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Abstract. The impacts of climate change on forest ecosystems are likely to require changes in forest

planning and natural resource management. Changes in tree growth, disturbance extent and intensity, and

eventually species distributions are expected. In natural resource management and planning, ecosystem

models are typically used to provide a ‘‘best estimate’’ about how forests might work in the future and thus

guide decision-making. Ecosystem models can be used to develop forest management strategies that

anticipate these changes, but limited experience with models and model output is a challenge for managers

in thinking about how to address potential effects of climate change. What do decision makers need to

know about climate models, ecological models used for impacts assessments, and the uncertainty in model

projections in order to use model output in strategies for adaptation to climate change? We present

approaches for understanding and reducing the uncertainty associated with modeling the effects of climate

change on ecosystems, focusing on multi-model approaches to clarify the strengths and limits of

projections and minimize vulnerability to undesirable consequences of climate change. Scientific

uncertainties about changes in climate or projections of their impacts on resources do not present

fundamental barriers to management and adaptation to climate change. Instead, many of these

uncertainties can be controlled by characterizing their effects on models and future projections from

those models. There is uncertainty in decision making that does not derive just from the complex

interaction of climate and ecosystem models, but in how modeling is integrated with other aspects of the

decision environment such as choice of objectives, monitoring, and approach to assessment. Adaptive

management provides a hedge against uncertainty, such that climate and ecosystem models can inform

decision making.
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INTRODUCTION

Natural resource management will change in
the 21st century because climate change is
impacting many components of ecosystems,
often in novel and surprising ways (Millar et al.
2007, Joyce et al. 2008, Blate et al. 2009, Littell et
al. 2011a). Likely forest ecosystem changes driven
at least partially by climate include: biogeograph-
ic range shifts for species (Rehfeldt et al. 2006)
including invasives; changes in plant communi-
ties as individual species form new assemblages
(e.g., Davis 1986); changes in disturbance re-
gimes, including fire (Littell et al. 2009, Littell et
al. 2010), insects (Hicke et al. 2006), and diseases
and pathogens (Lovett et al. 2006); and changes
in hydrology (e.g., Tague et al. 2009) and
biogeochemical cycling (e.g., Campbell et al.
2009). These ‘‘new’’ ecosystems will have struc-
ture, disturbance interactions, and functions
outside the historical frame of reference. These
differences will require rethinking what process-
es can be affected, how they are managed, and
what can be expected of forest ecosystem services
(Millar et al. 2007, Bosworth et al. 2008) when
past experience is limited as a guide to future
conditions. For example, management strategies
based on static plant associations, historical
ecosystem processes, or historical disturbance
regimes are unlikely to be compatible with the
trajectory of future ecosystems (Millar and
Woolfenden 1999, Joyce et al. 2008, Blate et al.
2009, Lawler 2009, Lawler et al. 2010, Littell et al.
2011a).

Resource management goals will likely change
as well; which resources and services to empha-
size may differ under climate change. Future
strategies for managing timber, water, biodiver-
sity, recreation, and other ecosystem services will
need to accommodate climatically driven chang-
es to the resource base, the ability of manage-
ment to influence that resource base, new
demands of stakeholders for ecosystem services,
and interactions with other stressors. For exam-
ple, in some ecosystems, timber resources may be
less predictable under changing disturbance
regimes and climatically altered habitat (Churki-
na and Running 2000, Littell et al. 2010).
Similarly, endemic species existing near thresh-
olds or within narrow environmental tolerances,
such as cold water fish (Mantua et al. 2010), pikas

(Morrison and Hik 2007), and wolverines (Aubry
et al. 2007), will experience climatic conditions
outside their suitable range more frequently,
leading to increased stress. Some species, includ-
ing some invasives, will be physiologically
favored by a warming CO2-rich world (Dukes
and Mooney 1999), impacting other species that
may or may not be so favored.

Given these potential futures, projecting eco-
logical impacts and planning for their conse-
quences are critical to decision making and
adaptation to climate change (e.g., Fankhauser
et al. 1999, Hulme 2005, Millar et al. 2007, Snover
et al. 2007). Clearly all adaptation—and resil-
ience—depends on local action to adapt to global
climate change and regional vulnerability of
people and resources. Institutions must move
from an emphasis on conceptual adaptation to
action (Vogel et al. 2007), but the prospect of
anticipating future climate change impacts and
prioritizing and executing natural resource man-
agement is daunting. The frames of reference that
guide decision-making are limited in that for
decades, resource managers and planners have
used past conditions and processes to frame
management and restoration of resilient ecosys-
tems. However, the observed past (historic range
of variability, stationarity) is not likely to be a
reliable guide because the future, perhaps even
the near future, will experience different climatic
dynamics and disturbance interactions (e.g.,
Frederick et al. 1997, Milly et al. 2008, Millar et
al. 2007).

In natural resource planning, models are
typically used to predict how resource dynamics
will unfold in the future and to guide decision-
making. The role of models in this context is not
to predict the future exactly, but rather to narrow
its possible range to a subset of plausible
outcomes that identify the vulnerability of
specific resources and suggest appropriate man-
agement. However, the utility of future climate-
driven ecological projections is often questioned
by managers and decision makers, because issues
arise that are outside their experience. Limited
experience with models and model output has
been identified as a challenge for managers in
thinking about how to anticipate climate change
(Littell et al. 2011a). One of the largest barriers is
the complexity of climate and ecosystem models
and the uncertainties that arise when they are

v www.esajournals.org 2 September 2011 v Volume 2(9) v Article 102

SYNTHESIS & INTEGRATION LITTELL ET AL.



linked. In this paper, we focus on this linkage and
explore how its uncertainties affect decision
making in natural resources. We discuss (1) the
strengths and limits of ecosystem models per se,
using vegetation models as an example, (2) climate
model selection and relationships to ecosystem
models, (3) using model output to reduce uncer-
tainty and mitigate impacts, and (4) using model
output to make decisions with known risks. We
build on results from a pair of workshops
(Robinson et al. 2008, and ‘‘Climate change,
vegetation models, and decision making in the
face of uncertainty,’’ June 2–3, 2008, Denver, CO,
hhttp://www.forestryvideos.net/series/climate-
change-vegetation-models-and-decision-making-
in-the-face-of-uncertaintyi).

ECOSYSTEM IMPACTS MODELS

There are important differences among the
ecological models that might be used to predict
the effects of climate change, partly because few
ecosystem models were developed initially for
that express purpose. There are strengths and
limitations common to all models, and the
differences are in some cases a matter of degree,
stemming from tradeoffs made in model devel-
opment, but in other cases they are fundamental,
particularly when it comes to how climate is
incorporated in the model. All models are
simplifications of reality with the intent to
capture the necessary and sufficient dynamics,
often with only the minimum required compo-
nents. This is both a strength and a limitation—
models pare the ‘‘real world’’ down to its most
important constituents, but in doing so sacrifice
real-world detail and assume that un-incorporat-
ed processes are less important. Despite this
simplification, however, most models are not
transparent to users and in many cases are still
too complex for the average user, who is less
aware of a model’s specific limitations, to
diagnose and assess.

Using an ensemble of models, as climate
impacts modelers do (see Climate model selection
. . .: Ensemble modeling), can reduce uncertainty,
but it may increase uncertainty if the models
produce contradictory output, or if the models
are too similar (and not truly independent) they
may produce similar output that does not reflect
the true variability. Even in that worst-case

scenario, however, multi-model analyses can still
help define the scope of uncertainty and in some
cases its key sources, such as the role of CO2

fertilization in dynamic global vegetation models
(e.g., Lenihan et al. 2008), or the absence of
disturbance in statistical species models (Guisan
and Thuiller 2005). As with many systems
models, one of their primary uses is identifying
research and monitoring needs (Thrush et al.
2009). Multi-model analysis may not be easy, or
even feasible, if constituent models run at
different spatial or temporal scales. Scale is a
key consideration in making global climate
projections relevant to ecosystem models (Wiens
and Bachelet 2010), and choices of the scale at
which interactions between the two are repre-
sented, and of downscaling methodology, affect
the type and magnitude of uncertainty in
projections. Similarly, ‘‘outlier’’ models may
actually incorporate important processes or
interactions that make them superior to many
models that agree and do not include the same
process. Therefore, when it comes to assessing
uncertainty, it is as important—if not more
important—to attempt to understand why dis-
agreement occurs as it is to understand why
there may be agreement (Rastetter 1996).

Example: vegetation models
Vegetation models often incorporate climate

explicitly, because the link between climate and
vegetation is strong. Some vegetation models’
development may predate the current research
focus on climate change, so they should not be
regarded primarily as ‘‘climate impact models’’
or ‘‘climate change models’’. A notable exception
is Dynamic Global Vegetation models (DGVMs;
Table 1).

Vegetation models are of two primary types:
(1) empirical (statistical), (2) process or mecha-
nistic (Table 1). Empirical models fit parameters
to observations and use statistical methods to
make projections. They are common in research
and management and are generally relatively
easy to use. Evaluation/validation of empirical
models is tractable using numerical methods
(e.g., cross validation) and quantifies uncertainty
routinely, but it is difficult for them to extrapolate
to novel conditions or account for complex
interactions. Process models are built from ‘‘first
principles’’, are generally more difficult to use,
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Table 1. Some vegetation model strengths and limitations by class, after Robinson et al. 2008.

Model Type Strengths Limitations

Statistical Species Models (e.g.,
McKenzie et al. 2003, Hamann and
Wang 2006, Rehfeldt et al. 2006,
2008, Iverson et al. 2008)

Quantitative relationships between
climate variables and species
distributions are frequently obvious
and conceptually simple

Many methods, some numerically
complex and not easy to use, not
obvious which methods are best

Many models to select from with
readily available computer software
packages

Models provide a climate-equilibrium
assessment whereas climate change
requires transient approach

Parameter estimation is fully
quantitative

No explicit representation of ecological
interactions (e.g., competition,
disturbance)

Explicit climate incorporation Novel climates typically interpreted as
unsuitable for species – this
assumption may be false.

Provide range maps at any scale of
biological organization (species,
vegetation types)—dependent on
data used for model construction

For long lived species, distributions
can predate the observed climate
data—climatic attribution is
uncertain

Can be used to identify geographic
locations of species vulnerability;
can be linked to landscape models.

Can be difficult to use and learn

Process Models: Gap (e.g., Botkin et al.
1972, Bugmann 2001)

Can be used at stand levels and
incorporate stand-level disturbance

Limited spatial scale application

Can be linked to spatially-explicit
landscape scale models

Require local calibration; limits broad
use by managers

Include physiological processes that
can be linked to climate drivers
explicitly

Most not spatially explicit

Model structure is flexible Ecophysiology is limited compared to
biogeochemical models

Individual tree level provides detailed
response applicable to management
problems

Work well in forests, poorly at forest
ecotones

Relative to statistical models they can
be more robust to prediction given
their basis in known mechanisms

Growth limiting factors differ
regionally; may reflect developers
bias—no general formulation (but
FORCLIM represents some progress)

Limiting factors (e.g., temperature,
precipitation) follow mechanistic
process equations and provide a
deterministic representation of
ecological process

CO2 interactions with vegetation not
explicitly represented in most
existing models

Can be difficult to use and learn

Process Models: Biogeochemical
(e.g., Campbell et al. 2009)

Track multiple temperature and
precipitation controlled processes
(e.g., hydrology, gas exchange) in
forests and account for their
interactions

Based on functional types rather than
species

Explicit climate incorporation Variables used by managers (e.g.,
stand structure) are not available or
are limited

Carbon budgets are a natural
component

Sensitive to downscaling: different
processes operate at very small
scales (applies to other model classes
as well)

Ecosystem process focus makes them
flexible for different vegetation types

Difficult to use and learn

Can identify process- and rate-limiting
factors in different regions

Process Models: Dynamic Global
Vegetation Model (e.g., dynamic
models Cramer et al. 2001, Lenihan
et al. 2008, equilibrium models
Melillo et al. 1995, Neilson 1995)

Based on physiological mechanisms or
relationships

Based on functional types rather than
species
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and not so commonly used in management. They
are more limited than empirical models in
quantifying uncertainty (but see Turley and Ford
2009), but can incorporate complex and novel
interactions and, to the extent they are modular,
be adapted to more general or specific purposes.
There is often considerable debate among mod-
elers regarding which approach is ‘‘better.’’ Both
model classes have strengths and limitations
(Table 1), and choosing one approach over the
other depends greatly on matching processes and

parameters to objectives of research and man-
agement. It is also possible—even desirable—to
use these two approaches in conjunction. More-
over, as vegetation models evolve in response to
the complexities of incorporating climate change,
the distinction between ‘‘empirical’’ and ‘‘pro-
cess’’ models may become less clear. Data
assimilation techniques (e.g., Luo et al. 2009)
also make it possible to calibrate a mechanistic
model to observed data, blurring the distinction
further. Distributed hydrologic modeling, for

Table 1. Continued.

Model Type Strengths Limitations

Sensitive to changes in CO2, H2O and
temperature

Variables used by managers (e.g.,
stand structure) are not available or
are limited

Applicable to forest and non-forest
settings

Computationally intensive, difficult to
use and learn

Can identify process, rate, and
structural limiting factors in
different regions

Use is highly dependent on model
developers/experts

Explicit climate incorporation Usually not down-scaled to the spatial
level useful to managers; e.g., 10
km2 result may not capture details
such as microsite refugia

Mechanistic nature allows novel
climates to be incorporated.

If downscaled data are used, processes
modeled may not match spatial
scale

Landscape Models (e.g., He et al.
2002, Keane et al. 2004)

Most have explicit representation of
multiple spatial processes

Some models have limited mechanistic
approach

Climate incorporation can be explicit,
but often is not

Multiple scales of interactions difficult
to model well—data dependent

Can encompass the strengths of gap
models within each cell if processes
embedded

Data intensive: spatially explicit
requirements

Many available models to select from,
for different applications

Steep learning curve for use

If spatial data are available, easily
adaptable to forest and non-forest
settings at multiple scales

Some are highly dependent on model
developers/experts

Can explore links across different
scales from local to landscape

Scale can be flexibly tailored for most
management use and applications

Vegetation Models in General (e.g.,
Cushman et al. 2007)

Model construction and development
history often with vegetation
prediction and/or projection in mind

Insects, herbivores rarely included.
Depending on scale of interest and
insect, this can limit analyses of
multiple stressors

Multiple climatic, hydrologic, and
ecological processes can be coupled
to emulate forests and their
disturbances in a spatially explicit
framework

Invasive species rarely included;
depending on scale of interest,
ecosystem, and invasive, this can
limit analyses of multiple stressors

Land use change and management
actions not often explicitly accounted
for

Transient effects of climate change and
climate variability are not always
possible to predict when existing but
un-modeled thresholds and
nonlinearities are not included
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example, often calibrates a mechanistic hydro-
logic model to observed streamflow (e.g., Elsner
et al. 2010).

Either empirical or mechanistic models can be
placed in a spatial (and often contagion) context
to develop landscape models, which then extend
empirical or mechanistic models (or elements of
both) to explicit simulation of ecological process-
es in space (Cushman et al. 2007). Landscape
models that address contagion (process interac-
tion across cells) are especially suited to simula-
tions of the effects of disturbance on vegetation.
They typically use climate information as inputs
(e.g., for probabilistic fire simulation, Keane et al.
1999, He et al. 2002), but climate is not always
incorporated explicitly for simulating ecosystem
processes in landscape models.

CLIMATE MODEL SELECTION AND

RELATIONSHIP TO ECOSYSTEM MODELS

In any particular region, many locally or
regionally specific climate datasets or future
climate projections may be available. If there
are several options for generating climate inputs
to an ecosystem model, then how does one
choose which climate projections to use? There
are several things to consider when multiple
products are available, including (1) what are the
objectives of modeling, (2) how many and which
models should one use, (3) what spatial and
temporal scales of information are needed and
available, and (4) whether climate model output
can be coupled to ecosystem models.

Ensemble modeling
Regional climate projections can currently be

derived from more than twenty different global
climate models (GCMs). These GCMs have
different representations of interactions among
the land surface, ocean, atmosphere, and sea ice,
different inherent physics, and different assump-
tions about the climate system’s sensitivity to
forcing. To project future climate, GCMs are all
‘‘forced’’ in part with in-common scenarios of
greenhouse gas emissions, which make different
assumptions about future economic activity and
fossil fuel use (Nakicenovic et al. 2000). The
number of GCMs that use each scenario varies as
does the number of realizations of each climate
model for a given scenario, although there are

many models that use the B1, A1B, and A2
scenarios through 2100. The differences in cli-
mate and thus impacts between these emission
scenarios do not strongly diverge until middle or
late 21st century (Nakicenovic et al. 2000).
Selection of climate input data for an ecosystem
model therefore involves choosing both a GCM
and an emission scenario. ‘‘Ensembles’’, or
groups of several climate models, can constrain
estimates of uncertainty in climate projections for
a region (Pierce et al. 2009), and can help evaluate
which models have the best fidelity to 20th
century observations (e.g., Mote and Salathe
2010). Ideally, results from multiple GCMs would
be input climate for a given ecosystem model so
that the range of future climate projections and
their consequences for ecosystem impacts could
be evaluated, but this is computationally inten-
sive. The large number of possibilities (not all of
which are necessarily equally likely) and the
associated database storage and programming
issues, limit the feasibility of this approach for
most end users. A common solution in such cases
is to use the mean of multiple GCMs or the
‘‘ensemble mean’’ for a particular emissions
scenario (Fig. 1). The ensemble-mean approach
is often superior to any single model for
estimating mean climate (Pierce et al. 2009),
because it reduces the influence of natural
internal climate variability in any single model
and also reduces the influence of any ‘‘error’’ in
an individual model’s parameters. One can also
limit the membership of the ensemble to models
that perform best in a current region (Mote and
Salathé 2010), with the assumption that those
models have internal physics that render them
superior in that region, and then weight the
models by their fidelity to observations. It is
worth noting that it is possible that one or more
of the eliminated models could have dynamics
that cause it to perform poorly when tested
against the historical record, but, by chance, a
change in natural interactions in the future
would cause it to perform better than others in
the future. This would only be true if the
processes excluded from skillful models became
more important than included processes. How-
ever, there would be no way to know this a priori
except in the case that such differences had a
theoretical scientific root.

The ensemble mean approach may not be
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sufficiently robust because of two sources of
variability: the natural variability in the climate
system, and in uncertainty in climate-model
parameters such as model sensitivity to radiative
forcing or feedbacks such as the change in albedo
from loss of sea ice. The effects of future climate,
particularly at scales relevant to management
and adaptation, may be associated with depar-
tures from mean conditions (i.e., extremes) rather
than future means (Knutti 2008, Dessai et al.
2009). The most robust approach for adaptation
may be to start with the ensemble mean and
‘‘move outward’’, using a range of future
scenarios to bracket future conditions. Adapta-
tion strategies taking this range into account
acknowledge that the variation in outcomes is
part of the decision process (Dessai et al. 2009).
For example, contrasting the ecosystem impacts
from climate models that project warmer drier
future conditions versus those that project
warmer wetter conditions might provide a range
of future scenarios useful for examining future

fire regimes or net ecosystem productivity,

whereas the ensemble mean would give little

insight into this range of outcomes. Unfortunate-

ly, this approach does little to decrease uncer-

tainty surrounding processes that are driven

primarily by extremes, whose modeling is much

more difficult, requiring either assumptions

about the nature of change in the tails of

distributions or the use of dynamic regional

climate models.

Another way to further narrow the number of

ensemble members is to pair emissions scenarios

based on a gradient of risk (Kerns et al. 2009,

Mote and Salathé 2010). For example, high

emissions scenarios paired with more sensitive

(warmer) GCMs represent a set of higher impact

scenarios for many forest processes—planning

for these is risk averse. Lower emissions scenar-

ios paired with models that project less warming

lead to lower impact scenarios—planning for

these is risk tolerant.

Fig. 1. Ensemble means and model variation across GCMs for changes in precipitation and temperature over

the Colorado River Basin between the reference period (1970–1999) and the 2040s (2030–2059), under three SRES

socio-economic scenarios. Values for the Colorado River Basin were extracted from global model output, after

Littell et al. (2011b).
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Reconciling spatial and temporal scales
Global climate models typically make projec-

tions on grids at resolutions of thousands or tens
of thousands of square kilometers, with each cell
representing a sort of ‘‘average’’ condition within
its boundaries. There is a scale mismatch with the
needs of land managers who deal with spatial
variation in actual climate caused by local and
regional topography, and depending on decision-
making objectives, it could be counterproductive
to assume that global-model cell averages apply
uniformly across landscapes. Similarly, much of
the easily accessible global climate model output
is archived in monthly time steps, whereas
process-based ecosystem models often run at
daily or even hourly time steps. The techniques
of ‘‘downscaling’’ and ‘‘disaggregation’’ attempt
to address these mismatches in scale.

Downscaling uses local information, usually
topography and interpolated observations of
temperature and precipitation, to adjust global
climate model output to finer resolution (Wood
et al. 2002, Salathé 2003, Wood et al. 2004, Salathe
et al. 2007). The simplest method of downscaling,
often called the ‘‘delta method’’, modifies ob-
served historical climate data by adding or
subtracting projected changes in temperature
and precipitation derived from global models
over the region of interest. A more sophisticated
approach is statistical downscaling, which devel-
ops more complex quantitative relationships
between global modeled climate and finer-scale
observed climate. This statistical relationship is
then projected into the future, assuming that the
relationship between the global climate (and its
variation) and the local climate (and its variation)
is constant. Both methods rely on the historical
record for their spatial structure, but some
statistical downscaling methods get their tempo-
ral variability from the GCMs, some from the
historical record, and some from both. Medium-
scale dynamics, such as orographic effects of
smaller mountain ranges, limit the power of
statistical downscaling. Consequently, interac-
tions between future atmospheric variability
and land surfaces will be poorly constrained.
For example, some places may warm faster or
slower than the regional average, due to influ-
ences like sub-regional changes in snow albedo
feedback (e.g., Salathé et al. 2010).

Dynamical downscaling, or regional climate

modeling, sidesteps this limitation by using the
global climate model only to generate boundary
conditions. These are then used to drive a
regional weather model that can make projec-
tions at finer spatial (e.g., 12 km or less) and
temporal scales than GCMs and simulate more
realistic variation in atmospheric changes and
local feedbacks associated with topography,
snow, and vegetation (Salathé et al. 2010, Duliere
et al. 2011). This approach is much more
computationally intensive than statistical down-
scaling, but it can also highlight sub-regional
differences in topographically or physically
driven responses to climate change. A further
advantage of dynamical downscaling is that
extreme events (floods, extreme precipitation
events, cold snaps, or heat waves) outside the
range of historical observations emerge directly
from model dynamics. In contrast, statistical
downscaling can generate these extreme events
only by somewhat artificial procedures such as
quantile mapping (e.g., Hamlet et al. 2010).
Changes in extremes are important for ecosystem
modelers; for example, in predicting changes in
tree mortality (Allen and Breshears 1998) or area
burned by wildfire (Strauss et al. 1989).

Disaggregation is the temporal analogue to
downscaling. For example, for applications that
require daily or hourly weather input, disaggre-
gation can use observed monthly distributions of
precipitation or temperature to generate synthet-
ic time series of weather variables consistent with
selected statistical properties of an observed
month, but with the climatic drivers supplied
by the downscaled future climate (Salathé et al.
2007). This process assumes that these statistical
properties will be roughly approximated in the
future (Salathé 2005).

Finer-scale climate projections are not always
better. Just because a finer scale has been
achieved does not mean the projections are more
realistic or more consistent with the underlying
physics. For example, downscaling can over-
resolve the information in GCMs (or the obser-
vational record, in the case of sparse stations) and
create false precision and a false sense of
confidence. Detailed information on the interac-
tion of local conditions and regional climate is
necessary to corroborate this confidence. On the
other hand, there may be useful information for
ecosystem models in the difference between a
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regional climate projection and a localized
estimate based on interpolation and physical
variation. Two questions for users to ask are:
‘‘Are finer downscaled projections based on finer
(and more local) observations needed, and if so,
do they capture the local variation between units
(e.g., 800 m pixels)?’’ ‘‘Are they worth the cost
and potential false precision (in the absence of
observations about such fine-scale variability)
given the reality of sparse observations?’’ If
climate information is available or realistic only
at coarse scales, then decision making may need
to incorporate the mismatch in scale by including
the heterogeneity of responses within a larger-
scale climate projection.

Linking climate and ecosystem models
Climate information can be incorporated into

ecosystem models in two ways. One is ‘‘climate
explicit’’, in which climate is a direct predictor of
an ecosystem response. The other is ‘‘climate
implicit’’, in which the ecosystem response is
inferred using some surrogate factor (e.g., site
index, elevation, or latitude/longitude) that is
itself partially related to climate. With the
increasing availability of gridded climate data,
both observed and modeled, the implicit ap-
proach is rightly falling out of favor. In climate-
explicit models, ecosystem responses are directly
a function of climate variables, their interactions,
and their role in other processes affecting
vegetation, such as disturbance. Direct relation-
ships between climate and ecosystem gradients
are desirable, and are one way to reduce
uncertainty in projections based on false assump-
tions about causation vs. correlation (Cushman et
al. 2007).

Matching scales between climate outputs and
ecosystem models helps control uncertainty. If a
scale mismatch exists, understanding the impli-
cations for future projections is one component of
diagnosing the uncertainty associated with the
projection. Locally specific models with highly
specific data are sometimes required to address a
resource question, but other times a general
conclusion from a broader scale will suffice and
even be superior from an uncertainty standpoint,
particularly when downscaling would exceed the
resolution supported by observations. A regional
focus on climate, planning, and adaptation
prioritizes efforts at a level where climate model

output is most robust. The question of which
GCMs to choose for projections is tractable at
regional levels, because seasonal cycles and
sensitivity to climate variability often have
recognizable regional-scale features that interact
with regional ecosystem resources. Understand-
ing local influences on climate may be required
for projection of certain resource impacts, but as
discussed above, using finer-scale data is not
always better.

We can now frame the questions from the
beginning of this section more explicitly. When
choosing climate data to use for adaptation,
decision making, and associated ecosystem mod-
eling, important questions to ask include:

� Are multiple scenarios and multiple GCMs
needed or is an ensemble mean (perhaps for
each emissions scenario) sufficient?

� Do the models and emission scenarios
selected match the risk framework (risk
tolerant vs. risk averse)?

� Do the models chosen have good fidelity to
20th century observations at regional scales?

� If outlier models exist, can they be eliminat-
ed for objective reasons, or should their
outcomes be considered equally plausible?

� Are the spatial and temporal scales of the
climate information appropriate to planning
or decision making?

� If downscaled information is being used, is
the extra detail both necessary and realistic?

� How does the scale of that information
match the ecosystem model being used?

USING MODELS TO REDUCE UNCERTAINTY

AND MITIGATE ITS IMPACTS

The utility of ecological models for modelers is
not necessarily the same as for ecosystem
managers or decision makers. Modelers are
frequently most interested in complex ecosystem
dynamics, but from a management and adapta-
tion perspective, climate-driven ecological mod-
els help to reduce uncertainty about the future
and identify potential surprises and vulnerabil-
ities. Assessing uncertainty proactively allows
more informed use of models to make decisions
with acceptable risks. Agencies often have
established processes for risk assessment and
management and can readily apply them to
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Table 2. Sources, implications, and ways to reduce uncertainty in climate and vegetation models.

Source of uncertainty Considerations for decisions Ways to reduce uncertainty

Climate models
Lack of understanding about
phenomena and complex
interactions

Our understanding of the climate
system and complex interactions is
limited.

Select models based on fidelity to
regional and global climate use
models that replicate regional cycles
and trends. To the extent possible,
this is largely mitigated through
ongoing research.

Forcings/emissions scenarios Future social/economic responses are
not known; future climate may be
warmer or cooler than projected
from models if emissions are
different than scenario.

Select high (e.g., A2 or A1FI), medium
(A1B) and low (B1) scenarios;
prioritize according to planning
horizon (mid-century these are
similar, late century different) and
risk tolerance if not scenario
planning; track current emissions
relative to scenarios

Climatic variability Interannual, decadal, or multi-decadal
variations in climate intrinsic to
climate system may cause
departures from projected
conditions; climatic variability is
poorly modeled in most GCMs.

Plan for using historical interannual
and decadal variability; use
downscaling methods that
incorporate observed variability and
GCM changes (e.g., bias-corrected
statistical downscaling); this is
largely mitigated through ongoing
research

Model choice Individual models can have bias
associated with choices of how to
represent elements of climate
models.

Use multiple models, preferably an
ensemble of many models; choose
subsets of models based on fidelity
to regional climate; use models that
replicate regional cycles and trends

Climate sensitivity to forcing Climate sensitivity to forcing factors
may be greater or less than widely
assumed. GCMs vary in their
treatment of this, but most have
fairly similar approaches. The
climate may be more or less
sensitive to emissions than we know.

Use multiple models and multiple
emission scenarios to bracket range
of future outcomes

Vegetation models
Lack of understanding about
phenomena and complex
interactions

Our understanding of ecological
processes and complex interactions
is limited.

Select models that incorporate
processes of interest; understand
assumptions used in the models and
implications of those assumptions;
use models well established in the
peer-reviewed literature. This is
largely mitigated through ongoing
research.

Type of model Consider process of interest—stand
growth and yield, landscape
dynamics, species distributions,
etc.—should guide choice of model
class

Learn about different models and
tailor type of model to vegetation
projection; if possible, use more than
one type of model. If multiple
objectives, use multiple models with
different strengths and limitations.

Choice of model Different models within a class
represent ecological dynamics in
different ways with different
assumptions.

Understand assumptions, strengths
and limitations of individual
models; work with model
developers when possible to
understand input data and
consequences of parameterizations;
use more than one modeling
approach (e.g., both process and
empirical models and compare
results)

Sensitivity to climate Sensitivity outside the current ranges
of climate variability is difficult to
model, even for models that have
‘‘emergent’’ properties, like DGVMs.
Interactions with higher CO2 levels
are likely, but poorly understood in
real world settings.

Ongoing model development;
understand individual model
sensitivity and use multiple
scenarios
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climate-change adaptation and mitigation (IPCC
2007, Rosenzweig and Solecki 2010, Yohe and
Leichenko 2010).

The types of uncertainty in climate change
projections can be classified by their sources,
tractability, and implications for planning and
decision-making (Table 2). The term uncertainty
applies both quantitatively (to data and model
parameters) and linguistically (how we describe
and conceptualize what data mean) (Regan et al.
2002). Surprises, which occur rarely, present
difficulties for managers and institutions, but
they develop ways for dealing with uncertainties
encountered frequently (Hilborn 1987). In be-
tween are uncertainties that occur infrequently,
but to which we adapt and from which we learn
(Hilborn 1987, Reilly and Schimmelpfennig
2000). In the latter situation, the ability to
respond rapidly is most important, so broadly
based monitoring systems to detect surprises as
they occur are the best strategy, and when
surprises do occur, having resources in reserve
to cope is important (Hilborn 1987). Uncertainty
in modeling and projection is mostly unsurpris-
ing in that ranges and plausible outcomes are
well described, but one cannot rule out surprises
entirely because of model sensitivity to the
interactions of many parameters, so the strategies
Hilborn (1987) describes are useful in adaptive
management. Projections of climate decades or
centuries into the future will never be certain—
complex systems evolve in ways that are not
amenable to precise forecasts—but groups of
models applied appropriately allow projections

with sufficient confidence to be incorporated into
adaptive management.

Thoughtful choices of modeling approaches,
future scenarios, appropriate scales, and levels of
acceptable risk, coupled with careful testing of
model output against observations, can mitigate
this intrinsic uncertainty (Table 2). Using multi-
ple models, coupled with monitoring programs
to detect surprises, provides a long-term hedge
against the propagation of uncertainty, cumula-
tive effects of model bias, and omission of key
processes or interactions that are necessary and
sufficient to capture the important dynamics.
Vegetation models differ from climate models in
that the former are more heterogeneous in their
scales of focus and emphasis on levels of
organization (e.g., species vs. biomes). For
example, projection of future vegetation in a
watershed will be different if vegetation is
resolved to species (e.g., gap models) or only to
biomes (e.g., DGVMs). Use of these different
models in combination, provides information at
two taxonomic levels about how climate might
affect vegetation change, and the difference
between projections and their sources are them-
selves useful tools with which to assess uncer-
tainty.

Some common sources of uncertainty can be
particularly difficult to resolve. Both climate
models and ecological models may omit key
processes (perhaps because the model was
constructed for a different purpose) or include
processes to which the model is artificially
sensitive or less sensitive than it should be. In

Table 2. Continued.

Source of uncertainty Considerations for decisions Ways to reduce uncertainty

Propagation of uncertainty
Many possible scenarios If scenarios are perceived to be equally

likely, uncertainty can be perceived
as a major barrier.

Prioritize by risk tolerance, or use
medium emissions, climate
ensembles as input to vegetation
models and combine with adaptive
management

Propagation of errors to
ecological impacts and
assessments

Presumption is that small errors in
initial conditions lead to larger
errors in vegetation projections

Evaluate projected conditions by
ability of joint climate-vegetation
modeling to replicate observed
conditions

Novel system behavior (surprises)
Events or interactions not
described in historical record and
not anticipated from emergent
properties in models

Surprises are virtually guaranteed
because natural resources
management by definition attempts
to work on complex systems.

Planning for flexibility and resilience
in general is the best mitigation.
Agency structures that facilitate
experimentation and reward
adaptation in the aftermath of
surprises encourage these features.
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the most difficult case, some portion of the
uncertainty is irreducible because it stems from
the general nature of complex systems (Roe and
Baker 2007) instead of our lack of understanding
of key processes. The best strategy for dealing
with these commission or omission errors is
awareness of limitations of what the model can
achieve. Most models worth using for decision-
making draw on peer-reviewed literature, but
some issues are still unresolved within that
literature. For example, CO2 fertilization may
offset the water limitation on vegetation distri-
bution in a warming climate through increased
water-use efficiency. Models that assume this
impact is large make very different projections
than those that assume it is small (Cramer et al.
2001, Bachelet et al. 2008, Lenihan et al. 2008).
Scientific opinion on this issue is far from settled;
until it is, these contrasting projections are
difficult to incorporate in management. Multiple
models and modeling approaches allow explora-
tion of the consequences of this uncertainty, but
cannot really reduce it. This uncertainty can be
particularly evident at biome transitions (Bache-
let et al. 2008, Lenihan et al. 2008), and could
significantly affect broad-scale management. At
finer scales, such as a forest project within a small
watershed with an expected lifetime into the
2040s, biome-scale projections will matter less
than the effects of climate change on individual
species, but analogous unresolved issues in the
literature may still apply. For example, while
statistical models can be used to infer what may
happen to individual species, the models assume
that certain processes, such as biotic interactions
or disturbance, are either unimportant or will
remain the same with climate change. However,
species are expected to respond individualisti-
cally (Davis 1986), which is likely to result in
novel biotic interactions, and species whose
ranges are at least partially determined by biotic
interactions (the majority of species) are likely to
respond in complex ways to novel environments
(Elith et al. 2010). Another type of uncertainty
that is difficult to mitigate is the potential for
surprises that stem from a lack of understanding
about important drivers, responses, interactions,
or feedbacks (Hilborn 1987, Regan et al. 2002).
An example of this is floods or fires for which no
observed or known events are comparable in
magnitude. Arguably, such surprises would be

possible in an equilibrium climate, but it is
possible that the extremes of today may be the
common events of a future with greater extremes
(Mantua et al. 2010, Duliere et al. 2011).
However, if outcomes projected by models fail
to occur and a surprise outcome manifests
instead, there is at least an opportunity for both
institutional and scientific learning.

One test of process models (including climate
models and many vegetation models) is their
capability to reproduce observed patterns and
dynamics, but the best test may be to reproduce
experimental responses under the novel condi-
tions the model is charged with projecting. For
example, can a biogeochemical model project the
water, nitrogen, and carbon dynamics in a
simulated, CO2 enriched atmosphere? Of course,
experiments at large scales are not always
possible, but the mechanisms at the root of novel
future interactions can often be tested. Statistical
models should also be true to observations, but
should be tested for robustness via resampling
techniques to ensure that they are not excessively
tuned to the observations. Consistency with
other models is another litmus test. Broad
agreement among ecological models with differ-
ent underlying principles and different concep-
tual approaches when climate inputs are similar,
or across multiple climate models and multiple
ecological models, suggests scientific agreement
(if not consensus) on sensitivity of the ecosystem
response to climate. Frequent disagreement
among ecological models when climate is similar
suggests different assumptions and sensitivities
of ecosystem response to climate among models.
Frequent disagreement in output from a single
ecological model with variable climate inputs
suggests high sensitivity of vegetation to climate
model input.

Example: reducing uncertainty in practice informed
by risk tolerance

Fig. 2 illustrates a 3-step process comparing
scenarios and outcomes with different risk
tolerance, and represents a hypothetical example
where deliberate methodology has been chosen
to mitigate uncertainty. First, 18 GCMs (e.g., 18
different GCMs for emissions scenario A1B from
the PCMDI archive, Meehl et al. 2007) are
evaluated for their regional bias in temperature,
precipitation, and seasonal cycle during the 20th
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century (Fig. 2, panel 3). Assuming that a
prerequisite for future performance is current
performance, this can decrease uncertainty about
model sensitivity and the performance of
GCMs—poorly performing models are eliminat-
ed. The 10 models with best fidelity to the 20th
century record are selected, their regionally
specific estimates of change in temperature and
precipitation (‘‘deltas’’) are averaged, and a
gridded observed climatology is perturbed by
those deltas to obtain future downscaled esti-
mates.

We assume that the average of multiple
models reduces uncertainty associated with
individual model parameterization and we
downscale the projections to a useful resolution
for sub-regional applications. In this example
(Fig. 2, panel 2), the model with the warmest bias
and the model with the coldest bias for the
season and process of interest are used to perturb
the field in the same way to provide bracketing
scenarios. This addresses the uncertainty that the
future may be warmer or cooler than the mean of
the best models. The three future climate

scenarios (coolest, ensemble mean, and warmest)
are then used as input into an ecosystem model.
A more robust approach would use multiple
ecosystem models. This yields three estimates of
future process variation and controls for uncer-
tainty associated with vegetation model sensitiv-
ity to climate. The ensemble mean is robust,
coming from models with good fidelity to
observed climate, and planning around this
scenario could be considered risk neutral. The
warmer scenario is risk averse—planning for it
would need to assume larger potential changes in
vegetation (perhaps respiration) because the rate
of warming is faster. The cooler scenario is risk
tolerant—planning for this scenario assumes that
the possibility of warmer conditions warrants
fewer changes in management. This third step
connects uncertainty to risk in that a gradient of
risk can be essentially overlain on the range of
uncertainty.

In the long term, it is key to understand why
models are at odds with each other and why
some models are such outliers. If one or more of
the main processes affecting climate currently

Fig. 2. One approach to limiting uncertainty about future climate is choosing relevant subsets of global climate

models (1), using ensemble means and (2) bracketing scenarios for downscaling (e.g., ‘‘delta’’ method) (3), and

combining these approaches for a filtered subset of models. Planet image modified from original online at hwww.

psdgraphics.comi.

v www.esajournals.org 13 September 2011 v Volume 2(9) v Article 102

SYNTHESIS & INTEGRATION LITTELL ET AL.



becomes less important and a currently second-
ary becomes more important, these outlier
models could be superior, though we would
have no way to know this before hand. In this
case, eliminated models could well be the closest
to the ‘‘true’’ model. This is resolvable both
through continued model development via re-
search and through monitoring and experimen-
tation, but such evolution may or may not
improve decisions, and waiting for better infor-
mation to make decisions may ensure a narrower
range of choices. In the next section, we turn our
attention to model output in the context of
decision making and risk.

USING MODEL OUTPUT TO MAKE DECISIONS

WITH KNOWN RISKS

Using projections from climate and ecosystem
models in decision making can extend models
beyond what they were intended to do –to better
understand a system through iterative refine-
ment of concepts and synthesis of scientific
knowledge. Using them in decision-making
brings up questions such as ‘‘What assumptions
and choices in the modeling could undermine
these projections significantly?’’ and ‘‘What fu-
ture events could happen that would change the
confidence in these projections, and how likely
are those events?’’ We propose the following
questions that can be asked of all models to
identify common pitfalls, highlight common
misuses, and address uncertainty that stems
from their misapplication. The answers will
determine whether a model can capture the
ecosystem response of interest or whether model
limitations undermine its ability to project
changes well enough for decision making.

� How well does the model simulate observed
conditions? This is the ultimate litmus test for
models—discrepancies between observed
dynamics and model simulations usually
represent excluded or poorly parameterized
processes (e.g., land use), incorrect assump-
tions, or scale / domain problems that must
be reconciled.

� Are there major unresolved scientific issues
associated with the model’s implementation? It
is sometimes necessary to include partially
understood or incompletely verified relation-

ships or processes in both vegetation and
climate models. If these represent best
approximations, their inclusion is not neces-
sarily problematic. Models may be very
sensitive to precisely these relationships,
however, so they may add substantially to
model uncertainty.

� Was the model intended to make the projections it
is being asked to make and is it capable of doing
what it is being asked to do? Models are
frequently pressed into service to generate
projections outside their purview. Sometimes
such extension merely represents the evolu-
tion of an already good model, but it may
also result in output that receives more
weight than it should simply because it is
model generated. It is key to understand
what the model was constructed for and
how far outside its boundaries it is being
applied.

� Are the native spatial, temporal, and biological
scales of the model output appropriate for the
scale of decision making? Does it matter (and
what are the consequences) if they are not? For
spatially explicit models, and often for
spatially implicit models, there is a scale
(pixel or grain size) associated with the
model projections or processes. It is key to
understand this scale and ensure that cross-
scale inferences are not constructed inappro-
priately. For example, assuming that a
hemispheric climate trend must be repre-
sented in every part of the hemisphere is
erroneous, just as extrapolation from a single
observation to a global phenomenon is
erroneous. Temporal scale has analogous
issues associated with it.

� Are the necessary processes, responses, and
interactions required to describe ecosystem re-
sponse incorporated in the model? What are the
consequences if they are not? What impor-
tant processes are not considered in the
model? For example, is a vegetation model
static or dynamic with respect to disturbance
that alters vegetation, which in turn affects
disturbance? Does static vegetation change
model output on relevant time scales? It is
possible, for example, that the dynamic
vegetation influence on basin-scale hydrolo-
gy decreases as scale increases. A hydrologic
model that needs to estimate streamflow or
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runoff in a small basin over the course of a
century will be crippled by static vegetation
assumptions because the real vegetation
could change substantially, but a much
larger basin might or might not be as
affected by the same problem because many
small changes could average out or they
might be a larger scale change analogous to
complete restructuring in a small basin.

� Do multiple models addressing the same question
and starting with similar assumptions produce
similar results? Is there sufficient agreement
among modeling approaches that the sensi-
tivity of model parameters and architecture is
not too great? If divergence among model
results is evident, is it in specific details or
general features? The former might indicate
minor process uncertainty or slight differenc-
es in parameters (or possibly models that are
not entirely independent), whereas the latter
might indicate large differences in the sensi-
tivity or scientific basis of the models in
question. Model development and model
lineages are sometimes shared, so it may be
important to not that if there is agreement, the
models need to be independent for the
approaches to risk and uncertainty described
above to hold.

CONCLUSION

The role of model output in decision-making
by managers is to bridge the gap between
understood reality and potential changes to that
reality in the future. Climate change and its
impacts on vegetation and natural resources
point to a future that is quite different from even
the recent past. In any future, particularly those
describing a world affected by climate change,
surprises are going to be difficult to navigate in
management. So models become a good way—
some would argue the best way—to anticipate
the future and to develop strategies based on our
own mandates, objectives, and vision. Models
incorporate imperfect information and are a
simplified version of reality, but by understand-
ing these imperfections, we can use models be
used to decrease the uncertainty associated with
the future. This narrowing of future uncertainty
based on projections translates into narrowing
the risk profile for important resources—it

effectively allows more informed decisions based
on the likelihood of alternate futures. Informa-
tion from multiple models should be used in
decision making to provide projections about the
future and to decrease uncertainty, rather than to
‘‘predict’’ what will happen. Models will not
make decisions for anyone and will sometimes
make decisions more difficult because of the
tradeoffs they reveal. By incorporating model-
based information into existing risk assessment
strategies and incorporating local knowledge,
particularly at the scales of project planning
where global and regional climate or general
ecological projections become less certain, the
basis for decision and action can be strengthened.

Reducing uncertainty in climate and ecosystem
model projections is only one part of decision
making under uncertainty. When confronted
with multiple future scenarios that are all
plausible, if not equally likely, the real question
is ‘‘How does this information change decision
making?’’ The answer to that question involves
prioritization of objectives, vulnerabilities, risk
tolerances, monitoring, assessment, and correct-
ing the course of management to achieve
objectives. Climate and ecosystem models are a
basis of decision making, when coupled with
adaptive management they reduce future uncer-
tainty and provide a hedge against its conse-
quences. Models may appear to complicate the
analytical approach to decision making, but in
the end they reduce the uncertainty associated
with those decisions.

This is not to say that models should be the
basis for all decision-making, nor that all models
should be used in decision making. Models are
important tools, and both models and decisions,
even if made with the best available science,
must be reassessed when they don’t work, as
should the underlying science. There are poten-
tial conflicts between decisions implied by model
projections and the regulatory environment in
which the actions that result from those decisions
must take place (Littell et al. 2011a), making the
case for an improved science management
partnership (Joyce 2003). Decision makers and
managers necessarily have different needs from
models—and sometimes from science—than
model builders and scientists. Recent approaches
to ‘‘climate services’’ (Miles et al. 2006) suggest
that this partnership is an iterative relationship
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where science informs management but manage-
ment needs define the progression of science. For
example, managers are quite capable of pointing
out un-incorporated variables or suggesting
model refinements that would make output more
useful to them. Science–management partner-
ships can also design and implement monitoring
systems that can be used to improve and validate
model quality, leading to better models with less
uncertainty.

Perhaps the most important message we offer
is that scientific uncertainties about changes in
climate or the projections of impacts on resources
do not present fundamental barriers to manage-
ment and adaptation to climate change. Instead,
uncertainty can be purposefully mitigated with
appropriate attention to model limitations and
ongoing re-assessment based on monitoring. The
institutional barriers to adaptive capacity (e.g.,
Moser and Luers 2008), such as static approaches
to systems that are inherently dynamic, may
ultimately be more limiting than scientific uncer-
tainty (Chapin et al. 2006).
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Hamlet, and E. Salathé. 2011b. Regional climate and
hydrologic change in the northern US Rockies and
PacificNorthwest: internally consistent projections of
future climate for resource management. Final
report. April 17, 2011. hhttp://cses.washington.edu/
picea/USFS/pub/Littell_etal_2010/Littell_etal._2011_
Regional_Climatic_And_Hydrologic_Change_USFS_
USFWS_JVA_17Apr11.pdfi

Lovett, G. M., C. D. Canham, M. A. Arthur, K. C.
Weathers, and R. D. Fitzhugh. 2006. Forest ecosys-
tem responses to exotic pests and pathogens in
eastern North America. BioScience 56:395–405.

Luo, Y. Q., E. S. Weng, X. W. Wu, C. Gao, X. H. Zhou,
and L. Zhang. 2009. Parameter identifiability,
constraint, and equifinality in data assimilation
with ecosystem models. Ecological Applications
19:571–574.

Mantua, N. J., I. Tohver, and A. F. Hamlet. 2010.
Climate change impacts on streamflow extremes
and summertime stream temperature and their
possible consequences for freshwater salmon hab-
itat in Washington State. Climatic Change 102:187–
223. [doi: 10.1007/s10584-010-9845-2]

McKenzie, D., D. W. Peterson, and D. L. Peterson. 2003.
Modelling conifer species distributions in moun-
tain forests of Washington State, USA. Forestry
Chronicle 79:253–258.

Meehl, G. A., C. Covey, T. Delworth, M. Latif, B.
McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E.
Taylor. 2007. The WCRP CMIP3 multi-model data-
set: A new era in climate change research. Bulletin
of the American Meteorological Society 88:1383–
1394.

Melillo, J. M., J. Borchers, J. Chaney, H. Fisher, S. Fox,
A. Haxeltine, A. Janetos, D. W. Kicklighter, T. G. F.
Kittel, A. D. McGuire, R. McKeown, R. Neilson, R.
Nemani, D. S. Ojima, T. Painter, Y. Pan, W. J.
Parton, L. Pierce, L. Pitelka, C. Prentice, B. Rizzo,
N. A. Rosenbloom, S. Running, D. S. Schimel, S.
Sitch, T. Smith, and I. Woodward. 1995. Vegetation

ecosystem modeling and analysis project (VE-
MAP)—comparing biogeography and biogeochem-
istry in a continental-scale study of terrestrial
ecosystem responses to climate change and CO2
doubling. Global Biogeochemical Cycles 9:407–437.

Miles, E. L., A. K. Snover, L. C. Whitely Binder, E. S.
Sarachik, P. W. Mote, and N. J. Mantua. 2006. An
approach to designing a National Climate Service.
Proceedings of the National Academies of Sciences.
103:9616–19623.

Millar, C. I., N. L. Stephenson, and S. L. Stephens. 2007.
Climate change and forests of the future: Managing
in the face of uncertainty. Ecological Applications
17:2145–2151.

Millar, C. I., and W. B. Woolfenden. 1999. The role of
climate change in interpreting historic variability.
Ecological Applications 9:1207–1216.

Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M.
Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and
R. J. Stouffer. 2008. Stationarity is dead: Whither
water management? Science 319:573–574. [doi: 10.
1126/science.1151915]

Morrison, S. F. and D. S. Hik. 2007. Demographic
analysis of a declining pika Ochotona collaris
population: linking survival to broad-scale climate
patterns via spring snowmelt patterns. Journal of
Animal Ecology 76:899–907.

Moser, S. C. and A. L. Luers. 2008. Managing climate
risks in California: the need to engage resource
managers for successful adaptation to change.
Climatic Change 87:S309–S322.

Mote, P. W., and E. P. Salathé. 2010. Future climate in
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