0–1). Manel et al. (2001) recommended using the Kappa statistic 
to avoid these problems. However, Peterson et al. (2008) proposed modifying ROC 
by formulating a partial ROC, thus limiting the x-axis to the domain given the model 
under assessment. The two major limitations of the ROC is that it is only suited 
towards discrete data and few strategies exist for validating more than two classes. 
The Kappa statistic (Cohen 1960; Monserud and Leemans 1992) is a flexible metric 
for multi-class models that evaluates the agreement between classes and then adjust 
for amount of agreement that could be observer by random chance. The primary 
criticisms of Kappa are that it is not truly chance constrained because it does not 
account for the expected frequency of a class, and it does not make distinctions 
among various types and sources of disagreement. To overcome limitations in the 
Kappa a weighting function (Cohen 1968) has been implemented to account for 
near agreement and adjust for expectation in the frequency of observations.

Boyce et al. (2002) describe the k-fold classification procedure in which only the 
presence data are used to assess model performance. The entire dataset is partitioned 
into k folds (groups) and the model estimated k times with each run of the model 
using k-1 folds to train the model and the remaining fold to evaluate it, such that 
each fold is used once for model evaluation. For each run of the model predic-
tions are generated and subsequently classified into a user-defined number of bins. 
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In each bin the frequency of presence locations from the testing fold are tallied, and 
a Spearman rank correlation coefficient estimated to assess model performance. 
A coefficient of +1.0 implies the model predicts presences perfectly. This approach 
can only assess the ability of the model to predict presences, not absences. 
A version of this approach has been included in the Biomapper software for ENFA 
(Hirzel et al. 2006). Wiens et al. (2008) recently introduced a three-way k-fold 
cross-validation to evaluate model performance over space and time.

Elith et al. (2005) introduced an “evaluation strip” as a method to evaluate the 
predictive ability of SDMs in relation to specific predictors. This more or less 
graphic method involves adding an evaluation strip to each environmental predictor’s 
raster grid. This strip consists of values generated by the user to represent the full 
range of values present in that variable. The strip is placed in an area where no 
observations are found, and hence these added data are not included in model training. 
Once the model has been estimated, predictions are made onto these evaluation 
strips and the predictive performance of the model can be visualized graphically in 
relation to either one or two variables. This approach may be particularly valuable 
for assessing where greater certainty (or uncertainty) in model predictions may lie, 
in terms of predictor variable values.

In a famous assertion Chrisman (1989) referred to a spatial random field as “a 
distribution of possible realizations in which the true value lies”. The uncertainty 
in a spatial random field that Chrisman (1989) referred to exists in any random 
field (measured variables) as a function of the statistical precision and accuracy. 
Uncertainty is an extremely relevant issue in spatial models where there is an 
error around our measurement, in either the dependent and/or independent vari-
ables, or we are predicting to an entire landscape. Validation methods for testing 
the accuracy of spatial prediction where no independent validation data exists has 
plagued the modelling community. Monte Carlo simulation is a useful tool for 
assessing both spatial and model uncertainties. By iteratively assessing the model 
given an error distribution, the uncertainty can readily be quantified and visualized. 
Conceptually, uncertainty can be quantified as either “error” or “a distribution of 
possible values” given an observation. Random fields may have measurement error 
that varies throughout the range of variability yielding higher uncertainty in a 
portion of the distribution (i.e. measurement error is not constant across all values 
of the predictor). By assessing the uncertainty of a model the error component of 
a prediction can be quantified and thus controlled for. When model predictions 
are used for management applications, for instance, knowledge of the spatial 
distribution of uncertainty may aid in decision-making. Sensitivity analysis is the 
measurement of the contribution of individual input parameters to the uncertainty 
in model predictions (Lilburne et al. 2006). This contribution is typically measured 
by making small adjustments to an input parameter and assessing the subsequent 
changes in model predictions. Knowledge of the sensitivity of model predictions to 
input parameters can highlight variables contributing greater uncertainty to model 
predictions and where additional resources may be required to obtain more accurate 
measurements. Sensitivity analysis is also useful in machine learning approaches 
where multiple interactions may be modelled.
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Here we conclude our brief description of SDMs. Many more points can be 
made, and will develop over time. We envision for instance the required training 
of managers and the legal community in SDMs and their interpretation. We further 
promote ‘Best Professional Practices’, such as outlined in this book, and look with 
interest into concepts such as cloud computing (as basically implemented in Open 
Modeler already). We hope that the community interested in global sustainability 
will pick up these concepts and push them forward towards best possible applications.
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Appendix – Freely Available Software Resources

R Resources

R – The R Project for Statistical Computing (http://cran.r-project.org) – compre-
hensive free software package
Relevant R packages available for download from the CRAN website

● ‘adehabitat’ (ecological niche factor analysis)
● ‘quantreg’ (quantile regression)
● ‘gbm’, ‘rpart’, ‘randomForest’, ‘party’, ‘tree’, ‘ipred’ (tree-based models)
● ‘gdm’ (generalized dissimilarity modeling; http://www.biomaps.net.au/gdm)
● ‘e1071’ (support vector machines)
● ‘caret’ (tuning methods for a variety of machine learning models)
● ‘earth’, ‘mda’ (multivariate adaptive regression splines)
● ‘GAMBoost’, ‘gam’, ‘mgcv’, ‘mda’ (generalized additive models)
● ‘caret’, ‘nnet’ (neural networks)
● ‘lme4’, ‘mgcv’ (mixed models)
● ‘R2WinBugs’ (Bayesian models)
● R Task Views
● Bayesian (http://cran.r-project.org/web/views/Bayesian.html)
● Cluster (http://cran.r-project.org/web/views/Cluster.html)
● Environmetrics (http://cran.r-project.org/web/views/Environmetrics.html)
● Machine Learning (http://cran.r-project.org/web/views/MachineLearning.html)
● Spatial (http://cran.r-project.org/web/views/Spatial.html)

Model-Specific Software Resources

● Biomapper (http://www2.unil.ch/biomapper) – ecological niche factor analysis
● Maxent (http://www.cs.princeton.edu/∼schapire/maxent) –entropy maximization
● DesktopGARP (http://www.nhm.ku.edu/desktopgarp) – genetic algorithm
● GeoSVM (http://www.unm.edu/∼wyzuo/GEO.htm) – support vector machines
● LibSVM (http://www.csie.ntu.edu.tw/∼cjlin/libsvm) – support vector machines
● OpenModeller (http://openmodeller.sourceforge.net/) – ensemble niche modeling
● Program MARK (http://www.phidot.org/software/mark/) – occupancy models
● Presence (http://www.mbr-pwrc.usgs.gov/software/presence.html) – occupancy 

models
● BLOSSOM (www.fort.usgs.gov/Products/Software/Blossom) – quantile 

regression
● Salford Systems Modeling Suite (http://www.salford-systems.com/) – CART, 

MARS, RandomForest and TreeNet
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● Microsoft Excel Tools
● Neural Network Models in Excel (http://www.geocities.com/adotsaha/

NNinExcel.html)
● Classification Tree in Excel (C4.5 algorithm) (http://www.geocities.com/adot-

saha/CTree/CtreeinExcel.html)
● Self Organizing Map (SOM) in Excel (http://www.geocities.com/adotsaha/NN/

SOMinExcel.html)
● BugsXLA, Bayesian Analysis in Excel (http://www.axrf86.dsl.pipex.com/)
● Bayesian Programs
● WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/)
● OpenBUGS (http://mathstat.helsinki.fi/openbugs/)
● BayesX (http://www.stat.uni-muenchen.de/ bayesx/bayesx.html)
● Elicitor – Bayesian expert opinion models (http://silmaril.math.sci.qut.edu.

au/∼whateley)

Miscellaneous Spatial Software Resources

● Open Geospatial Consortium (http://en.wikipedia.org/wiki/Open_Geospatial_
Consortium)

● CrimeStat (http://www.icpsr.umich.edu/CRIMESTAT/)
● Passage (http://www.passagesoftware.net/) – Pattern analysis, spatial statistics, 

and geographic exegesis
● SADA (http://www.tiem.utk.edu/∼sada/index.shtml) – Spatial Analysis and 

Decision Assistance
● SAM (http://www.ecoevol.ufg.br/sam/) – Spatial Analysis in Macroecology
● GeoDA (http://geodacenter.asu.edu/) – Exploratory spatial data analysis
● ‘ade4’ (http://pbil.univ-lyon1.fr/ADE-4/home.php?lang=eng) – R package for 

analytical functions to analyze ecological and environmental data in the frame-
work of Euclidean exploratory methods

● STARS (http://regionalanalysislab.org/?n=STARS) –Space-Time Analysis of 
Regional Systems

● SatScan (http://www.satscan.org/) – Software for spatial, temporal, and space-
time models

● Dr Pierre Legendre (http://www.bio.umontreal.ca/legendre/indexEn.html) – 
miscellaneous programs and scripts

● Weka (http://www.cs.waikato.ac.nz/ml/weka/) – Machine learning tools
● Diva-GIS (http://www.diva-gis.org


