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Abstract. Fire is a keystone process in many ecosystems of western North America. Severe fires kill and

consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting

consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties.

We analyzed the occurrence of, and trends in, satellite-derived burn severity across six ecoregions in the

Southwest and Northwest regions of the United States from 1984 to 2006 using data from the Monitoring

Trends in Burn Severity project. Using 1,024 fires from the Northwest (4,311,871 ha) and 497 fires from the

Southwest (1,434,670 ha), we examined the relative influence of fine-scale topography and coarse-scale

weather and climate on burn severity (the degree of change from before the fire to one year after) using the

Random Forest machine learning algorithm. Together, topography, climate, and weather explained severe

fire occurrence with classification accuracies ranging from 68% to 84%. Topographic variables were

relatively more important predictors of severe fire occurrence than either climate or weather variables.

Predictability of severe fire was consistently lower during years with widespread fires, suggesting that

local control exerted by topography may be overwhelmed by regional climatic controls when fires burn in

dry conditions. Annually, area burned severely was strongly correlated with area burned in all ecoregions

(Pearson’s correlation 0.86–0.97; p , 0.001), while the proportion of area burned severely was significantly

correlated with area burned only in two ecoregions (p � 0.037). During our short time series, only

ecoregions in the Southwest showed evidence of a significant increase (p � 0.036) in annual area burned

and area burned severely, and annual proportion burned severely increased in just one of the three

Southwest ecoregions. We suggest that predictive mapping of the potential for severe fire is possible, and

will be improved with climate data at the scale of the topographic and Landsat-derived burn severity data.

Although severity is a value-laden term implying negative ecosystem effects, we stress that severity can be

objectively measured and recognize that high severity fire is an important ecological process within the

historical range of variability in some ecosystems.
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INTRODUCTION

Fire is a keystone process in many ecosystems
of western North America. High severity fires
consume large amounts of above- and below-
ground biomass (Keeley 2009). The resulting
ecological effects have long-term consequences
for vegetation structure and composition (Hold-
en et al. 2006, Lentile et al. 2007), severity of
subsequent fires (Holden et al. 2010), soil erosion
and mass wasting (Istanbulluoglu et al. 2002,
Cannon et al. 2010, Robichaud et al. 2010), carbon
and nutrient cycling (Hurteau and Brooks 2011),
and other soil properties (Certini 2005). Aquatic
ecosystems are both dependent on episodic
severe fire for mass wasting and log inputs and
severely disrupted in the short term by the
resultant temperature and sediment changes
(Bisson et al. 2003), yielding a strong dependence
on scaling and synchrony of severe fire occur-
rence within a basin (Miller et al. 2003). Recent
climate-driven increases in the extent and fre-
quency of wildland fire in the western United
States have received much attention (Westerling
et al. 2006, Morgan et al. 2008, Littell et al. 2009,
Littell et al. 2010), but much less is known about
the degree of ecological change (i.e., burn
severity) caused by wildfires (Lentile et al. 2006,
Lentile et al. 2007, Keane et al. 2008, Keeley 2009).
Millions of dollars are spent on postfire-rehabil-
itation to limit erosion and weed invasion
following severe fires (Parsons et al. 2010) and
on fuel treatments implemented to alter the
behavior and severity of subsequent fires (Wim-
berly et al. 2009, Hudak et al. 2011). For these
reasons, it is particularly important that we
increase our understanding of the landscape
and climate controls of burn severity to better
predict the ecological effects of wildfires.

Researchers have recently focused on charac-
terizing the controls of spatial variation in burn
severity at the fire- or landscape-scale (Broncano
and Retana 2004, Chafer et al. 2004, Odion et al.
2004, Bigler et al. 2005, Lentile et al. 2006, Holden
et al. 2009, Miller et al. 2009b, Bradstock et al.
2010). However, the severity of multiple fires at
regional and sub-continental scales has not been
analyzed. In the United States, wildfires, espe-
cially severe ones, retain a largely negative
stigma, despite our growing awareness of their
vital role in maintaining structure and function in

ecosystems around the world (Bond and Keeley
2005). In many respects, it is the severity of
wildland fire, rather than whether or not a
location burned that has greatest effect on
ecological processes.

Topography and climate are likely important
drivers of burn severity

Spatial variation in burn severity reflects
variation in both the intensity and duration of
fire activity across the landscape. The primary
factors typically thought to control fire intensity
and duration are topography, weather, and fuels
(Pyne et al. 1996). Many have argued that
accumulation of fuels from fire suppression
during the past century is influencing the
occurrence of high severity fire today (Keane et
al. 2002), while others have argued that weather
is the primary driver of fire behavior (Bessie and
Johnson 1995). Evaluating the effect of fuels on
severity across regional scales is confounded by
wide variation in land use and disturbance
history, for which information is incomplete.
However, topography and weather (and more
broadly, climate) have indirect influences on the
spatial variability of fuels, as well as direct
influence over the biophysical conditions that
may affect fire intensity and duration. The
availability of spatially comprehensive data on
topography (Gesch 2007) and historical climate
(Mesinger et al. 2006, Rehfeldt 2006), therefore
enables regional evaluation of topography and
climate as drivers of burn severity.

Topography and site conditions influence
vegetation distribution and productivity (Whit-
taker 1970, Barbour et al. 1999) across landscapes
and regions, with implications for where and
why fires burn severely. The effects of topogra-
phy on fire behavior (ignition, spread, intensity)
have been the subject of much research (Pyne et
al. 1996), and some studies have focused on burn
severity relative to topography (e.g., Kushla and
Ripple 1997, Broncano and Retana 2004, Holden
et al. 2009). Topography affects energy and water
balances that control vegetation development,
and therefore the accumulation of biomass that
fuels fires when it is sufficiently dry. Further-
more, elevation, aspect, latitude, longitude, topo-
graphic position, and surrounding topographic
context all influence microclimatic conditions
(temperature, precipitation, direct solar radiation,
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wind exposure, etc.) that influence the moisture
content of fuel. Physical properties of fires such
as combustion rate, fuel consumption, total heat,
and soil heating in turn cause changes to
vegetation and soils that form the basis for
describing or estimating burn severity (Pyne et
al. 1996, Keane et al. 2010).

In the western United States during the
twentieth century, climate was a strong driver
of fire extent (Littell et al. 2009) and of the
frequency of large fires (Westerling et al. 2006).
Dendroecological studies have similarly demon-
strated the strong influence of climate on pre-
twentieth century fires (Kitzberger et al. 2007).
There are several reasons to expect that climate
influences burn severity as well. First, drier
conditions generally increase the net energy
released from fuel during burning. In New
Mexico, for example, area burned severely was
correlated with the duration of rain-free periods
in the spring preceding the fire (Holden et al.
2007). Second, more fuel, including logs, duff,
and tree crowns, is likely to be consumed if fuels
are dry than if they are not (Pyne et al. 1996), and
significant consumption of crown fuels can lead
to severe fire effects. Third, Pierce and Meyer
(2008) hypothesized that multidecadal climate
influenced the occurrence of large, severe fires in
past millennia.

In regions of complex mountainous topogra-
phy, such as the western United States, topogra-
phy and climate interact to create steep
biophysical gradients that influence not only fire
extent (Taylor and Skinner 2003), but also burn
severity. With climate variations between years of
widespread fire and other years, the relative
influence of climate versus topography on burn
severity is likely to vary as well. Bigler et al.
(2005) hypothesized that the local effects of fuels
and topography decline with increasingly severe
fire weather, particularly across short elevation
gradients. However, the importance of topo-
graphic controls on burn severity, relative to
climate and weather, is largely unexplored.

Availability of west-wide burn severity data
make regional-scale studies possible

Quantifying burn severity across large regions
requires the acquisition and processing of large
amounts of remotely-sensed imagery. While
point-based measurements of severity are possi-

ble on the ground, use of satellite imagery is
required to gain a landscape perspective on
spatial patterns of severity (Key and Benson
2006). Fortunately, the Monitoring Trends in
Burn Severity project (MTBS, public communica-
tion, http://www.mtbs.gov) has used Landsat
satellite imagery to map burn severity for all
large wildfires (.405 ha) across the western
United States from 1984 to present (Eidenshink et
al. 2007), covering most of the area burned
during this time period. Because these data have
high spatial resolution (30 m) and broad extent
(the western United States), they provide a
unique opportunity to study the topographic
and climatic controls of burn severity at a
subcontinental scale. MTBS characterizes burn
severity with two closely-related indices: the
differenced normalized burn ratio (dNBR; Key
and Benson 2006) and the relative differenced
normalized burn ratio (RdNBR; Miller and
Thode 2007). Calculated from pre- and post-fire
Landsat TM and ETMþ imagery, dNBR and
RdNBR both use light reflected from earth in
near-infrared (Landsat band 4) and mid-infrared
(Landsat band 7) wavelengths to capture fire-
induced changes in vegetation cover and soil
characteristics. While dNBR provides a measure
of absolute change, RdNBR is adjusted to
account for pre-fire conditions at each pixel. As
such, RdNBR provides a more consistent mea-
sure of burn severity than dNBR when evaluat-
ing severity across broad regions and diverse
vegetation (Miller et al. 2009a, Norton et al. 2009),
including sites with low preburn biomass. As an
indirect measure of biomass loss, RdNBR can be
used to accurately identify stand-replacing fire in
forests and woodlands (Miller and Thode 2007).
We define burn severity, therefore, as the degree
of change one year post-fire relative to pre-fire
conditions (Lentile et al. 2006) as measured by
RdNBR.

Burn severity may have increased recently but
this hasn’t been well documented

Annual area burned by wildfires increased in
the western United States during the last half of
the twentieth century (Littell et al. 2009) as has
the the number of large fires (Westerling et al.
2006), and the total area burned is expected to
increase with climate warming (Running 2006,
NWCG 2009). More area has burned in recent
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decades, compared to the middle 20th century, in
forests in the US Northern Rockies (Morgan et al.
2008), southwestern United States (Swetnam and
Betancourt 1998), and western United States as a
whole (Westerling et al. 2006, Littell et al. 2009,
Littell et al. 2010). When more area burns, more
area burns severely (Holden et al. 2011), but it is
possible that the proportion of area burned
severely could be increasing as well in some
areas (Miller et al. 2009b). Although the MTBS
record of severe fires is quite short for assessing
such trends, it has proven useful in detecting
increases in severity for some forest types in
California’s Sierra Nevada mountains in recent
decades (Miller et al. 2009b). Comparing MTBS
observations across different regions with di-
verse vegetation, topography, climate, and land-
use histories will help us understand recent
trends and forecast future trends in wildfire
extent and severity—both important elements of
fire regimes (Morgan et al. 2001).

Objective
Our objective was to assess the influence of

topography, climate, and weather on burn
severity in forests and woodlands across the
Northwest and Southwest regions of the United
States. We also assessed whether there was an
increasing trend in burn severity from 1984 to
2006. We used burn severity inferred from 1,521
remotely sensed fires (Eidenshink et al. 2007) that
burned in forests and woodlands. We analyzed
the influence of fine-scale topography and
coarse-scale climate and weather on burn sever-
ity using the Random Forests machine learning
algorithm (Breiman 2001).

METHODS

Study area
Our study area encompasses two broad regions

of the western United States: 63 million ha in the
Northwest and 77 million ha in the Southwest
(Fig. 1). The Northwest covers portions of LAND-
FIRE map zones 1, 2, 7, 8, 9, 10, 18, 19, and 21,
while the Southwest covers all of map zones 14,
15, 16, 23, 24, 25, and 28 ( public communication,
http://landfire.cr.usgs.gov/viewer/). Rather than
cover all areas in the western United States, we
chose these two regions because: (1) fire plays an
active role in the ecology of forests and woodlands

in both regions; and (2) the Northwest and
Southwest represent two centers of action in a
climatic dipole characterized by out-of-phase
interannual precipitation variability and demon-
strated links to multicentury fire history (Kitz-
berger et al. 2007), potentially leading to
differences in the influence of climate on burn
severity. A similar analysis of burn severity trends
and causes has already been conducted for
California (Miller et al., in press), and additional
work is underway to examine the potential
influences of topography, climate, and vegetation
on burn severity across the entire western United
States (Dillon et al. 2011).

In addition to different influences on burn
severity between the Northwest and Southwest
regions, we also expected the relative influence of
topography, climate, and weather to vary within
each region. Therefore, we subdivided our
analysis into six ecoregions, using groupings of
existing ecological regions (CEC 2007). Our
ecoregions are: (1) Pacific; (2) Inland Northwest;
(3) Northern Rockies; (4) Southern Rockies; (5)
Colorado Plateau; and (6) Mogollon Rim (Fig. 1).

To identify forests and woodlands, we used
environmental site potential (ESP; Rollins 2009;
public communication, http://www.landfire.gov/
NationalProductDescriptions19.php). ESP is a
potential vegetation classification that depicts the
vegetation capable of being supported at a site,
based on biophysical site characteristics such as
climate, topography, and substrate. We combined
ESP into eight broad groups but only analyzed the
four groups with the potential for forest and
woodland vegetation (.10% tree cover): wood-
land, dry forest, mesic forest, and cold forest
(Appendix A).We used ESP instead of a classifi-
cation of existing vegetation primarily because we
wanted to capture sites that supported forest or
woodland vegetation before fire. While consistent
existing vegetation data exist for our study area
( public communication, http://www.landfire.gov/
NationalProductDescriptions21.php), they repre-
sent a static point in time and would in many
cases depict non-forest vegetation on sites that
were forest or woodland prior to disturbance.
Conversely, we acknowledge that using ESP to
identify forests and woodlands may have caused
some fires that burned in non-forest vegetation to
be included in our analysis, but we felt that this
was the best approach given the lack of consistent
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pre-fire vegetation data.

Burn severity data
We acquired satellite-derived severity data

(RdNBR) for forest and woodland fires in our
study area that burned from 1984 to 2006 (1,024
fires in the Northwest, acquired 25 February
2010; 750 fires in the Southwest, acquired 6 July

2009; public communication http://www.mtbs.
gov). We determined a fire to be in forest and
woodland if the majority of area inside the fire
perimeter was mapped as one of the four forest
and woodland ESP groups (Appendix A). Keep-
ing with our definition of burn severity (degree
of change from pre-fire to one year post-fire), we
evaluated the timing of pre- and post-fire

Fig. 1. Location of the study area showing the Northwest and Southwest regions, six ecoregions, and the 1,521

fires (red) included in our analysis. Fires excluded from our study (gray) were either in non-forest settings or did

not meet criteria for imagery timing. A burn severity map (RdNBR) for one fire shows an example of spatial

variation in severity (inset).
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imagery for all fires to ensure that post-fire
imagery was taken six to 18 months post-fire and
that pre- and post-fire images were taken in the
same season (660 days). In the Northwest,
relatively few fires (13%; 6% of area mapped in
fires) were outside these parameters. However, in
the Southwest, where 34% of fires (25% of area
mapped in fires) did not meet these criteria, we
eliminated 253 fires (502,093 ha) from our
analyses. Of the fires that were eliminated, 93%
had post-fire imagery less than six months after
the fire, indicating initial assessments of severity
that are typically done on non-forested sites.
Further, the proportion of area burned eliminat-
ed in any one year ranged from 0% in 1984 (the
smallest fire year) to 100% in 1991 (the second
smallest fire year), with an average in all other
years of 29% (range: 3–64%; sd¼ 17). In general,
we felt that eliminating fires from our analysis
based on image timing in the Southwest helped
to refine our dataset to truly forest and woodland
fires and did not bias our analysis of annual
trends.

By using satellite imagery from approximately
one year post-fire, we inherently included some
delayed effects of fire such as plant mortality and
resprouting, which can be influenced by factors
other than fire (Keeley 2009). Management
actions such as salvage logging, reseeding, and
planting can also occur during the first year after
fire, potentially influencing RdNBR values. We
accepted the inclusion of these ecosystem re-
sponses and management influences as necessary
to evaluate questions relating to burn severity in
a consistent manner across broad geographic and
temporal scales.

We analyzed 1,024 fires from the Northwest
(4,311,871 ha) and 497 fires from the Southwest
(1,434,670 ha; Fig. 2). Most fires (92%) were .405
ha, but they ranged from 20 ha to 228,966 ha. For
areas that burned more than once from 1984 to
2006 (199,739 ha in the Northwest; 108,402 ha in
the Southwest), we used only the RdNBR of the
first fire because burn severity can be affected by
the severity of previous fires (Holden et al. 2010,
Halofsky et al. 2011).

For all fires, we classified the continuous

Fig. 2. Area burned (total) and burned severely

within that total (hatched) by potential vegetation

group, divided by ecoregion: (A) Pacific, (B) Inland

Northwest, (C) Northern Rockies, (D) Southern

Rockies, (E) Colorado Plateau, and (F) Mogollon

Rim. Number of fires (solid line with the right side

y-axis) reflects the assignment of each fire to a

potential vegetation group based on majority. Small

areas of non-forest (nonveg, grass, dry shrub, and

 
mesic shrub) were included in selected fires, but

account for less than 5% of total area burned.

v www.esajournals.org 6 December 2011 v Volume 2(12) v Article 130

DILLON ET AL.



RdNBR into discrete classes of severely burned
versus not severely burned using field measure-
ments of burn severity (composite burn index,
CBI; Key and Benson 2006) from 565 plots in
Grand Canyon National Park (E. Gdula, personal
communication). Using methods similar to Miller
and Thode (2007), we used a non-linear equation
to regress RdNBR against CBI (R2 ¼ 0.69) and
calculate a threshold for severely burned equiv-
alent to CBI values above 2.25 (RdNBR � 695;
Fig. 3). Field-measured CBI values of 2.25
represent the midpoint between moderate and
high severity for rating factors such as surface
fuel consumption, soil heating, plant mortality,
and alteration of foliage at different heights
above the soil surface (Key and Benson 2006).
Our calculated threshold of 695 between moder-
ate and high severity was very similar to a
threshold derived independently from another
study using Grand Canyon field data (RdNBR¼
698; Pabst 2010), and to others calculated for the
Sierra Nevada (RdNBR ¼ 641; Miller and Thode
2007), the Gila Wilderness, New Mexico (RdNBR
¼ 677; Holden et al. 2009), and the North
Cascades (RdNBR ¼ 703; Cansler 2011).

In each ecoregion, we determined years of
widespread fires (‘‘big years’’) based on annual

area burned. The distribution of annual area
burned is positively skewed in all ecoregions,
characterized by relatively low area burned in
most years, punctuated by a few big years. In the
Northwest, the Pacific and Northern Rockies
ecoregions had particularly skewed distributions
(skewness . 2), so we selected big years as those
with area burned greater than the upper quartile
plus 1.5 times the inter-quartile range (resulting
in three big years in the Pacific and five in the
Northern Rockies; Fig. 4). In the Inland North-
west, the distribution was less skewed (skewness
¼ 1.1), so we selected big years as those with area
burned greater than 0.5 standard deviation above
the mean (resulting in five big years). In the
Southwest, we selected the six big years in the
upper quartile of annual area burned for each
ecoregion. Big years accounted for over half of
the total area burned from 1984 to 2006 in every
ecoregion (Pacific ¼ 82%, Inland Northwest ¼
57%, Northern Rockies ¼ 81%, Southern Rockies
¼ 85%, Colorado Plateau¼ 71%, Mogollon Rim¼
72%). Big years are climatically distinct from
other years; in all ecoregions, temperatures were
above normal and precipitation was below
normal during fire seasons in big years (Appen-
dix A). In contrast, temperature and precipitation
during other years were both close to long-term
averages.

Fine-scale topography data
We considered elevation (acquired from

LANDFIRE, public communication, http://
landfire.cr.usgs.gov/viewer/) and a suite of topo-
graphic indices derived from elevation, all at 30-
m2 spatial resolution (Appendix A). We calculat-
ed indices covering three broad categories of
topographic information: slope and aspect, slope
position and curvature, and topographic com-
plexity. Our indices of slope and aspect were
percent slope, heat load index (McCune and
Keon 2002, Eq. 3), solar radiation aspect index
(Roberts and Cooper 1989), and an index
combining slope and cosine-transformed aspect
(Stage 1976). Indices of slope position and
curvature were hierarchical slope position (Mur-
phy et al. 2010), compound topographic index
(Moore et al. 1993), and a topographic position
index (Weiss 2001) that we calculated at three
spatial scales (annular neighborhoods with 150
m, 300 m, and 2,000 m outer radii ). Indices of

Fig. 3. Non-linear regression model of the relative

differenced normalized burn ratio (RdNBR) versus 565

field-measured composite burn index (CBI) plots from

Grand Canyon National Park, Arizona. Dashed lines

show the threshold for high severity (CBI ¼ 2.25;

RdNBR ¼ 695).
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Fig. 4. Selected annual fire metrics from our data set of 1,521 MTBS fires, divided by ecoregion: (A) Pacific, (B)

Inland Northwest, (C) Northern Rockies, (D) Southern Rockies, (E) Colorado Plateau, and (F) Mogollon Rim. In

each pane, the bars above the zero line display annual area burned (total) and the area burned severely within

that total (hatched). Number of fires is shown as a line with the right side y axis. Annual percent of area mapped

as high severity is shown as inverted gray bars below the zero line. Years identified as widespread (big) fire years

are marked with red asterisks (*) along the top of each pane.
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topographic complexity, also calculated at three
spatial scales (circular neighborhoods with 90 m,
450 m, and 810 m radii ), were Martonne’s
modified dissection coefficient (Evans 1972) and
elevation relief ratio (Pike and Wilson 1971).
Prior to modeling, we eliminated variables that
were highly correlated with others (Spearman’s
rho . 0.75). From our 16 candidate topographic
predictor variables, we retained between 12 and
14 variables in each ecoregion (Appendix A).

Coarse-scale climate and weather data
We considered three categories of climate and

weather variables, computed for each fire:
normalized monthly temperature and precipita-
tion, soil moisture, and fire weather (Appendix
A). We used Rehfeldt’s (2006) thin plate spline
model and 56-year climate record (1950–2006) to
interpolate monthly minimum, maximum, and
average temperature, and monthly precipitation
for the approximate central latitude and longi-
tude and mean elevation of each of the 1,521
fires. To capture the departure from average
conditions at each fire location, we took the
monthly values for the year of fire and the
previous year, and normalized them by subtract-
ing the 56-year mean for that month and location
and dividing by the standard deviation. From
normalized temperature and precipitation, we
selected variables that capture both climate
departures in the month of fire ignition and the
previous month, and antecedent seasonal condi-
tions. In the Northwest, we defined antecedent
seasons as: spring (March through May), winter
(December through February), fall (September
through November; previous year) and summer
(June through August; previous year). In the
Southwest, we shifted seasons later by one
month (spring ¼ April through June, winter ¼
January through March, fall ¼ October through
December, summer ¼ July through September)
due to earlier warming and shifts in seasonal
precipitation due the North American Monsoon
(Sheppard et al. 2002).

We derived soil moisture from a modeled time
series produced by the surface water monitor
(SWM; Wood 2008), a real-time hydrologic
simulation system that incorporates the variable
infiltration capacity (VIC) hydrologic model
(Liang et al. 1994). For each fire, we identified
the VIC half-degree (latitude and longitude) grid

cell containing the approximate center of the fire,
and extracted daily soil moisture values at three
depths (0–10 cm, 10–40 cm, 40–100 cm). At each
of these depths, for the 10-day period starting
with the detection date for each fire, we
calculated both 30-year percentiles (with respect
to 1960–1999) and 30-day seasonal percentiles
(with respect to the previous 30 days).

We acquired fire weather variables for each fire
from the 32-km2 North American Regional
Reanalysis (NARR) dataset (Mesinger et al.
2006; Appendix A). For the 10-day period
starting on the detection date of each fire, we
determined the maximum and mean values of
the Fosberg fire weather index (FFWI; Fosberg
1978) and wind speed, and the number of days
with FFWI above the 90th percentile and wind
speed above 20 miles per hour.

Prior to modeling, we eliminated variables that
were highly correlated with others (Spearman’s
rho . 0.75). From the 36 candidate climate and
weather variables, we retained between 22 and
26 in each ecoregion (Appendix A).

Influence of topography, climate, and weather
on burn severity: statistical analysis

We used Random Forests (Breiman 2001), an
extension of classification and regression trees, to
investigate the influence of topographic, climatic,
and fire weather variables on burn severity, using
the Random Forest package (Liaw and Wiener
2002) for R (R Development Core Team 2010). As
a data-mining algorithm, Random Forest has
several advantages over other statistical meth-
ods. It has been increasingly advocated in recent
years for ecological questions that require non-
parametric techniques and involve complex
interactions between many variables (e.g., Prasad
et al. 2006, Cutler et al. 2007, Holden et al. 2009).
Random Forest excels at uncovering inherent
relationships and structure in data that may have
hierarchical or non-additive variables (Prasad et
al. 2006), and is specifically designed to produce
accurate predictions that do not overfit the data
(Breiman 2001). Using a binary response variable
(RdNBR classified as high severity versus not),
we tested our ability to explain whether or not
individual pixels burned as high severity. For all
combinations of our six ecoregions and our three
categories of fire year (all, big, other), we
constructed one set of models using just topo-
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graphic predictors and another set with topo-
graphic, climatic, and weather predictors. This
enabled us to measure whether the addition of
coarse-scale climate and weather data could
improve our ability to predict the spatial occur-
rence of severe fire from topography alone.

Our independent observations were a random
subset of 2 million pixels (1 million each from the
Northwest and Southwest), from which we drew
stratified random samples for each ecoregion.
Our target was 24,000 pixels per ecoregion: 3,000
pixels in each of eight strata (four potential
vegetation (ESP) groups by two burn severity
classes, all resolved to the pixel level). The actual
number of pixels ranged from 18,163 to 24,000
because some ecoregions include only small
areas of certain ESP groups (Fig. 2). For each
sample pixel, we extracted fine-scale topographic
data (derived in or surrounding that pixel) and
coarse-scale climate and weather data (one value
for each weather and climate variable across an
entire fire), as described above.

To assess the relative influence of individual
predictors on burn severity, we examined vari-
able importance rankings from Random Forest
models. Within each model, Random Forest
calculates variable importance by randomly
permuting the values of each variable, one at a
time, and calculating the change in overall model
performance (mean decrease in accuracy for
binary models) as a result. In each of our
modeling scenarios (i.e., given combination of
ecoregion, fire years, and predictors) we pro-
duced stable rankings of predictor variables by
running 10 replicate Random Forest models with
all predictors (each with 2,000 classification
trees). We used the median of Random Forest’s
permutation variable importance measure across
all 10 replicate models to: (1) assign a final
importance ranking to each variable; and (2)
place variables into 10 importance groups (1 ¼
most important variables; 10 ¼ least important
variables), using k-means clustering based upon
importance values.

In each modeling scenario, we identified the
optimal model (i.e., fewest predictors that could
best predict the occurrence of severe fire) by
running a model selection routine that tested the
performance of models with successively fewer
predictor variables, starting with all 10 groups
(from k-means clustering) and at each successive

round eliminating the least important group. We
used five replications of five-fold cross-validation
at each round of model selection to avoid
problems of overfitting that can occur from using
Random Forest’s out-of-bag error to compare
models in this type of iterative performance
assessment (Svetnik et al. 2004). In all cases, we
used 2,000 classification trees per model. We then
identified the optimal model as the one with the
smallest set of predictors that resulted in model
error within one standard error of the minimum
(Breiman et al. 1984, De’ath and Fabricius 2000).
Our approach to model selection is similar to
other efforts (Diaz-Uriarte and Alvarez de
Andres 2006, Murphy et al. 2010), but unique in
using cross-validation and variable groupings
derived from k-means clustering.

To assess the relative performance of our
model results, we used three measures of
accuracy, averaged across the cross-validated
replicates of the optimal models: overall percent-
age correctly classified (PCC), kappa, and area
under the receiver operating characteristic curve
(AUC). Given that our models have a binary
response with relatively balanced samples in
each response category (high severity versus
not), we expected PCC and AUC values to range
from 0.5 (50% accuracy expected at random) to
1.0 (perfect accuracy). We assumed that AUC
values of .0.7, 0.8, and 0.9 indicate fair, good, or
excellent accuracy, respectively (Swets 1988). We
used kappa values to indicate the degree to
which correct classifications are due to chance
alone, with 0.0 being pure chance and 1.0 being a
perfect classification (Cohen 1960).

To evaluate the influence of specific variables
on burn severity, we generated partial depen-
dence plots from our optimal Random Forest
models. These plots display the relationship
between individual predictors and the likelihood
of high severity fire, showing how different
values of each predictor affect the response while
holding other variables constant at their average
(Cutler et al. 2007).

Did fire extent and severity increase
from 1984 to 2006?

Given recent increases reported in wildfire
area burned (Littell et al. 2009) and burn severity
(Miller et al. 2009b), we tested our MTBS dataset
for trends in area burned, area burned severely,
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and proportion of area burned severely. We log-
transformed area burned and area burned
severely to satisfy the normality assumptions of
our statistical tests. We first assessed whether
two annual measures of severity, area burned
severely and proportion of area burned severely,
were significantly correlated with area burned in
years that had fire (Pearson’s correlation, a ¼
0.05). We then tested for significant trends (a ¼
0.05) in all three measures over the period of
record (1984 to 2006) using the p-value of the
slope estimate from a simple linear regression of
each measure against year. In cases where
residuals from simple linear models were auto-
correlated (Durbin-Watson test, a ¼ 0.05), we
used generalized least squares regression in-
stead, with a first-order autoregressive moving
average correlation structure.

RESULTS

Influence of topography, climate, and weather
on burn severity

Across all ecoregions, topography had the
most influence on the probability of a location
having high burn severity, but climate before and
during the fire also contributed significantly (Fig.
5A; Appendix B). Models including only topog-
raphy had kappas �0.37 (PCC � 0.69, AUC less
than fair to fair) whereas models that also
included climate and weather performed better,
with kappa � 0.39 (PCC � 0.70, AUC fair to
good). While these results were consistent across
our study area, our ability to accurately predict
the occurrence of severe fire varied somewhat
among ecoregions. Topography and climate less
accurately captured the occurrence of severe fires
in the Northwest than in the Southwest (kappa �
0.43 versus � 0.44; PCC � 0.72 versus � 0.72 and
AUC fair versus good; respectively).

With few exceptions, topographic variables
had more predictive power than climate and
weather variables (Table 1; Appendix B). The full
set of topographic variables was almost always
included in the best models and almost all of
them ranked higher than the climate and weather
variables (Table 1). For all models, the top five
topographic variables always included elevation
in the first or second rank followed by the macro-
scale topographic position index (2000 m), often
in second rank. These variables underscore the

importance of broad-scale topographic setting

(i.e., a point’s location relative to its surroundings

on a scale of kilometers) for burn severity among

fires at the scale of our ecoregions. Likewise,

macro-scale (810 m), but not finer, topographic

complexity indices (dissection and elevation

Fig. 5. Overall performance of Random Forest

models. (A) Models with just topographic variables

versus models with topography, climate, and weather

variables for all years. (B) Models with topography,

climate, and weather variables for big years versus

other years. Model performance metrics are kappa

(bars), percent correctly classified (PCC; black trian-

gles), and area under the receiver operating character-

istic curve (AUC; red circles).
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relief ratio) were among the top five variables in
all but the models from the Inland Northwest
and the Northern Rockies. Pixel-scale slope and
aspect variables were also included in the top
five variables in all models, indicating an
important influence of finer-scale topography as
well. Climate variables were included in all of the
best models, and always included conditions
both before and during fires. However, two fire
weather variables (wind speed and FFWI) were
rarely important, and were included only in
models for the Inland Northwest and Northern
Rockies. Antecedent temperature and precipita-
tion variables were included in the best models
for all ecoregions. The models for every ecor-
egion also included event-proximal climate var-
iables, but the specific variables selected varied
among regions.

We were better able to predict burn severity
during years other than big years across all
ecoregions (Fig. 5B). Models using topography,
climate, and weather variables had kappas �0.44
(PCC � 0.72, AUC generally good to excellent)
for other years, compared to kappas �0.37 (PCC
� 0.68, AUC fair to good) for big years. However,
this difference was greater in some ecoregions
(Pacific and Mogollon Rim), consistent with the
large difference in area burned during other
versus big years in these ecoregions compared to
the other ecoregions (Fig. 4). Overall, the

importance of individual variables was similar
among models constructed for big, other, and all
years, with topographic variables consistently
more important than climate or weather vari-
ables (Table 1; Appendix B).

The specific influence of individual topograph-
ic variables on burn severity was fairly consistent
among ecoregions but varied between big years
versus other years (Fig. 6). With the exception of
the Inland Northwest ecoregion, the probability
of severe fire is generally higher across the full
range of topographic variables in big years than
in other years. In most ecoregions, the highest
probability of severe fire in other years is often
constrained to upper elevations, but shifts to-
ward lower elevations (and covers a broader
elevation range) in big years. This shift in
elevation is strongest in the Mogollon Rim and
Southern Rockies ecoregions, is most subtle in
the Pacific ecoregion, and is reversed in the
Inland Northwest. Regardless of year, severe fire
is generally more likely at sites with low to
moderate heat load (generally northwest through
southeast aspects). The influence of heat load,
however, is reversed for other years in the Pacific
ecoregion, where the probability of high severity
is greatest on the warmest southwest aspects.

Among ecoregions, the role of climate vari-
ables is inconsistent in other years, but we did
observe some consistent patterns in big years

Table 1. Relative importance of predictors for Random Forest models relating topography, climate, and weather

to burn severity, grouped by categories of fire year (all, big, other) and ecoregion.

Variable

All Big Other

p in nr sr cp mr p in nr sr cp mr p in nr sr cp mr

Conditions during fire
Temperature . . . L . . . L L . . . . . . . . . . . . L . . . . . . L . . . . . . L L . . .
Precipitation . . . L vl . . . . . . L . . . . . . . . . . . . L L . . . L . . . . . . . . . . . .
Soil moisture L L L L . . . . . . . . . . . . L L L L . . . L . . . . . . L L
FFWI . . . L . . . . . . . . . . . . . . . L . . . . . . . . . . . . . . . . . . M . . . . . . . . .
Wind speed . . . L — . . . . . . . . . . . . . . . — . . . . . . . . . . . . . . . — . . . . . . . . .

Antecedent conditions
Temperature L L L L L L L L L . . . L L L L M M L . . .
Precipitation L L L L L L L L L L L L L L H L L L

Topography
Elevation H H H H H H H H H H H H H H H H H H
Slope/aspect H H H H H H H H H H H H H H H H H H
Position H H H H H H H H M H H H H H H H H H
Complexity H M M H H H H M M H H H H M M H H H

Notes: Values reflect the highest importance ranking in each category of variables. H¼ high importance (rank of 1–5), M¼
moderate importance (6–10), L¼ low importance (11–20), vl¼ very low importance (included, but rank . 20), ellipsis (. . .) ¼
variables not selected, dash (—)¼variables not included in a particular ecoregion due to high correlations with other variables.
Ecoregions are: p¼ Pacific, in¼ Inland Northwest, nr¼Northern Rockies, sr¼ Southern Rockies, cp¼Colorado Plateau, mr¼
Mogollon Rim.
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(Fig. 7). In the Mogollon Rim and Southern

Rockies, severe fire is much more likely under

hot and dry conditions, with below normal

precipitation before the fire (previous month or

spring) and higher than normal temperatures just

before or during the fire. We also found higher

Fig. 6. Random Forest partial dependence plots for selected topographic variables. Plots indicate the

dependence of the probability of severe fire on one predictor after holding all other predictors in the model at

their average. Solid lines represent models for widespread (big) fire years, and dotted lines represent models for

other years. See Cutler et al. 2007 for an explanation of the y-axis metric.
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Fig. 7. Random Forest partial dependence plots for selected climate variables in big fire years. Plots indicate the

dependence of the probability of severe fire on one predictor after holding all other predictors in the model at

their average. Temperature and precipitation variables represent departure from 1950 to 2006 averages (units are

standard deviations). Soil moisture is a percentile, calculated for the 10 days starting with the fire detection date,

relative to 1960 to 1999 values for the same dates. See Cutler et al. 2007 for an explanation of the y-axis metric.
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probabilities of severe fire related to dry condi-
tions in the Colorado Plateau and Northern
Rockies, indicated by below normal precipitation
in the previous month and deep soil moisture
deficits at the time of fire, respectively. In other
cases, antecedent climate may be contributing to
growth of fine and herbaceous fuels. For exam-
ple, in the Inland Northwest we found increased
probability of severe fire with cooler tempera-
tures in the previous month and slightly above
average precipitation in the previous spring. For
all variables (topography and climate), relation-
ships between individual predictors and burn
severity are generally non-linear and indicate
possible thresholds.

Did fire extent and severity increase
from 1984 to 2006?

Annual area burned severely is closely related
to area burned (Fig. 4, top half of panels), while
the proportion of area burned severely is
generally more independent of area burned
(Fig. 4, bottom half of panels). Annual area

burned and area burned severely were signifi-
cantly correlated in all ecoregions, with Pearson’s
correlation ranging from 0.86 to 0.97 (p , 0.001;
Table 2). However, we found significant correla-
tions between area burned and the proportion of
area burned severely only in the Northern
Rockies (r ¼ 0.45, p ¼ 0.037) and Southern
Rockies (r ¼ 0.81, p , 0.001).

Generally, only ecoregions in the Southwest
showed evidence of an increase in annual area
burned and area burned severely, and fires
trended toward higher severity (i.e., higher
proportion burned severely) in just one of the
three Southwest ecoregions. From 1984 to 2006,
the increasing trend in annual area burned and
area burned severely was only significant in the
Southern Rockies, Mogollon Rim, and Colorado
Plateau ecoregions (p � 0.036; Table 2). The
increasing trend in proportion burned severely
was only significant in the Southern Rockies (p¼
0.011). We found no significant temporal trends
in area burned or area burned severely for the
three Northwest ecoregions during this period

Table 2. Results from the analysis of temporal trends in annual fire metrics from selected MTBS fires by ecoregion,

1984–2006.

Parameter

Linear trend Correlation with area burned

Slope p r p

Pacific
Area burned 0.17 0.206 — —
Area high severity 0.19 0.110 0.91 ,0.001
Proportion high severity 0.42 0.390 0.28 0.280

Inland Northwest
Area burned 0.11 0.209 — —
Area high severity 0.11 0.166 0.97 ,0.001
Proportion high severity �0.05 0.906 �0.24 0.278

Northern Rockies
Area burned 0.05 0.566 — —
Area high severity 0.05 0.582 0.97 ,0.001
Proportion high severity 0.04 0.923 0.45 0.037

Southern Rockies
Area burned 0.30 0.002 — —
Area high severity 0.31 ,0.001 0.96 ,0.001
Proportion high severity� 1.14 0.011 0.81 ,0.001

Colorado Plateau
Area burned� 0.30 0.036 — —
Area high severity� 0.28 0.036 0.86 ,0.001
Proportion high severity 0.47 0.444 0.34 0.141

Mogollon Rim
Area burned 0.21 0.006 — —
Area high severity 0.31 ,0.001 0.90 ,0.001
Proportion high severity 0.53 0.174 0.39 0.071

Notes: Evidence for linear trend is suggested by the p-value of the slope estimate from linear regressions against year. We
used Pearson’s correlations to test for correlation with annual area burned in years that experienced fire. For the two area
metrics, we performed a log transformation prior to statistical tests. Bold typeface indicates significant results at a¼ 0.05.

� These series displayed autocorrelation in the residuals from a simple linear regression (p , 0.05 in Durbin-Watson test),
and we used a generalized least squares regression instead, with a first-order autoregressive moving average correlation
structure.
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(Table 2). We found very similar results when we
repeated these analyses using more conservative
non-parametric methods (Kendall’s tau for cor-
relations; Mann-Kendall test for trends; results
not shown).

DISCUSSION

Both topography and climate were drivers
of burn severity

Topographic variables were consistently im-
portant in modeling where fires burned severely
from 1984 to 2006 in the Northwest and
Southwest United States, despite the great
diversity in vegetation and land use across these
large regions. Topography affects the spatial
distribution of fuels at the fine spatial scale at
which fire interacts with the landscape, and also
affects local wind and weather patterns which
are poorly represented in our temporally and
spatially coarse weather and climate variables.
Climate associated with individual fires, while
somewhat less important than topography, in-
creased the predictive ability of our models in all
cases. While our results varied considerably
among ecoregions, it is remarkable that together,
topography and climate variables alone predict-
ed the occurrence of high severity fire with
overall accuracies ranging from 68% in the Pacific
to 84% in the Mogollon Rim, despite the lack of
data on fine-scale weather, fuels, and vegetation.
Our findings are consistent with Holden et al.
(2009), who predicted the occurrence of high
severity fire with 65–74% accuracy on the Gila
National Forest in New Mexico, using only
topographic indices. While these accuracies are
marginal for predictive modeling with a binary
response, they suggest that with better integra-
tion of topography, climate, weather, and fuels,
there is strong potential for the development of
predictive burn severity models.

Across ecoregions, the influence of topography
on burn severity seen in our models was
generally consistent with our expectations, with
some exceptions. For example, in average years
in most ecoregions, sites at higher elevations that
support cold and mesic forest species have a high
probability of burning severely (Fig. 6), consis-
tent with findings from the Southwest United
States (Holden et al. 2009), the Rocky Mountains
(Bigler et al. 2005), and the Pacific Northwest

United States (Pickford et al. 1980, Kushla and
Ripple 1997). Likewise, previous studies have
found high burn severity more on north-facing
slopes than south-facing slopes in Southwest and
Rocky Mountain ecosystems (Bigler et al. 2005,
Holden et al. 2009: Fig. 3), and we generally
found the highest probability of severe fire on
sites with cooler aspects as well. The relatively
cool and wet environment of upper elevations
and northerly aspects can result in more total
biomass available to burn than in more open
forests and woodlands at lower elevations and
warmer aspects. Although the cooler and wetter
sites burn less often, when they do burn they are
more likely to experience crown fires, resulting in
a higher degree of change. However, there are
exceptions. For example, extreme weather condi-
tions found in widespread fire years can increase
the probability of high severity fire at lower
elevations in most ecoregions (Fig. 6). Also, in the
Pacific ecoregion the probability of severe fire is
sometimes highest on the warmest aspects,
consistent with a fire history from the Klamath
Mountains of California that also found that
south- and west-facing slopes historically expe-
rienced more severe fires than other aspects
(Taylor and Skinner 1998). In relatively mesic
environments, such as the Pacific ecoregion and
Northern California, productivity can be high on
all aspects and fuel is not a limiting factor.
Therefore, when all slope aspects are available to
burn during the summer droughts characteristic
of the Mediterranean climate there, it is likely
that the drier conditions found on warmer
aspects can lead to an increased probability of
severe fire on those sites.

Our models indicate that weather and climate
at the time of fire, as well as antecedent
temperature and precipitation, exert some influ-
ence on burn severity. Likely, the type of coarse-
scale weather and climate variables we analyzed
condition fuels and make them available for
burning (i.e., relatively wet conditions that lead
to an abundance of fine fuels or relatively warm
and dry conditions that decrease fuel moistures).
This idea is supported by partial dependence
plots, which isolate the influence of individual
climate variables and indicate non-linear shifts in
the probability of severe fire with weather and
climate (Fig. 7). A good example is the Southern
Rockies ecoregion, where the probability for
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severe fire is relatively low until the minimum
temperature in the month of fire approaches one
standard deviation above normal. At that point,
fuels have presumably become dry enough to
carry fire, and the probability of severe fire
increases and stays high as temperatures in-
crease. Similarly, the probability of high severity
increases sharply in all Southwest ecoregions
when precipitation during the previous month or
spring drops below average, consistent with the
suggestion from Holden et al. (2007) that the
likelihood of high severity in the Gila Wilderness,
New Mexico increases with longer rain-free
periods. In our three Northwest ecoregions,
where the maritime influence on climate changes
from west to east, the direct effects of weather
and climate on severity are more variable and
difficult to interpret. Some variables, such as
deep soil moisture in the Northern Rockies
indicate higher probability for severe fire during
periods of drought, while variables in the Inland
Northwest suggest an association between in-
creased severity and relatively cool, moist condi-
tions in the months prior to fire, and variables in
the Pacific ecoregion suggest that climatic condi-
tions during to the previous fall may influence
severity.

The non-linear relationships of topography
and climate to burn severity observed in our
analysis may be due to tipping points. For
topographic variables, non-linear relationships
observed in partial dependence plots may simply
reflect that relatively small changes in topogra-
phy can result in sharp transitions between
ecosystems. Alternatively, the non-linear relation-
ships may be due to the multi-modal distribution
of some topographic variables. For climate
variables, our observation of thresholds is con-
sistent with the notion that critical shifts in fuel
moisture conditions can directly influence fire
occurrence and behavior (Holden et al. 2007),
evident in climatologically-based fire danger
rating indices used in predicting the probability
of fire occurrence (Andrews et al. 2003).

Some of the topographic variables in our
analysis may act as indirect proxies for more
direct, physically-based variables that would
better capture interactions among topography,
climate, and weather and their effects on fire
behavior and burn severity. For example, the
topographic dissection indices used here have

been related to the location of snow drifts, as well
as patterns of nocturnal air temperatures (e.g.,
cold air drainage) and relative humidity in the
northern Rockies (Holden et al. 2011). Many fine-
scale topoclimatic and biophysical variables (e.g.,
snowmelt timing, snow drifts, nocturnal air
temperatures, and wind fields) influence fuel
moistures, fire behavior, and fire intensity at fine
spatial scales in mountainous terrain, but data on
these are not currently available at the resolution
needed to compare directly with 30-m burn
severity data across broad regions. We attempted
to account for the complex interactions among
terrain, climate and burn severity by combining
climate and weather variables with topographic
complexity and position indices in a machine
learning environment. Although specific inter-
pretations about mechanistic processes are diffi-
cult from this modeling approach, it has some
utility in fingerprinting the conditions or situa-
tions that yield high severity fire in a given
location. Future analyses and development of
predictive models of burn severity will benefit
from having physically-based variables related to
soil and fuel moisture prior to and during the fire
(Keane et al. 2010). In regions of complex
topography, additional data and models will be
needed to capture topographic variation in
temperature, humidity and snowmelt timing at
the scale of terrain (Holden and Jolly 2011).
Additionally, vegetation type and structure clear-
ly influence burn severity (Bigler et al. 2005,
Thompson and Spies 2010). Although reconstruc-
tion of pre-fire vegetation and fuel conditions is
currently difficult over the large spatial and
temporal domains assessed here, these could be
inferred using remote sensing indices such as the
normalized differenced vegetation index (Rouse
et al. 1973). Our ability to forecast the severity of
future fires will likely improve when our
analyses include climate and weather data of
much higher spatial resolution, along with
variables describing pre-fire vegetation condi-
tions (e.g., local fuels, vegetation type, and prior
disturbances).

Severe fire is more likely,
and spatial occurrence is less predictable,
in widespread fire years

Our ability to predict whether a pixel burned
severely was consistently lower during years of
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widespread fire, or framed another way, fire
burned more indiscriminately in big years.
Consistent with that finding, the probability of
severe fire occurrence in all ecoregions is higher
across a range of topographic conditions during
those years (Fig. 6). The probability of a location
burning or burning severely, in reality, is condi-
tional on many factors including ignition, ante-
cedent climate, and weather, interacting with
topography, fuels, and vegetation. Decisions
about fire management and availability of
suppression resources also play an important
role. Based on our results, we speculate that in
dry years, landscape and topographic controls on
fire spread and intensity are diminished, with
regional-scale climatic variation overwhelming
local-scale biophysical and topographic con-
straints, as has been reconstructed for the extent
of past fires elsewhere (Taylor and Skinner 2003).
In relatively cool, wet fire seasons for example,
north-facing slopes at high elevation are unlikely
to burn due to delayed snowmelt timing, low
solar insolation, low vapor pressure deficit, and
low surface air temperatures (Holden and Jolly
2011). Thus, until climatic and moisture condi-
tions become conducive to fire spread on a large
enough portion of the landscape, as occurs in big
years, terrain can impose spatial constraints on
fire spread and intensity, limiting the influence of
short term weather and climate factors.

While somewhat intuitive, our finding that
topography exerts strong control on burn sever-
ity under moderate climatic conditions has
profound implications for how we manage
wildfires in the future. Under current fire
management practices, suppression tactics are
employed on most fires. As a consequence, most
wildfire area burned occurs during extreme
climatic conditions, likely with higher probability
of severe fire occurrence. While extensive, severe
fires are within the range of historical variability
in cold forest ecosystems, they would have
occurred less frequently in woodlands and mesic
forests with mixed-severity fire regimes, and
were rare in dry forest ecosystems (Schoennagel
et al. 2004, Keane et al. 2008). Our results suggest
that if more fires ignited under moderate
conditions in ecosystems that historically did
not sustain extensive, severe fires are allowed to
burn within topographic constraints, those fires
would have greater potential for serving benefi-

cial ecological roles and potentially reduce the
severity of subsequent fires that could burn
under more extreme conditions (Holden et al.
2010, Halofsky et al. 2011, Hurteau and Brooks
2011). In years that are not widespread fire years,
climatic conditions will be closer to long term
averages (Appendix A), and fires that are
allowed to burn during those years will likely
behave in a way consistent with expectations
based on local vegetation and fire regimes and
within the historical range of variation. In
contrast, in years of widespread fire, climatic
conditions will likely be further from normal and
fire behavior and effects will likely be more
uncharacteristic relative to historical regimes in
low-mid elevation forests and woodlands that
did not historically sustain extensive, severe fires
(Fig. 6).

These results also have important implications
for resilience of terrestrial and aquatic ecosys-
tems. If during the big years, during which most
area is burned, severely burned areas are not
regulated by fine-scale topographic features,
disturbance patches may be more continuous
and homogeneous than they were historically.
Uncharacteristically large severe patches can
more effectively disrupt both terrestrial (Turner
et al. 1997) and aquatic systems (Dunham et al.
2003) for longer periods of time. If the future
brings more big fire years, the proportion of area
severely burned may not increase, but how it is
arranged on the landscape may become a critical
ecological issue.

Has the extent of severe fire increased in
recent decades, and are fires becoming
more severe?

We found statistically significant increases in
the annual extent of severe fire from 1984 to 2006
in only the three Southwest ecoregions, and none
in the Northwest. By definition, more area
burned in the big fire years than in the other
years, and we observed a corresponding rise in
area burned severely during big years (Pearson’s
correlation 0.86–0.97). In the Southwest ecore-
gions, big years were concentrated in the later
portion of our time series, with five out of six big
years in each ecoregion occurring from 2000 to
2006 (Fig. 4). As a result, we see increases in
annual area burned severely during our time
period for these ecoregions. In the Northwest,
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where some big fire years occurred earlier in the
time series, we do not see significant trends. It is
important to note that these results are specific to
our relatively short time series and could be
different if data for a longer time period were
available.

Only in the Southern Rockies ecoregion did we
find evidence that fires are becoming more
severe. The majority of area burned in this
ecoregion was in the dry and mesic forest ESP
groups (Fig. 2) that would have generally
experienced low-severity and mixed-severity fire
regimes historically. Increased fuel loads in some
portions of these landscapes due to fire suppres-
sion and land use during the 20th century (Keane
et al. 2002, Schoennagel et al. 2004, Keane et al.
2008), combined with a shift toward drier
climatic conditions that began in 1998 (Hoerling
and Kumar 2003) could account for increased
burn severity in the Southern Rockies.

Based on the analyses from this study, we can
only speculate on the possible mechanisms
behind our observed trends. The shift toward
generally increased fire activity since approxi-
mately 2000 in the Southwest ecoregions (Fig. 4)
appears tied to low-frequency climatological
changes (decades to years) related to the El
Niño-Southern Oscillation (ENSO) and the Pacif-
ic Decadal Oscillation (PDO; Crimmins 2010).
Time series of ENSO and PDO indices indicate a
shift from positive to negative PDO in 1998,
coinciding with a shift from roughly two decades
dominated by higher frequency of El Niño events
to a period with stronger and more frequent La
Niñas (Hoerling and Kumar 2003, Crimmins
2010: Fig. 4). Consequently, the entire Southwest
region generally experienced much drier condi-
tions after about 1999, which could have contrib-
uted to the trends we observed for the Southwest
ecoregions. Conversely in the Northwest, active
fire years have historically been associated with a
positive PDO phase, sometimes aligned with El
Niño conditions (i.e., years when the Northwest-
Southwest precipitation dipole is strongest, with
warm dry conditions in the Northwest and wet
conditions in the Southwest; Heyerdahl et al.
2008, Morgan et al. 2008). Although these
historical fire-climate relationships are somewhat
weaker in the Northwest than the Southwest,
particularly during the 20th century in some
places (Hessl et al. 2004), they provide some

explanation for the lack of trends we observed in
the Northwest.

It is difficult to determine whether the annual
extent or proportion of severe fire is within the
historical range of variability for any of our
ecoregions. Our data span only 23 years. From
this short time series alone, we cannot say
whether the increases in extent and severity that
we observed in the Southwest exceed historical
patterns. In the context of longer-term recon-
structive studies, however, it appears that our
results are consistent with others that have
shown increases in annual area burned in the
Southwest in recent decades that are unprece-
dented in the last century (Swetnam and Betan-
court 1998). Likewise, in open ponderosa pine
forests in the Southern Rockies, where severe fire
was historically limited by fuel availability, the
increase we observed in proportion of severe fire
likely represents a departure from historical fire
regimes (Schoennagel et al. 2004). In forests with
a historically mixed-severity fire regime (e.g.,
Douglas-fir), however, the occurrence of high
severity fire may be within the historical range of
variability, but the extent of high severity patches
may not be (Schoennagel et al. 2004, Schoennagel
et al. 2011). In the Northwest, the fact that we
found no apparent increases in extent or propor-
tion of severe fire corroborates previous work
demonstrating that fire dynamics from recent
decades are within historical ranges there (Keane
et al. 2008, Morgan et al. 2008).

Scope and limitations
Inferring burn severity from remotely sensed

data is appealing because we can compare many
fires over multiple vegetation types and regions,
each with a range of land use and history.
However, there are some important limitations
to our study. First, there is great variation in the
timing of the satellite imagery from which burn
severity was estimated. We imposed somewhat
broad constraints on timing of imagery to ensure
that pre- and post-fire images were compared
that were one year apart (6–18 months) and
when vegetation was in the same phenological
condition pre- and post-fire (660 days). These
constraints resulted in the elimination of 253 fires
(502,095 ha) from our analysis. We could have
used tighter constraints, but this would have
resulted in still fewer fires to analyze. Second, in
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some ecoregions, most of the area burned in just
a few individual fires that may have exerted a
strong influence on our results. For example, the
2002 Biscuit fire in Oregon accounted for
;147,000 ha, or 38% of burned area in the Pacific
ecoregion. Likewise, the greater Yellowstone fires
of 1988 burned ;660,000 ha (25% of area burned
in the Northern Rockies), the 2002 Rodeo-
Chedeski fire in Arizona burned ;172,500 ha
(21% of area burned in the Mogollon Rim), and
the 2002 Hayman Fire in Colorado burned
;53,500 ha (16% of area burned in the Southern
Rockies). Excluding these large single fire events
would have greatly decreased the pixels avail-
able for our analysis. Third, we do not know the
accuracy of the burn severity classification across
all events. The thresholds we used for defining
severe fires are based on geographically limited
field data. Further field testing and assessment of
the value of RdNBR as an indicator of ecological
change is needed. Hudak et al. (2007) found that
dNBR and post-fire NBR were reasonable metrics
of burn severity when using data on vegetation
and soil effects immediately and one year post-
fire in eight different large fires from Montana,
California, and Alaska. More such studies are
needed for longer-term assessment of fire effects.
Keeley et al. (2008) found that RdNBR accuracy is
limited in shrublands where resprouting occurs,
but RdNBR has been tested successfully in
forests, woodlands, and sagebrush shrublands
in California (Miller and Thode 2007, Miller et al.
2009a) and sagebrush steppe in Idaho (Norton et
al. 2009). Fourth, it is possible that the consis-
tently higher performance of topographic vari-
ables in the Random Forest models is an artifact
of the difference in spatial scale. Topographic
variables were at the same spatial resolution (30-
m) as the fire data, while the climatic variables
were coarser. Also, by not including maps of
actual vegetation type, structure, and fuels we
ignore many landscape factors (e.g., previous
fires, thinning, timber harvest, and insect-in-
duced tree mortality) that would likely influence
satellite-inferred burn severity. Not accounting
for these variables likely contributed additional
noise to our data. It is possible that some areas
burned severely in part because they have
experienced few fires in recent decades, or
because prior and existing land uses affect the
likelihood that they burn, somewhat obscuring

the influence of the particular topographic and
climate conditions under which those fires
burned. Finally, many of these fires represent
those that escaped initial suppression efforts.
Thousands more were successfully stopped
before reaching mapable size. We may never
know how spatial burn severity patterns of those
fires, potentially burning under more moderate
climatic conditions would have differed from
those fires that did burn.

Implications for future research
We expected and found that the influences of

climate and topography on burn severity differed
from their influences on fire occurrence and
extent. This is consistent with our hypothesis
that while climate strongly influences area
burned, topography, vegetation, land use, and
other local conditions are relatively more impor-
tant than climate in determining how fires burn.

The effects of warming climate and lengthen-
ing fire seasons are likely to increase the number
of large fires (Westerling et al. 2006). Conse-
quently, the area burned severely could increase,
with potentially great but not well understood
ecological consequences for severity of subse-
quent fires, vegetation structure and composi-
tion, carbon, acquatic ecosystems, and other
ecosystem services. Until we develop an under-
standing of the relative influence of topography,
climate, vegetation, fuels and land use on fire
extent and burn severity, our response to these
large fires will be driven by the perception of
fires as largely detrimental. Understanding the
role of topography will be particularly important.
To the extent that topography directly influences
burn severity, burn severity will be relatively
stable even as climate changes. In so far as
topography is acting indirectly by shaping fuels
and vegetation productivity, our management
actions will have potential to alter the way fires
burn across the landscape (Wimberly et al. 2009,
Hudak et al. 2011), perhaps moreso in some
environments than others (Schoennagel et al.
2004).

Our study is one of many recent efforts using
satellite-derived data to address questions about
burn severity (e.g., Holden et al. 2009, Wimberly
et al. 2009; Miller et al., in press). Although fire
occurrence, synchrony, and extent have been
related to climate at regional and sub-continental
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scales (Kitzberger et al. 2007, Littell et al. 2009,
Littell et al. 2010), relatively few studies have
focused on burn severity at these scales (but see
Miller et al. 2009a). Moving forward, studies such
as ours that include information on pre-fire fuels
and vegetation, as well as finer-scale climate and
weather, will be important. Analyses for partic-
ular vegetation types and/or elevation ranges
may also be useful, as both recent trends and
drivers of burn severity may differ among
ecosystems (Miller et al. 2009b), just as drivers
of fire occurrence differ with vegetation type
(Littell et al. 2009). Further, future investigations
of burn severity across broad spatial and
temporal scales may be improved by evaluating
shifts in the statistical distribution of continuous
RdNBR and dNBR values, rather than assessing
severity as a binary or ordinal phenomenon
(Holden et al. 2010, Lutz et al. 2011). Compara-
tive studies among regions are needed, as are
local case studies that help advance understand-
ing of the ways that climate, topography, land
use, vegetation and prior disturbance interact to
influence ecological effects of fire.
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SUPPLEMENTAL MATERIAL

APPENDIX A

DETAILS REGARDING INPUTS TO THE ANALYSIS

The four potential vegetation (ESP) groups we
used to identify forest and woodland sites for
this study include numerous LANDFIRE ESP
map units. A complete listing of the specific ESP
units within each group, and their total area
within burned areas, is provided for the North-
west (Table A1) and Southwest (Table A2).

For Random Forest modeling, we considered a
total of 16 topographic variables and 36 climate
and weather variables as predictors. Prior to
running Random Forest models, we evaluated
the correlation between individual variables in
each ecoregion, to eliminate redundancy. We
provide complete lists of all candidate topo-
graphic variables (Table A3), and climate and
weather variables (Table A4), with details about
which ones were retained for modeling in each
ecoregion and source information for specific
datasets.

In designating years as widespread (big) fire
years, we evaluated monthly normalized tem-
perature and precipitation data. Within each
category of years, we averaged the monthly
normalized values of minimum temperature,
maximum temperature, and precipitation for
the year of fire and the preceding year (Fig. A1).

Fire weather variables including daily maxi-

mum windspeed, minimum relative humidity
(RH) and the maximum temperature were ex-
tracted from the North American Regional Re-
analysis (NARR) data. The NARR is long-term,
internally consistent data produced through the
assimilation of observational and modeled climate
data to a gridded domain (32-km2 grid resolution)
at three hourly timesteps (Mesinger et al. 2006).
Hall and Brown (2007) compared NARR data to
observations collected by Remote Automated
Weather Stations (RAWS) across the western
United States and found that most meteorological
variables were well correlated, suggesting that
NARR data could be useful in wildfire research
and management applications.

We used NARR data to evaluate wildfire event
weather conditions by extracting time series from
the grid cell that matched the initial location and
start date for each fire as specified in the MTBS
data. Fire weather conditions were evaluated
within a 10-day window from the initial fire
discovery date consistent with our assumpution
that extreme conditions were occuring at some
point during this period. Westerling et al. (2006)
reported that the average time between the
discovery and control of large wildfire events
across the western United States was 37.1 days
during the period of 1987 to 2003. It is likely that
most of the fires we included in our analysis were
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Table A1. LANDFIRE environmental site potential (ESP) map units within each grouping used in this analysis for

the Northwest.

ESP ESP code Area (ha) FRG� Elev

Low-dry woodlands (‘‘woodland’’)
Columbia Plateau western juniper woodland and savanna 1017 119,709 3 broad
Rocky Mt foothill limber pine-juniper woodland 1049 26,014 3 low
Great Basin pinyon-juniper woodland 1019 424 3 low
Inter-Mt Basins juniper savanna 1115 41 3 low

Mid-dry forest and woodland (‘‘dry forest’’)
N Rocky Mt dry mesic montane mixed conifer forest 1045 949,327 1 mid
N Rocky Mt ponderosa pine woodland and savanna 1053 157,935 1 mid
Med Calif mixed evergreen forest 1043 151,300 1 low-mid
Med Calif dry mesic mixed conifer forest and woodland 1027 66,411 1 mid
Med Calif mesic mixed conifer forest and woodland 1028 64,628 1 mid
Klamath-Siskiyou upper montane serpentine mixed conifer woodland 1022 16,274 1 mid
Med Calif lower montane black oak-conifer forest and woodland 1030 6,432 1 low-mid
Klamath-Siskiyou lower montane serpentine mixed conifer woodland 1021 5,936 1 mid
Calif montane Jeffrey pine(-ponderosa pine) woodland 1031 5,868 1 mid
N Rocky Mt foothill conifer wooded steppe 1165 4,286 1 low-mid
Med Calif mixed oak woodland 1029 2,606 1 low-mid
N Pacific oak woodland 1008 1,862 1 low-mid
East Cascades oak-ponderosa pine forest and woodland 1060 1,387 1 low-mid
Sierran-Intermontane Desert western white pine-white fir woodland 1172 680 1 mid-high
S Rocky Mtn dry mesic montane mixed conifer forest and woodland 1051 0 1 mid

Mesic forest and woodland (‘‘mesic forest’’)
Middle Rocky Mt montane Douglas-fir forest and woodland 1166 344,960 3 mid
Rocky Mt montane riparian systems 1159 93,968 3 broad
N Rocky Mt mesic montane mixed conifer forest 1047 81,009 3 low-mid
Rocky Mt subalpine/upper montane riparian systems 1160 69,787 3 upper
N Pacific Maritime dry mesic Douglas-fir-western hemlock forest 1037 50,111 3 low-mid
East Cascades mesic montane mixed conifer forest and woodland 1018 48,477 3 low-mid
Inter-Mt Basins montane riparian systems 1154 14,437 3 broad
Rocky Mt aspen forest and woodland 1011 13,930 4 broad
N Pacific dry mesic silver fir-western hemlock-Douglas-fir forest 1174 10,435 3 mid
Inter-Mt Basin curl-leaf mountain mahogany woodland and shrubland 1062 6,157 3 mid
Calif montane riparian systems 1152 5,103 3 mid
Inter-Mt Basins aspen-mixed conifer forest and woodland 1061 2,277 3 broad
Med Calif red fir forest 1032 2,133 3 high
N Pacific dry Douglas-fir(-madrone) forest and woodland 1035 1,196 3 low
Sierra Nevada subalpine lodgepole pine forest and woodland 1058 123 3 mid-high
Northwestern Great Plains aspen forest and parkland 1009 5 4 low
Rocky Mt Bigtooth maple ravine woodland 1012 2 3 mid

Cold/wet forest and woodland (‘‘cold forest’’)
Rocky Mt subalpine dry mesic spruce-fir forest and woodland 1055 903,137 4 high
Rocky Mt subalpine mesic wet spruce-fir forest and woodland 1056 648,406 5 high
N Rocky Mt subalpine woodland and parkland 1046 39,043 3 high
N Rocky Mt conifer swamp 1161 32,358 5 broad
Rocky Mt poor-site lodgepole pine forest 1167 29,653 4 mid-high
N Pacific mountain hemlock forest 1041 20,933 5 high
N Pacific maritime mesic wet Douglas-fir-western hemlock forest 1039 9,269 5 low-mid
N Pacific mesic western hemlock-silver fir forest 1042 5,957 5 mid
N Pacific montane riparian woodland and shrubland 1158 5,683 5 mid
N Pacific swamp systems 1157 2,172 5 broad
N Pacific lowland riparian forest and shrubland 1156 1,359 5 low
N Pacific wooded volcanic flowage 1173 934 5 broad
N Pacific hypermaritime western red cedar-western hemlock forest 1178 632 5 low
N Pacific maritime mesic subalpine parkland 1038 449 5 high
Med Calif subalpine woodland 1033 330 3 high
N Pacific broadleaf landslide forest and shrubland 1063 32 5 broad
N Pacific hypermaritime sitka spruce forest 1036 1 5 low

Notes: Areas reported are just from burned areas included in our study. Total areas for ESP groups shown are: woodland¼
146,187 ha; dry forest¼ 1,434,931 ha; mesic forest¼ 744,112 ha; cold forest¼ 1,700,347 ha. Other ESP groups appearing within
burned areas included in our study include: dry shrub (83,855 ha), grassland (81,783 ha), nonveg/alpine (73,881 ha), mesic shrub
(77,861 ha). Abbreviations are: Mt ¼Mountain; Med¼Mediterranean; Calif¼ California; N¼ north, northern; S¼ southern.

�FRG is historical natural fire regime group (1¼0–35 year frequency, low severity; 3¼35–200 year frequency, mixed severity;
4 ¼ 35–200 year frequency, stand-replacement severity; 5 ¼ 200þ year frequency, stand-replacement severity). Source:
LANDFIRE vegetation dynamics models (http://www.landfire.gov).
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actively burning and potentially influenced by
fire weather conditions during our 10-day
evaluation window. Fire weather variables ex-
amined included daily maximum temperature,
maximum wind speed, and minimum relative
humidity. The combined impact of these vari-
ables were also examined through the calculation
of a daily maximum Fosberg Fire Weather Index
(FFWI) value. The FFWI acts as a non-linear filter

of meteorological variables that support rapid
wildfire growth and can be used to discern
extreme fire weather conditions in a meteorolog-
ical time series (Fosberg 1978, Goodrick 2002,
Crimmins 2006). It is very similar in structure to
the National Fire Danger Rating System spread
component with higher values representing
higher potential rates of spread under more
extreme fire weather conditions.

Table A2. LANDFIRE environmental site potential (ESP) map units within each grouping used in this analysis for

the Southwest.

ESP ESP code Area (ha) FRG� Elev

Low-dry woodlands (‘‘woodland’’)
Colorado Plateau pinyon-juniper woodland 1016 212,536 3 low
Madrean pinyon-juniper woodland 1025 151,490 3 low
Great Basin pinyon-juniper woodland 1019 31,366 3 low
S Rocky Mt pinyon-juniper woodland 1059 10,005 3 low
Colorado Plateau pinyon-juniper shrubland 1102 7,717 3 low
Madrean juniper savanna 1116 1,135 3 low
Inter-Mt Basins juniper savanna 1115 712 3 low
Rocky Mt Foothill limber pine-juniper woodland 1049 49 3 low
S Rocky Mt juniper woodland and savanna 1119 0 3 low

Mid-dry forest and woodland (‘‘dry forest’’)
S Rocky Mt ponderosa pine woodland 1054 323,990 1 mid
S Rocky Mtn dry-mesic montane mixed conifer forest and woodland 1051 161,148 1 mid
Madrean lower montane pine-oak forest and woodland 1024 108,675 1 mid
S Rocky Mt ponderosa pine savanna 1117 30,747 1 mid
Madrean encinal 1023 14,085 1 mid
Madrean upper montane conifer-oak forest and woodland 1026 2,023 1 mid

Mesic forest and woodland (‘‘mesic forest’’)
S Rocky Mt mesic montane mixed conifer forest and woodland 1052 107,945 3 mid
Rocky Mt montane riparian systems 1159 45,449 3 low-mid
Rocky Mt gGambel oak-mixed montane shrubland 1107 24,910 3 mid
Inter-Mt Basins aspen-mixed conifer forest and woodland 1061 13,346 3 low-high
Rocky Mt aspen forest and woodland 1011 12,852 4 low-high
Inter-Mt Basin curl-leaf mountain mahogany woodland and shrubland 1062 10,944 3 mid
Rocky Mt bigtooth maple ravine woodland 1012 8,337 3 mid
Rocky Mt subalpine/upper montane riparian systems 1160 7,491 3 mid-high
Inter-Mt Basins montane riparian systems 1154 89 3 low-mid

Cold/wet forest and woodland (‘‘cold forest’’)
Rocky Mt subalpine dry-mesic spruce-fir forest and woodland 1055 75,593 4 high
Rocky Mt lodgepole pine forest 1050 3,840 4 high
Rocky Mt subalpine mesic-wet spruce-fir forest and woodland 1056 528 5 high
Rocky Mt subalpine-montane limber-bristlecone pine woodland 1057 433 3 high

Notes: Areas reported are just from burned areas included in our study. Total areas for ESP groups shown are: woodland¼
415,010 ha; dry forest ¼ 640,669 ha; mesic forest ¼ 231,362 ha; cold forest ¼ 80,394 ha. Other ESP groups appearing within
burned areas included in our study include: dry shrub (53,887 ha), grassland (5,439 ha), nonveg/alpine (4,909 ha), mesic shrub
(4,032 ha). Abbreviations are: Mt ¼Mountain; Med¼Mediterranean; Calif¼ California; N¼ north, northern; S¼ southern.

�FRG is historical natural Fire Regime Group (1 ¼ 0–35 year frequency, low severity; 3 ¼ 35–200 year frequency, mixed
severity; 4¼ 35–200 year frequency, stand-replacement severity; 5¼ 200þ year frequency, stand-replacement severity). Source:
LANDFIRE vegetation dynamics models (http://www.landfire.gov).
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Table A3. Candidate topographic predictor variables for all Random Forest models.

Variable Pacific
Inland

Northwest
Northern
Rockies

Southern
Rockies

Colorado
Plateau Mogollon Rim

Elevation � X X X X X X
Slope and aspect indices

Slope X X X X X X
Heat load index X X X X X X
Solar radiation aspect index X X X X X X
Slope cosine aspect index X X X X X X

Slope position indices
Hierarchical slope position X X X X X X
Compound topographic index X X X X X X
Topographic position index
150 m X X X X X X
300 m . . . . . . . . . . . . . . . . . .
2000 m X X X X X X

Topographic complexity indices
Dissection
90 m X X X . . . . . . . . .
450m . . . . . . . . . . . . . . . . . .
810 m X X X X X X

Elevation relief ratio
90 m X X X X X X
450 m X X X . . . . . . . . .
810 m X X X X X X

Note: For each ecoregion, an X indicates that the variable was used in Random Forest models, and an ellipsis (...) indicates
that the variable was eliminated prior to modeling due to high correlation (Spearman’s rho . 0.75) with other candidate
variables.

� 30 m2 digital elevation models acquired from LANDFIRE (http://landfire.cr.usgs.gov/viewer/), originally produced by the
USGS Elevation Data for National Applications program (http://edna.usgs.gov/).
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Table A4. Candidate climate and weather predictor variables for all Random Forest models.

Variable Pacific
Inland

Northwest
Northern
Rockies

Southern
Rockies

Colorado
Plateau Mogollon Rim

Climate�
Minimum temperature
Month of fire . . . . . . . . . X X X
Previous month . . . . . . . . . X X X
Spring, year of fire . . . . . . . . . X X X
Winter, year of fire . . . . . . . . . X X X
Fall, previous year X . . . X X X X
Summer, previous year . . . . . . X X X X

Maximum temperature
Month of fire . . . . . . . . . X X X
Previous month . . . . . . . . . X X X
Spring, year of fire . . . . . . . . . X X X
Winter, year of fire . . . . . . . . . X X X
Fall, previous year . . . . . . . . . X X X
Summer, previous year . . . . . . . . . X X X

Average temperature
Month of fire X X X . . . . . . . . .
Previous month X X X . . . . . . . . .
Spring, year of fire X X X . . . . . . . . .
Winter, year of fire X X X . . . . . . . . .
Fall, previous year X X X . . . . . . . . .
Summer, previous year X X X . . . . . . . . .

Total precipitation
Month of fire X X X X X X
Previous month X X X X X X
Spring, year of fire X X X X X X
Winter, year of fire X X X X X X
Fall, previous year X X X X X X
Summer, previous year X X X X X X

Soil moisture�§
0–10 cm
30-year percentile X X X X X X
30-day percentile X X X X X X

10–40 cm
30-year percentile X X X X X X
30-day percentile X X X X X X

40–100 cm
30-year percentile X X X X X X
30-day percentile X X X X X X

Fire weather}§
Fosberg Fire Weather Index
10-day mean . . . . . . . . . . . . . . . . . .
10-day max X X X . . . . . . . . .
Days . 90th percentile X X X X X X

Wind speed
10-day mean X X . . . . . . . . . . . .
10-day max X . . . . . . . . . . . . . . .
Days . 20 mph X X X X X X

Note: For each ecoregion, an X indicates that the variable was used in Random Forest models, and an ellipsis (...) indicates
that the variable was eliminated prior to modeling due to high correlation (Spearman’s rho . 0.75) with other candidate
variables.

� Normalized monthly values, relative to 1950–2006 averages (averaged to create seasonal variables). Spatial resolution ¼
interpolated for fire centroids (latitude, longitude, elevation) from weather station locations; temporal resolution ¼ monthly.
Source: Rehfeldt (2006) spline model.

� Spatial resolution¼half-degree grid cells; temporal resolution¼daily. Source: Surface Water Monitor hydrologic simulation
system (Wood 2008).

§ Calculated from daily values for the 10 days starting with the fire detection date.
} Spatial resolution¼ 32 km2 grid cells; temporal resolution¼ daily. Source: North American Regional Reanalysis (Mesinger

et al. 2006).
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Fig. A1. Departure from normal climate conditions for each month in the year of fire and previous year. Lines

in each figure represent normalized climate data (standard deviations above or below 1950 to 2006 averages)

from individual fire events, averaged across all fires in a given ecoregion and year subset.
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APPENDIX B
DETAILED RANDOM FOREST MODELING RESULTS

Table B1. Variable importance rankings for Northwest Random Forest models relating topography, climate, and

weather to burn severity, grouped by ecoregion and categories of fire year (all, big, other).

Variable

Pacific Inland Northwest Northern Rockies

All Big Other All Big Other All Big Other

Conditions during fire
Average temperature, month of fire� . . . . . . 16 18 . . . . . . . . . . . . . . .
Precipitation, month of fire� . . . . . . . . . 11 . . . 17 23 . . . . . .
Soil moisture
0–10 cm (30yr%)� . . . . . . . . . 20 . . . . . . 21 20 . . .
10–40 cm (30yr%)� 16 . . . . . . 19 . . . 16 . . . . . . . . .
40–100 cm (30yr%)� . . . . . . . . . 21 . . . . . . 18 13 . . .

Maximum Fosberg Fire Weather Index� . . . . . . . . . 16 12 . . . . . . . . . 9
Average wind speed� . . . . . . . . . 17 . . . . . . — — —

Antecedent conditions
Minimum temperature
Previous fall (SON)� 15 14 17 — — — 22 . . . 8
Previous summer (JJA)� — — — — — — 15 18 10

Average temperature
Previous month� . . . . . . 19 13 11 10 17 17 . . .
Previous spring (MAM)� . . . . . . . . . 24 . . . . . . 20 22 . . .
Previous winter (DJF)� . . . . . . . . . . . . . . . . . . . . . 21 . . .
Previous fall (SON)� . . . . . . 18 12 15 13 14 11 . . .
Previous summer (JJA)� . . . . . . . . . . . . . . . . . . 16 19 . . .

Precipitation
Previous spring (MAM)� . . . . . . 14 23 13 . . . 12 14 6
Previous winter (DJF)� . . . . . . 13 14 14 . . . . . . . . . . . .
Previous fall (SON)� 14 16 11 22 . . . 15 19 15 . . .
Previous summer (JJA)� . . . 15 15 . . . . . . 14 11 16 5

Topography
Elevation 1 1 1 3 1 1 1 1 1
Slope 8 7 8 4 6 5 3 5 4
Heat load index 5 6 6 1 3 2 2 2 3
Solar radiation aspect index 11 11 10 6 5 7 6 4 . . .
Slope cosine aspect index 4 5 4 5 4 4 4 3 11
Hierarchical slope position 7 4 9 9 10 9 9 8 . . .
Compound topographic index 17 17 . . . . . . . . . . . . . . . . . . . . .
Topographic position index
150 m 9 9 12 15 . . . 12 13 12 . . .
2000 m 2 2 2 2 2 3 5 6 2

Dissection
90 m 13 13 . . . . . . . . . . . . . . . . . . . . .
810 m 3 3 3 7 8 6 7 7 . . .

Elevation relief ratio
90 m 12 10 . . . . . . . . . . . . . . . . . . . . .
450 m 10 12 7 10 9 11 10 10 . . .
810 m 6 8 5 8 7 8 8 9 7

Notes: Values reflect each variable’s ranking (1¼most important) based on its contribution to overall model accuracy in the
optimal Random Forest model. Columns are separate models for all years, big years, and other years in each ecoregion.
Variables not selected by a particular model are indicated with an ellipsis (...), and variables not selected in any models are
omitted from this table. Dashes indicate variables that were not used in a particular ecoregion due to high correlation with other
variables.

� Normalized monthly values, relative to 1950–2006 averages (averaged to create seasonal variables).
� Calculated from daily values for the 10 days starting with the fire detection date.
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Table B2. Variable importance rankings for Southwest Random Forest models relating topography, climate, and

weather to burn severity, grouped by ecoregion and categories of fire year (all, big, other).

Variable

Mogollon Rim Colorado Plateau Southern Rockies

All Big Other All Big Other All Big Other

Conditions during fire
Minimum temperature, month of fire� . . . . . . . . . 17 . . . 11 11 11 16
Maximum temperature, month of fire� . . . . . . . . . . . . . . . . . . . . . . . . 15
Precipitation, month of fire� 15 15 . . . . . . 13 . . . . . . . . . . . .
Soil moisture
0–10 cm (30yr%)� . . . . . . 12 . . . . . . . . . 16 15 . . .
0–10 cm (30day%)� . . . 16 . . . . . . . . . . . . . . . . . . . . .
10–40 cm (30yr%)� . . . . . . 13 . . . 19 15 . . . . . . . . .

Antecedent conditions
Minimum temperature
Previous month� . . . . . . . . . 16 . . . . . . 14 . . . 10
Previous spring (AMJ)� . . . . . . . . . . . . 18 . . . . . . . . . . . .
Previous fall (OND)� . . . . . . . . . 15 . . . . . . . . . . . . 13
Previous summer (JAS)� 17 17 . . . . . . 15 . . . . . . . . . . . .

Maximum temperature
Previous month� . . . 14 . . . . . . . . . 14 17 . . . 14
Previous spring (AMJ)� . . . . . . . . . . . . 16 . . . 18 . . . . . .
Previous winter (JFM)� . . . . . . . . . . . . . . . . . . 19 . . . . . .
Previous summer (JAS)� . . . 18 . . . 14 20 13 . . . . . . . . .

Precipitation
Previous month� 13 13 . . . . . . 14 . . . 20 . . . . . .
Previous spring (AMJ)� 14 . . . 11 . . . . . . . . . . . . 14 . . .
Previous winter (JFM)� . . . . . . . . . . . . . . . 12 . . . 16 12
Previous fall (OND)� 16 . . . 14 13 17 . . . 15 . . . . . .

Topography
Elevation 2 2 1 1 1 1 1 1 1
Slope 7 6 8 6 7 4 6 6 6
Heat load index 6 5 6 7 5 7 7 4 4
Solar radiation aspect index 9 9 7 9 9 8 8 8 8
Slope cosine aspect index 5 4 4 3 2 5 3 3 7
Hierarchical slope position 8 8 9 8 8 9 9 9 9
Compound topographic index 12 12 . . . 12 12 . . . 13 13 . . .
Topographic position index
150 m 10 10 10 10 10 16 10 10 11
2000 m 1 1 2 2 3 2 2 2 2

Dissection, 810 m 3 3 5 5 4 6 4 5 5
Elevation relief ratio
90 m 11 11 . . . 11 11 10 12 12 . . .
810 m 4 7 3 4 6 3 5 7 3

Notes: Values reflect each variable’s ranking (1¼most important) based on its contribution to overall model accuracy in the
optimal Random Forest model. Columns are separate models for all years, big years, and other years in each ecoregion.
Variables not selected by a particular model are indicated with an ellipsis (...), and variables not selected in any models are
omitted from this table.

� Normalized monthly values, relative to 1950–2006 averages (averaged to create seasonal variables).
� Calculated from daily values for the 10 days starting with the fire detection date.
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Table B3. Results from optimal Random Forest models for the Northwest.

Metric

Pacific Inland Northwest Northern Rockies

All Big Other All Big Other All Big Other

Topographic predictors only
PCC 0.64 0.64 0.66 0.62 0.63 0.64 0.62 0.62 0.65
Kappa 0.27 0.28 0.32 0.24 0.26 0.26 0.22 0.23 0.26
AUC 0.70 0.70 0.73 0.66 0.69 0.67 0.67 0.67 0.69
Number of pixels 18,163 13,220 4,943 24,000 14,198 9,802 21,794 16,722 5,072

Topographic, climatic and weather predictors
PCC 0.70 0.68 0.75 0.72 0.71 0.72 0.70 0.69 0.73
Kappa 0.40 0.37 0.49 0.43 0.42 0.44 0.39 0.38 0.44
AUC 0.77 0.76 0.82 0.79 0.79 0.79 0.77 0.76 0.80
Number of pixels 17,389 13,099 4,290 23,664 14,156 9,508 21,729 16,720 5,009

Notes: Columns are separate models for all years, big years, and other years in each ecoregion. PCC is percent correctly
classified. AUC is area under the receiver operating characteristic curve.

Table B4. Results from optimal Random Forest models for the Southwest.

Metric

Mogollon Rim Colorado Plateau Southern Rockies

All Big Other All Big Other All Big Other

Topographic predictors only
PCC 0.69 0.68 0.77 0.67 0.69 0.71 0.62 0.63 0.69
Kappa 0.37 0.37 0.48 0.34 0.36 0.34 0.25 0.26 0.29
AUC 0.76 0.75 0.82 0.74 0.75 0.77 0.67 0.68 0.72
Number of pixels 21,808 15,679 6,129 19,099 13,154 5,945 24,000 19,475 4,525

Topographic, climatic, and weather predictors
PCC 0.79 0.77 0.84 0.76 0.75 0.78 0.72 0.71 0.76
Kappa 0.58 0.54 0.65 0.52 0.48 0.53 0.44 0.42 0.48
AUC 0.86 0.84 0.91 0.84 0.82 0.86 0.80 0.78 0.82
Number of pixels 21,637 15,671 5,966 18,511 12,951 5,560 23,235 19,153 4,082

Notes: Columns are separate models for all years, big years, and other years in each ecoregion. PCC is percent correctly
classified. AUC is area under the receiver operating characteristic curve.
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