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a b s t r a c t

Available air temperature models do not adequately account for the influence of terrain on nocturnal
air temperatures. An empirical model for night time air temperatures was developed using a network of
one hundred and forty inexpensive temperature sensors deployed across the Bitterroot National Forest,
Montana. A principle component analysis (PCA) on minimum temperatures showed that 98% of the
spatiotemporal variability could be accounted for using the first two modes which described the coupling
and decoupling of surface temperature from free air temperatures, respectively. The spatial character of
these modes were strongly correlated with terrain variables and were then modeled to topographic
variables derived from a 30 m digital elevation model. PCA scores were modeled using independent
eanalysis
ownscaling

predictors from in situ observations and regional reanalysis that incorporate temperature, solar radiation
and relative humidity. By applying modeled PC scores back to predicted loading surfaces, nighttime
minimum temperatures were predicted at fine spatial resolution (30 m) for novel locations across a broad
(∼45,000 km2), topographically complex landscape. Our results suggest that this modeling approach can
be used with retrospective and projected predictors to model fine scale temperature variation across
time in regions of complex terrain.
. Introduction

Surface air temperatures vary at fine spatial scales in complex
errain. There is growing recognition among ecologists of the need
or higher resolution temperature models for understanding cli-

ate change impacts in mountains (Millar et al., 2007). Perhaps the
argest source of uncertainty and error in spatial estimation of air
emperatures in heterogeneous terrain occurs at night where radia-
ive cooling and advection can foster cold air drainage (CAD). CAD
as been studied at the basin scale around the world and its physical
asis is well understood (Chung et al., 2006; Geiger, 1966; Kondo
t al., 1989; Whiteman, 2000, 1982; Whiteman et al., 1999, 2001;
hiteman and McKee, 1982). Several recent studies have noted the

mportance of CAD on nighttime air temperatures at broader scales
Dobrowski et al., 2009; Lundquist and Cayan, 2007; Lundquist
t al., 2008). Despite the growing awareness in the scientific com-

unity of the potential ecological significance of CAD (Dobrowski

t al., 2009; Hubbart et al., 2007), it is currently not well accounted
or in any available interpolated surface air temperature models.
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Two models currently employed in mapping temperature surfaces
in the United States, PRISM (Parameter Regression on Indepen-
dent Slopes Model) and DAYMET both create moderate-resolution
(∼1-km) temperature maps. PRISM accounts for CAD by identifying
stations that lie above and below inversions (Daly et al., 2002, 2008,
2007). DAYMET temperature surfaces are derived using a Gaussian
weighting filter and empirically derived relationships. However
these models suffer in their ability to resolve fine-scale air tem-
perature (sub-km scale) at the timescales relevant to biota living in
narrow mountain valleys (e.g. 10–30 m).

The demand for fine-scale climate fields has escalated in recent
years with growing interest in climate change adaptation While
statistical and dynamical downscaling methods bridge the gap
between the coarse scale of global climate models and that needed
for local application, the scale of resultant datasets is still too coarse
for ecological applications. This is a particularly acute problem in
areas of complex terrain where interpolation-based approaches fail
to resolve steep climate gradients.

Long-term mountain meteorological observations are sparse

and inadequately distributed across the spectrum of terrain to
fully resolve high-resolution temperature surfaces. Most long-term
weather stations in regions of complex terrain are located at lower
elevation (i.e. valleys), with a few snow pack telemetry (SNOTEL)

dx.doi.org/10.1016/j.agrformet.2011.03.011
http://www.sciencedirect.com/science/journal/01681923
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tations and Remote Automated Weather Stations (RAWS) broadly
istributed across complex topography. However, the siting of
eather stations is done with the intent to minimize influences of

ocal relief on weather, thereby not encompassing a representative
ample of heterogeneous physiography. Thus available weather
tations alone may not be suited for accurately capturing physio-
raphic influences on surface air temperatures across the diverse
nd complex topography.

Truly inexpensive temperature sensors (e.g. Thermochron ibut-
ons and Logtags costing less than $30) are increasingly being
sed to monitor air temperatures for short-term ecological stud-

es (Beever et al., 2010; Hubbart et al., 2007; Lundquist et al., 2008).
istributed networks of sensors can yield insight into spatial vari-
tion in mountain air temperatures. However, short-term (e.g. <5
ears) mountain temperature studies are labor intensive, provide
nly retrospective data and are difficult to incorporate into existing
ata and models.

In complex terrain characteristic of much of the western US,
ccurate, high spatial resolution daily models should simulta-
eously account for the synoptic atmospheric and topographic
ariation in surface air temperatures (Daly et al., 2009). Fur-
hermore, it should be possible to integrate empirical algorithms
erived from short-term, high-spatial resolution data collection
fforts into existing models based on long-term climate station
ata to better account for physiographic influences on nighttime air
emperatures. Analyses like those of Daly et al. (2009), Lundquist
t al. (2008) and Holden et al. (2011) point in this direction.
his paper describes a method of empirically downscaling daily
octurnal air temperatures by combining short-term data from
distributed network of ibutton temperature sensors with inde-
endent long-term observational or modeled datasets. This study
uilds on work by Holden et al. (2011) and resolves challenges
ncountered in their analysis. The primary goal was to develop
mpirical models from a set of short-term, high spatial resolution
emperature measurements that once developed, could be used in
ear real-time applications or climate projections.

. Study area and methods

.1. Study area and data

This study was conducted on the Bitterroot National Forest,
ontana, and includes portions of the Lolo and Clearwater National

orests, all on lands managed by the northern region of the U.S.
orest Service (Fig. 1). A total of 175 Thermochron ibuttons were
istributed across the study area by the author and the local wild-

and firefighters along elevational transects across the Bitterroot
ational Forest, Montana, starting at valley bottoms, then every
0–100 m until the ridgetop was reached. The number of sen-
ors varied in each transect, ranging from 6 to 14. Transects were
eployed near RAWS and thirty-five additional sensors were dis-
ributed opportunistically across the study domain using roads and
iking trails. Each sensor was programmed to record at 90 min

ntervals beginning at midnight on 01 May 2009 and ending on 28
eptember 2009. Sensors were housed in two inverted funnels fol-
owing Hubbart et al. (2005) and placed on the north side of trees
t two meters height. 35 sensors failed or were lost, leaving 140
ensors used in this analysis.

We separately assessed two independent data sets for modeling
ir temperatures. These included a network of in situ independent
urface observations from 12 RAWS, and regional reanalysis data

rom the North American Regional Reanalysis (NARR; 3-hourly;
2-km resolution; Mesinger et al., 2006). Reanalysis datasets
ssimilate a variety of observations and are able to capture
acroscale surface meteorological features despite not directly
Fig. 1. Bitterroot Valley with RAWS and ibutton locations.

assimilation surface temperature observations. While previous
studies have shown a strong link between surface air tempera-
tures in observations and lower-tropospheric temperature from
reanalysis, reanalysis are unable to resolve the influence of com-
plex topography on surface temperatures at very fine (< 1km)
scales.

2.2. Overview of the modeling methodology

The overall modeling approach presented here is a sequence of
nested models depicted in Fig. 2. Four digital elevation model (DEM)
tiles (1 × 1 degree) were selected that encompassed all ibuttons
within the study area. The modeling procedure described below
was applied separately to each DEM tile. First, a nearest neigh-
bor algorithm was used to select the nearest predictor variable
(RAWS or NARR grid cell) to the DEM cell center. Data for that sta-
tion or cell was subsequently used to fit the PC time series models
for that DEM tile. Models based on RAWS used Temperature (Tmin
and Tmax), solar radiation and relative humidity (RH) from each
station. Models based on NARR used 850 hPa temperature and spe-
cific humidity, downward shortwave radiation flux and 700 hPa
geopotential height. For RAWS data, each of these variables was
interpolated to a mean elevation using thin plate spline regression
models and the library “fields,” (Furrer et al., 2010). (See supple-
mentary materials for more detail on the RAWS selection and the
interpolation procedure.) Second, 60 ibutton temperature sensors
nearest to each DEM tile center were selected to begin the modeling
procedure. PCA was used in the third step to identify, separate and
then model the spatial and temporal variability in nighttime mini-
mum temperatures, initially using all 60 sensors nearest each DEM
tile. Model selection follows an iterative process of one-by-one
removing non-nearest neighbor ibuttons and then fitting models
of PC time series. The model fitting and validation procedure was
repeated with fewer and fewer ibuttons until model accuracy did
not improve (i.e. following a root mean squared error (RMSE) test

statistic). Once model validation was complete a final set of mod-
els were produced for each DEM tile. Using the PCA reconstruction
procedure described by Holden et al. (2011), predicted temperature
maps were produced at 30 m spatial resolution across the study
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Fig. 2. Conceptual diagra

omain. More detailed descriptions of the various components of
he modeling procedure follow below.

. Statistical analysis

.1. Principal components analysis

PCA (also referred to as EOF analysis) involves decomposition
f the covariances among several station time series, yielding two
rthogonal matrices called “loadings” and “scores”. Each principal
omponent comprises a time series of scores much like the orig-
nal data values, and the loadings are weights for each principal
omponent at each station:

a = La1P1 + La2P2 + · · · + LanPn (1)

here Xa is data at station a, P1–Pn are the principal components
erived from n stations of time series, and the Lai are the load-

ngs of each principal component at station a. While the original
et of station time series Xa–Xn may have had some degree of cor-
elation between them, the n principal components derived from
hem have the property of being mutually uncorrelated. If the varia-
ions from the n time series are somewhat correlated, the principal

omponents also have the property that most of the information
an be represented in an efficient form using the first few princi-
al components. PC time series and loadings can be recombined
o reproduce the original values on which the decomposition was
model fitting procedure.

performed using Eq. (1), and a reasonable approximation may be
gained using only the first few principal components (Holden et al.,
2011), e.g.:

Xa ≈ La1P1 + La2P2 (2)

In this analysis, loadings were extracted from each sensor (140
columns) and the scores (time series) were retained from each row
of 136 daily minimum temperature observations.

The idea behind the analysis presented here was derived from
(Smith et al., 1996) who used EOF analysis in their meteorological
investigation relying on fairly complete mapped information (e.g.
from satellites). They developed a model of the temporal depen-
dence of each mode of spatial variability (map) to allow them to
estimate the sea surface temperature maps from years before satel-
lite data were available but buoy and ship data were available. In
other words they wanted to extrapolate maps through time. In our
application, we focus on the geographic dependence of each mode
of temporal variability, e.g. maps of time series. If the time series
of each pixel in a map can be estimated as the weighted sum of the
principal components derived from the many ibuttons, the primary
challenge is estimating the loading values between observation
points.
Because a large number of ibuttons are not always available to
build PCs, there is also an interest understanding the connection
between the time series measured at the sparse weather stations
and the PCs measured from the diverse settings in which the
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buttons were placed. In essence if both the spatial loadings and
ime series are predictable and strongly linked to topographic met-
ics, then the PC loadings can be mapped to new feature space. Thus,
hen a PC time series observation is applied back to each pixel

f the predicted loading surface, the temperature is reconstructed
t new locations where no previous observations were available.
eparately modeling the temporal and spatial component of the
riginal data allows for dynamic modeling of spatial variation over
ime.

Several factors made using PCA for spatial prediction problem-
tic. First, data are typically scaled and centered (i.e. the standard
eviation and mean are removed from each column of data) prior
o running PCA (Johnson and Wichern, 2002). However, in order
o reconstruct the original air temperature values, the mean and
tandard deviation must later be restored to the data. Therefore,
ccurately reconstructing temperature values at a new location
ould require predicting the standard deviation and the mean at

hat location, introducing several sources of error. Scaling is rec-
mmended when the difference in variances in samples is large
Johnson and Wichern, 2002), or when the size of measurements
aries by orders of magnitude. Here, the day-to-day variance in
ighttime temperatures was similar among ibutton sensors. There-

ore, data were not scaled or centered prior to PCA extraction. As a
onsequence, small but significant variation is introduced into the
rst principal component loading. This variation must be modeled,

n order to accurately reconstruct air temperatures at new loca-
ions. Therefore, in this analysis, both PC1 and PC2 loadings were
redicted to 30 m DEM data.

The second challenge of PCA as applied here is that at the spa-
ial extent of this analysis (a 2 × 2 degree window; ∼45,000 km2),
eather and climate begin to vary significantly. In 2009, for exam-
le, RAWS in the southern portion of the study area received over
0% more precipitation than the northern Bitterroot valley and free
ir temperatures often vary by several degrees across the horizontal
xtent of the study area. When all ibutton temperature data were
nalyzed together, regional-scale temperature differences were
ntroduced and became difficult to isolate. In our initial analyses
sing all 140 ibuttons, we found that latitude and longitude were
ignificantly correlated with PC loadings, partially obscuring and
iminishing local relationships among loadings and topographic
ariables. This problem was overcome by running and fitting mod-
ls of PC scores and loadings locally around the center of each digital
levation model tile, using a nearest neighbor algorithm to select
buttons to include in the model for each DEM tile.

.2. Modeling PC time series

PC1 represents the regional air temperature dictated by synoptic
ariability (Holden et al., 2011). The PC1 time series captures the
verage air temperature among a group of ibuttons and showed
trong correlations with regional minimum air temperatures. A
imple linear model was used to fit PC1 to either daily Tmin from
he nearest RAWS or the minimum temperature at 850 hPa height
rom the nearest NARR cell. The PC2 time series captures the tem-
oral and spatial variability of decoupling of the boundary layer
rom free air temperatures consistent with Holden et al. (2011).
C2 showed correlations with solar radiation the previous day,
aximum temperature and maximum (nighttime) relative humid-

ty. For models based on RAWS observations, models of PC2 time
eries were constructed using minimum and maximum tempera-
ure, maximum relative humidity and solar radiation from RAWS
istributed around the study domain. Models of PC2 time series

ased on NARR data included 700 hPa geopotential height, down-
ard solar radiation flux the previous day, minimum temperature

nd 850 hPa specific humidity. Initially, a variety of statistical mod-
ls were compared as methods for fitting PC2 time series models.
eteorology 151 (2011) 1066–1073 1069

Although linear models and General Additive Models often yielded
similar or even higher accuracies (in terms of adjusted r2 values),
Random Forest models produced better cross validation accura-
cies and were used for the final model fitting. The Random Forest
algorithm, introduced by Breiman (2001) is a bootstrapped classi-
fication and regression tree algorithm that has gained popularity in
ecology in recent years based on its ability to find signals in complex
data.

3.3. Modeling PC spatial loadings

Correlation analysis, linear models and Random Forest were
used to explore relationships among PC1 and PC2 loadings and
a suite of topographic variables described in Holden et al. (2009)
and derived from ASTER (Advanced Spaceborne Thermal Emission
Radiometer) DEM data. these included a measure of topographic
dissection (Evans, 1972) calculated across a range of window sizes,
where dissection (D) is calculated as:

D = z − zmin

zmax − zmin
, (3)

where z = elevation. Variable window sizes can be used to define
cells included in the calculation. D3, D15 and D27 indices calcu-
lated at 3 × 3, 15 × 15 and 27 × 27 pixel window sizes were used. In
addition, a multi-scale dissection index (MSD) was created by cal-
culating the sum of the topographic complexity of a pixel relative
to adjacent pixels across 11 increasingly large window sizes (3, 5, 7,
9, 11, 13, 15, 21, 27, 30 pixels). The result was a multi-scale measure
of the position of each 30 m pixel relative to surrounding terrain.
Valley bottoms and areas that are low relative to their surrounding
pixels have values close to zero, while ridges and areas lying above
surrounding areas have high values approaching 11. We compared
a number of models constructed with different combinations of
topographic variables. Ultimately, a model with elevation and MSD
had the highest variance explained and lowest mean squared error
with only two explanatory variables. PC1 and PC2 loadings were
predicted to 30 m elevation and MSD grids.

3.4. Spatio-temporal modeling of daily minimum temperatures

Predicting PC1 and PC2 loadings to topographic indices derived
from DEM data produces indices representing the response of land-
scape position to daily variation in nocturnal air temperatures and
CAD. By applying the predicted PC1 and PC2 time series (both
indices with a single value for each night) back to the static PC2
loading surface, time series of air temperature maps can be recon-
structed across the landscape.

3.5. Model validation

Two separate model validations were performed. First, for each
of the four models locally fitted around each DEM tile, 10% of
the ibutton data were randomly selected and withheld from the
model fitting procedure. The temperature for each of 136 nights at
each withheld ibutton location was then predicted with the model
parameterized using the remaining 90% of data, using only the lati-
tude and longitude of the withheld ibuttons to extract topographic
indices (elevation and MSD). The RMSE of observed versus pre-
dicted temperatures was calculated for each withheld station and
then summarized across all withheld stations. This procedure was
repeated 1000 times. We note that because of spatial autocorre-
lation among sensors arrayed in transects, this type of validation

is likely to yield artificially high accuracies, since some adjacent
sensors will have similar air temperatures and topographic fea-
tures. Therefore, we assessed the transferability of the model in
time and space by using the model parameterized with 2009 data
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Table 1
Model accuracies for PC1 and PC2 loadings by DEM tile.

DEM tile # sensors PC1load pseudo-R2 PC2 load pseudo-R2

N45W114 54 0.36 0.90
N45W115 54 0.38 0.91
N46W114 55 0.49 0.95
N46W115 52 0.50 0.96

Table 2
Accuracies for models of PC1 and PC2 time series for each DEM tile. Models based
on RAWS included Tmin, Tmax, RHmax and solar radiation the preceding day as inde-
pendent variables. Models based on NARR included 850 hPa Tmin, Tmax and specific
humidity, surface downward shortwave radiation flux, and 700 hPa geopotential
height.

Input data source RAWS NARR

DEM tile PC1 R2 PC2 (RF) pseudo-R2 PC1 R2 PC2 (RF) pseudo-R2

N45W114 0.89 0.62 0.83 0.44
N45W115 0.90 0.63 0.84 0.43
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N46W114 0.95 0.68 0.87 0.55
N46W115 0.96 0.69 0.85 0.58

o predict temperatures the following year (2010) at both old and
ew locations. Six inexpensive sensors (Thermochron ibuttons and
hermoworks Logtags) that had been recording temperatures in
010 were retrieved for this purpose and used as validation data.
wo of these sensors were located either outside the study domain
r at locations where no 2009 data was collected. In addition,
ata from the Ninemile RAWS (previously dropped from analysis
ecause it showed significant decoupling) was also used for valida-
ion. Again, only the latitude and longitude and derived topographic
nformation of the new 2010 stations were assumed to be known.
MSE statistics were calculated by comparing observed versus pre-
icted temperatures at each withheld temperature sensor.

. Results

Fig. 3 shows observed temperatures from a transect of ibutton
ensors from four nights in the Big Creek drainage. Predicted min-
mum temperature surfaces for three of these nights are shown
n Fig. 5. Model accuracies for PC spatial loadings and time series
re shown in Tables 1 and 2. The PC1 time series, representing
he mean temperature among all ibuttons, was well explained by

inimum temperature from RAWS and 850 hPa minimum temper-
tures from NARR (Table 2). PC1 time series were well predicted by
AWS Tmin, with coefficients of determination (r2) ranging from
.90 to 0.96. PC1 models using T from NARR were weaker, but
min
till high (Table 3). PC1 loadings, representing the spatial weight
fter removing the mean were only moderately well explained
y topography (Table 2). However, the total spatial variation in

able 3
ross validation RMSE accuracy distributions for 2009 data. Results of models fitted
sing both RAWS and NARR are shown. Modeling was done separately for each DEM
ile. 10% of the data were withheld and used for validation 1000 times. Min, max,

ean and median represent the distribution of the RMSE across all validation runs.

N Min. Max. Mean Median

DEM tile/RAWS
N45W114 58 0.74 3.20 1.34 1.24
N45W115 59 1.07 3.02 1.48 1.56
N46W114 62 1.13 2.52 1.46 1.61
N46W115 64 0.70 3.1 1.49 1.63

DEM tile/NARR
N45W114 58 1.57 2.2 2.11 2.05
N45W115 59 1.41 1.6 1.70 1.70
N46W114 62 1.52 2.39 1.91 1.91
N46W115 64 1.51 1.96 1.78 1.74
Meteorology 151 (2011) 1066–1073

PC1 loadings was relatively small, ranging from 0.10 to 0.16. Most
information about the topographically driven variation in air tem-
peratures was isolated in PC2 which showed strong correlations
with elevation and MSD. The accuracy of PC2 loading models fit
around each DEM tile was generally high, ranging from 85 to 96%
variance explained. Predicted PC1 and PC2 loading surfaces cre-
ated by fitting models to 30 m elevation and MSD layers resulted in
physiographic indices for the entire study area, shown for a single
DEM tile in Fig. 3). Random Forest model accuracies of PC2 time
series ranged from 62 to 69% variance explained for RAWS models,
and 44–58% variance explained for NARR models. Cross validation
summary statistics for 2009 data are shown separately for each
DEM tile in Table 4. Mean root mean squared errors (RMSE) ranged
from 1.34 ◦C to 1.59 ◦C for RAWS and from 1.74 to 2.05 ◦C for NARR.
The accuracy of models parameterized using 2009 data and pre-
dicted to 2010 data are shown in Table 4. The average RMSE across
all 7 locations from 2010 was 1.64 ◦C using RAWS data.

5. Discussion

Visual examination of the modeled PC1 and PC2 loading sur-
face indicates the spatial variation associated with each principal
component (Fig. 4). PC1, which represents the spatial weight
after removal of the mean from all ibutton sensors shows spatial
variation in average temperatures and coupling to the free atmo-
sphere. Relatively little spatial variation resides in PC1. Most of the
localized spatial variation resides in the PC2, which capture the rel-
ative vulnerability of landscape positions to decoupling from the
atmosphere and cold air pooling. Valley bottoms and areas with
significant upslope contributing area show strongly positive load-
ings (Fig. 4). A narrow transitional zone is evident in areas just
above what appear to be areas of cold air pooling. Ridges, hills and
exposed areas have negative loadings, indicating locations more
synchronized with free air temperatures with little CAD influence.
The 30 m topographic index is similar to that of Lundquist et al.
(2008) and could be useful outside the daily modeling framework,
for example as a gradient modeling layer or to understand potential
bias associated with climate and weather station locations.

The PCA-based model described above provides one potential
modeling framework for utilizing data from inexpensive sensors to
empirically downscale daily nighttime temperatures at fine spatial
resolutions across a large (>45,000 km2) region of complex ter-
rain. Our modeling approach, while empirical, has a strong physical
basis. Daily variation in minimum temperatures is driven by vari-
ability in regional air temperature, maximum temperatures and
solar radiation during the preceding day, and atmospheric mois-
ture and static stability at night. The latter two properties influence
radiative cooling rates and the formation of the nocturnal boundary
layer, with calm nights with low humidity and a stable atmo-
sphere being conducive to cold air pooling at valley bottoms. The
model generally appears to capture both the spatial and tempo-
ral variation in warm season nocturnal cold air drainage patterns
characteristic of this region. The statistical tools, predictor variables
from RAWS and NARR as well as DEM data are all publicly avail-
able and the methods presented here could easily be applied to any
basin-scale or larger study area given temperature observations
from sensors distributed across the study domain.

The empirical temperature model presented here differs signif-
icantly from other efforts to model air temperatures in complex
terrain. The spatial resolution of daily temperature surfaces are pro-
duced at a daily time step and at much higher spatial resolutions

than PRISM (800 m; Daly et al., 2008), DAYMET (1 km; Thornton
and Running, 1997) or the spline-based temperature models of
(Rehfeldt, 2006). Second, by independently identifying, then mod-
eling the two principal modes of variability in a dense network of
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actions with land surface conditions. Second, it is unclear how

T
M

ig. 3. Temperature profiles for 4 nights at the Big Creek drainage transect. June 1s
id-slope thermal belts, as in June 30th. Some nights like July 23rd and September 2

ata, we were able to capture time-space interactions by incor-
orating atmospheric covariates (humidity and solar radiation)
nd their interaction with physiographic indices. Thus, this model
ntegrates both the regional temperature and the physiographic
ariation associated with night-to-night variation in the magnitude
f cold air drainage.

Traditional empirical temperature downscaling techniques
gnore fine-scale topographic variation (Benestad, 2001). However,
his variation is a major component of surface air temperature vari-
tion in complex mountainous terrain. Many ecological processes
ary at fine spatial scales mountains, due principally to variation
n solar radiation (aspect) and surface air temperatures (eleva-
ion gradients). Accurate modeling of changes in, e.g. productivity
nd plant species occurrence will require similarly scaled biophys-
cal predictions. Generally, our results suggest that a variety of

ridded data sources such as global and regional climate models
ould be used as predictors in this empirical model. Researchers
re now beginning to run the Weather Research and Forecasting

able 4
odel validation accuracies (RMSE) predicted to 2010 data.

Sensor Elevation (m) Dates

T63 S1 1377 July 01–August 13
T63 S3 1420 July 01–August 13
T63 S8 1480 July 01–August 13
T63 S10 1770 July 01–August 13
Skalkaho 2078 July 01–August 13
Ninemileibutton 1 1330 July 01–August 13
Ninemile RAWS 1260 July 01–August 13
ed temperatures that decreased with elevation. The majority of nights show large
owed full inversions with temperatures that increased continuously with elevation.

model (WRF) at relatively high (1 km) spatial resolutions (Gary
Clow, pers. Comm.). Inputs or outputs from such models could also
be used in conjunction with the methodology presented here to
downscale mountain temperatures, ultimately building on efforts
to downscale climate model projections to study the potential
ecological effects of warming temperatures at finer spatial scales
(Fig. 5).

5.1. Scope and limitations

There are many limitations to the work presented here. First,
the time series of data used in this analysis is very short (136
days). Longer series of observations may be needed to capture and
model inter-annual variability in atmospheric patterns and inter-
well these empirically derived algorithms will continue to predict
temperature over time. Empirical modeling of time-space interac-
tions remains a challenge in statistics and these models assume

Description RMSE (RAWS) RMSE (NARR)

Valley 2.02 2.22
Toe slope 2.07 2.17
Mid-slope 1.62 1.64
Ridge 1.20 1.45
Ridge 1.66 2.36
Valley bottom 1.72 1.89
Low elevation hilltop 1.89 2.10
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Fig. 4. Predicted PC1 and PC2 loading surface for DEM tile n46w115, locat

tationarity through time. Additional work will be needed to
dapt these methods for downscaling winter temperatures, as
he physical mechanisms and scale of processes governing air
emperature-land surface feedbacks will be very different with

now cover. The nearest neighbor approach to model fitting by
EM tile is simplistic and the 1 × 1 degree scale was chosen for
onvenience. We did not investigate the influence of scale here,
nd more sophisticated methods of integrating variation in the X, Y

Fig. 5. Predicted minimum temperature surfaces for three nights in the B
t South of Missoula, MT. The town of Lolo, MT is visible in the upper right.

domain with topographic variation in air temperatures are clearly
needed. Ibutton sensors were programmed to sample at 90 min
intervals because memory of these sensors is currently limited to
8000 observations. It is unknown what influence this sampling

interval will have the precision of our air temperature model. It
is likely that there could be considerable variation in nocturnal air
temperatures with a 90 min period. Ultimately, physically based
models that predict air temperatures at high spatial resolutions will

ig Creek drainage. Elevation (upper left) is included as a reference.



orest M

l
i
a

6

a
f
m
t
s
d
f
m
l
a
d
m
a
t
m
t
i
c
t
m
p
d
c
t
a
n
o
U

A

p
fi
l
m

R

B

B

Z.A. Holden et al. / Agricultural and F

ikely be developed, although the computational demands of apply-
ng such models to the >50 million grid cells in this study domain
lone would make this a challenge.

. Conclusions

There is growing awareness of the need for finer-scale surface
ir temperature data in mountains for ecological modeling and
orecasting climate change impacts. This paper demonstrates one

ethod for predicting daily minimum air temperatures in complex
errain using in situ air temperature measurements from inexpen-
ive sensors. Empirical models describing daily variation in cold air
rainage were developed using the time series of scores derived
rom PCA on a network of inexpensive temperature sensors. These

odels, when applied to physiographic indices created from PC
oadings derived from the same data captured with reasonable
ccuracy the daily variation in nighttime minimum temperatures
uring a single growing season. The same models predicted mini-
um temperatures to new locations the following year with similar

ccuracies. These methods offer a relatively inexpensive, compu-
ationally efficient means of producing daily maps of nocturnal

ountain air temperatures at very high (30 m) spatial resolution
hat could be useful for ecological studies. With additional data,
ntegration of observational and modeled data, inclusion of canopy
over, modeled soil moisture data, and more thoughtful selection of
ime series models, it should be possible to improve the empirical

odels of PC time series and overall model performance. The model
resented here has been programmed to flexibly ingest sensor data
istributed across a large spatial domain using a range of gridded
limate data sources. The author and the USFS have begun moni-
oring surface air temperatures across the intermountain West. The
nticipated three years of data at more than 2000 sites will provide
ew opportunities to further develop high spatial and temporal res-
lution temperature products across a large region of the western
S.
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