
 

 

 2. Scaling Laws and Complexity in Fire 
Regimes 

Donald McKenzie and Maureen Kennedy 

Use of scaling terminology and concepts in ecology evolved rapidly from rare 
occurrences in the early 1980s to a central idea by the early 1990s (Allen and 
Hoekstra 1992; Levin 1992; Peterson and Parker 1998). In landscape ecology, use 
of “scale” frequently connotes explicitly spatial considerations (Dungan et al. 
2002), notably grain and extent. More generally though, scaling refers to the sys-
tematic change of some biological variable with time, space, mass, or energy. 
Schneider (2001) further specifies ecological scaling sensu Calder (1983) and Pe-
ters (1983) as “the use of power laws that scale a variable (e.g., respiration) to 
body size, usually according to a nonintegral exponent” while noting that this is 
one of many equally common technical definitions. He further notes that “the con-
cept of scale is evolving from verbal expression to quantitative expression” (p. 
545), and will continue to do so as mathematical theory matures along with quan-
titative methods for extrapolating across scales. In what follows, we operate main-
ly with this quoted definition, noting that other variables can replace “body size”, 
but we also use such expressions as “small scales” and “large scales” somewhat 
loosely where we expect confusion to be minimal. We examine the idea of conta-
gious disturbance, how it influences our cross-scale understanding of landscape 
processes, leading to explicit quantitative relationships we call scaling laws. We 
look at four types of scaling laws in fire regimes and present a detailed example of 
one type, associated with correlated spatial patterns of fire occurrence. We con-
clude briefly with thoughts on the implications of scaling laws in fire regimes for 
ecological processes and landscape memory. 

Landscape ecology differs from ecosystem, community, and population ecolo-
gy in that it must always be spatially explicit (Allen and Hoekstra 1992), thereby 
coupling scaling analysis with spatial metrics. For example, characteristic scales 
of analysis such as the stand, watershed, landscape, and region are associated with 
both dimensional spatial quantities (e.g., perimeter, area, elevational range) and 
dimensionless ones (e.g., perimeter/area ratio, fractal dimension). Similarly, prop-
erties of landscapes such as patch size distributions are also associated with spatial 
metrics. The tangible physical dimensions of landscapes obviate the often circuit-
ous methods required to define and quantify scales in communities or ecosystems. 

2.1 Scale and Contagious Disturbance 

A contagious disturbance is one that spreads across a landscape over time, and 
whose intensity depends explicitly on interactions with the landscape (Peterson 
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2002). Some natural hazards (Cello and Malamud 2006), such as wildfires, are 
therefore contagious, whereas others, such as hurricanes, are not, even though 
their propagation may still produce distinctive spatial patterns. By the same crite-
rion, biotic processes can be contagious (e.g., disease epidemics, insect outbreaks, 
grazing) or not (e.g., clearcutting). Contagion has two components: momentum 
(also see energy, McKenzie et al., Chap. 1) and connectivity. Together they create 
the aforementioned interaction between process and landscape. For an infectious 
disease––the best-known contagious process––a sneeze can provide momentum, 
while the density of nearby people provides connectivity. For fire, momentum is 
provided by fire weather via its effects on fireline intensity and heat transfer, whe-
reas connectivity is provided by the spatial pattern and abundance of fuels. 

Momentum and connectivity covary in a contagious disturbance process such 
as fire. Increases in momentum generally increase connectivity, and changes in 
connectivity can be abrupt when the number of patches susceptible to fire reaches 
a percolation threshold (Stauffer and Aharony 1994; Loehle 2004). For example, 
Gwozdz and McKenzie (n.d.) found that decreasing humidity across a mountain 
watershed (momentum provided by fire weather) can abruptly change the connec-
tivity of fuels when the percentage of the landscape susceptible to fire spread 
crosses a percolation threshold.  

Interactions between momentum and connectivity may appear to be scale-
dependent in that they yield qualitative changes in the behavior of landscape dis-
turbances when viewed at different scales, even though the mechanisms of conta-
gion per se do not change across scales. For example, the physical mechanisms of 
heat transfer remain the same across scales, and fire spread does depend on local 
connectivity of fuels, but estimates of connectivity across landscapes are sensitive 
to spatial resolution (Parody and Milne 2004).  

2.2 Extrapolating Across Scales 

Much study has gone into understanding how spatial processes change across 
scales (Levin 1992; Wu 1999; Miller et al. 2004; Habeeb et al. 2005). Scale extra-
polation is universally seen to be obligatory, because detailed measurements are 
often only available at fine spatial scales (McKenzie et al. 1996), but also difficult. 
Given a set of observations at coarse scales, however, it is important to understand 
the distinction between average behavior of fine-scale processes and the emergent 
behavior (Milne 1998; Levin 2005) of a system. Emergent behavior “appears 
when a number of simple entities (agents) operate in an environment, forming 
more complex behaviors as a collective”.1 In the first case, the principal difficulty 
in extrapolation is error propagation, producing biased estimates of the average or 
expected behavior at broad scales because of the cumulative error from summing 
                                                           
1 Wikipedia contributors, “Emergence,” Wikipedia, the Free Encyclopedia, 
http://en.wikipedia.org/wiki/Emergence. Accessed 25 Jan 2010. 
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or averaging many calculations (Rastetter et al. 1992; McKenzie et al. 1996). In 
the second case, the difficulty is more profound, in that one must identify scales in 
space and time at which qualitative changes in behavior occur.  

Some qualitative models can partition scale axes in tractable ways. For exam-
ple, Simard (1991) developed a classification of processes associated with wild-
land fire and its management that spanned many orders of magnitude on space and 
time axes. This “taxonomy” of wildland fire, though not derived quantitatively 
from data, was enough to build a logical connection to the National Fire Danger 
Rating System (NFDRS––Cohen and Deeming 1985) that was of practical use 
(Simard 1991). Nevertheless, the limitations of such models are clear, in that qua-
litative changes in system behavior and key variables are established a priori. In 
order to relate processes quantitatively across scales, whether one is interested in 
average behavior or emergent behavior, a tractable theoretical framework is 
needed. 

Scaling laws are quantitative relationships between or among variables, with 
one axis (usually X) often being either space or time. Many scaling laws are biva-
riate and linear or log-linear, and are developed from statistical models, theoretical 
models, or both. Most commonly they are based on frequency distributions or cu-
mulative distributions wherein variables, objects, or events with smaller values 
occur more frequently than those with larger values. The simplest scaling law is a 
power law, for which a histogram in log-log space of the frequency distribution 
follows a straight line (Zipf 1949, as cited in Newman 2005). Following Newman 
(2005), let p(x) dx be the proportion of a variable with values between x and dx. 
For histograms that are straight lines in log-log space, ln p(x) = -α ln x + c, where 
α and c are constants (Newman 2005). Exponentiating both sides and defining C = 
exp(c), we have the standard power law formulation 

   
 ( )p x Cx α−=  (0.1) 
   
The parameter of interest is the slope α (always negative for frequency distribu-

tions), whereas C serves as a normalization constant such that p(x) sums to 1 
(Newman 2005). In the case of a frequency distribution, where Y values in a his-
togram are counts, C can be rescaled in order to compare slopes among distribu-
tions. Power-law relationships are often fit statistically by various binning me-
thods, with subsequent regression of bin averages on event size, but more 
complicated maximum-likelihood methods may be more robust (White et al. 
2008; Moritz et al., Chap. 3). 

Newman (2005) gives 12 examples of quantities in natural, technical, and so-
cial systems that are thought to follow power laws over at least some part of their 
range. His diverse examples include intensities of wars (Roberts and Turcotte 
1998), magnitude of earthquakes (National Geophysical Data Center 2010), cita-
tions of scientific papers (Redner 1998), and web hits (Adamic and Huberman 
2000). Newman (2005) specifically excludes fire size distributions, while admit-
ting that they might follow power laws over portions of their ranges. Current opi-
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nion is divided among those who would globally assign power laws to fire-size 
distributions (Minnich 1983; Bak et al. 1990; Malamud et al. 1998, 2005; Turcotte 
et al. 2002; Ricotta 2003) and those who would attribute them only to portions of 
distributions or rule them out altogether in favor of alternatives (Cumming 2001; 
Reed and McKelvey 2002; Clauset et al. 2007; Moritz et al., Chap. 3).  

2.3 Scaling Laws and Fire Regimes 

Wildfires affect ecosystems across a range of scales in space and time, and con-
trols on fire regimes change across scales. The attributes of individual fires are 
spatially and temporally variable, and the concept of fire regimes has evolved to 
characterize aggregate properties such as frequency, severity, seasonality, or area 
affected per unit time. These aggregate properties are often reduced to metrics 
such as means and variances, thereby simplifying much of the complexity of fire 
by focusing on a single scale and obscuring ecologically important cross-scale in-
teractions (Falk et al. 2007). 

Scaling laws can deconstruct aggregate statistics of fire regimes in two ways: 
via frequency distributions that exhibit scaling laws, or by examining the scale de-
pendence of individual metrics. Fire-size distributions are an example of the first, 
in that frequency distributions of fire sizes often follow power laws over at least 
portions of their ranges (Malamud et al. 1998, 2005; Turcotte et al. 2002; Moritz 
et al. 2005; Millington et al. 2006). Fire frequency, fire hazard, and spatial patterns 
of fire occurrence in fire history data are examples of the second, in that these sta-
tistics often change systematically and predictably across the spatial scale of mea-
surement (Moritz 2003; McKenzie et al. 2006a; Falk et al. 2007; Kellogg et al. 
2008). Here we briefly discuss both the scaling patterns that have been found 
within each of these four metrics of fire regimes (size, frequency, hazard, spatial 
pattern) and the more problematic attribution of mechanisms responsible for the 
scaling patterns. 

2.3.1 Fire Size Distributions 

Power laws have been statistically fit to fire size distributions from simulation 
models and empirical data at many scales, from virtual raster landscapes generated 
by the “Forest Fire Model” (Bak et al. 1990) to historical wildfire sizes throughout 
the continental United States (Malamud et al. 2005). Not all scaling relationships 
found in fire-size distributions are power laws. For example, Cumming (2001) 
found that a truncated exponential distribution, which defines an upper bound to 
fire size, had the best fit to data from boreal mixedwood forests in Canada. Reed 
and McKelvey (2002) suggest that the power law serves as an appropriate null 
model, but that additional parameters in a “competing hazards” model improved 
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the fit to empirical data at regional scales. Ricotta (2003) suggests that power law 
exponents can change with spatial scale, based on hierarchical fractal properties of 
landscapes, providing a rejoinder to detractors of the power-law paradigm. An ex-
cellent review of this topic, with discussion, is found in Millington et al. (2006). 
These authors state, and we concur, that the value of discerning power-law beha-
vior, or alternative, more complex nonlinear functions, would increase greatly if 
the ecological mechanisms driving such behavior could be identified (West et al. 
1997; Brown et al. 2002). 

Two mechanisms in particular have been proposed to explain power-law beha-
vior in fire-size distributions. Self-organized criticality (SOC––Bak et al. 1988) re-
fers to an emergent state of natural phenomena whereby a system (be it physical, 
biological, or socioeconomic) evolves to a state of equilibrium characterized by 
variable event sizes, each of which resets the system in proportion to event magni-
tude. In theory, the frequency distribution of events will approach a power law be-
cause the recovery time from “resetting” varies with event magnitude. SOC has 
been associated mainly with physical systems, particularly natural hazards such as 
earthquakes and landslides (Cello and Malamud 2006), but its attribution to power 
laws in fire regimes has typically been only at small scales (Malamud et al. 1998) 
or inferred from small-scale behavior (Song et al. 2001).  

In contrast to SOC, highly optimized tolerance (HOT) emphasizes structured 
internal configurations of systems that involve tradeoffs in robustness (Carlson 
and Doyle 2002; Moritz et al. 2005), rather than the emergent outcomes of sto-
chastic though correlated events as in SOC. For example, a HOT model that can 
be applied to wildfires is the probability-loss ratio (PLR) model (Doyle and Carl-
son 2000; Moritz et al. 2005), a probabilistic model of tradeoffs between resources 
(e.g., some ecosystem function in natural systems or efforts to protect timber in 
managed systems) and losses (e.g., from fire). Solving the PLR model analytically 
produces a frequency distribution of expected fire sizes that follows a power law 
(Moritz et al. 2005). HOT provides a theoretical framework for examining ecosys-
tem resilience in response to fire events (Moritz et al., Chap. 3). 

2.3.2 Fire Frequency 

The terms fire frequency and fire-return interval (FRI) are part of the currency 
of ecosystem management. Fire frequency is often compared among different 
geographic regions and between the current and historical periods. For example, 
considerable FRI data exist across the western United States (NOAA 2010), which 
can be compared and used to build regional models of fire frequency (McKenzie 
et al. 2000). Both comparisons and model-building assume that all FRI data points 
represent a composite fire return interval (CFRI)––the average time between fires 
that are observed within a sample area, but the likelihood of detecting a fire event 
clearly increases as the search area is expanded. FRIs are inherently scale-
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dependent, despite sophisticated methods for unbiased estimation of fire-free in-
tervals (Reed and Johnson 2004). 

Scaling laws in fire frequency thus quantify the relationship between the area 
examined for evidence of fire and the estimated fire return interval. This interval-
area relationship (IA––Falk et al. 2007) appears in low-severity fire regimes pro-
ducing fire-scars on surviving trees, mixed-severity fire regimes where fire peri-
meters are estimated, and raster simulation models that produce a range of fire se-
verities and fire sizes (Falk 2004; McKenzie et al. 2006a; Falk et al. 2007). In each 
case, the IA can be fit to a power law, whose slope (exponent) captures other ag-
gregate properties of the fire regime (Fig. 2.1). For example, larger mean fire sizes 
produce less negative slopes, because small-area samples are more likely to detect 
large fires than small fires. Simulations (McKenzie, n.d.) suggest that greater va-
riance in fire size, given equal means, also produces less negative slopes, for rea-
sons that are presently unclear (see Falk et al. 2007 for details). 

 
Put Figure 2.1 here 
 
In theory, then, the intercept in log-log space of the IA relationship reflects the 

mean point fire-return interval (sample area = 0 in the case of a point, or the area 
of the minimum mapping unit otherwise), providing a “location” parameter to the 
scaling law (Falk et al. 2007). Also in theory, the exponents in the IA relationship 
could be derived from the properties of fire-size distributions, possibly means and 
variances alone, although extreme values (rare large fires) make this difficult. This 
connection to fire size is useful because predictive modeling of fire sizes, though 
subject to substantial uncertainty, is less problematic than predicting fire frequen-
cy (McKenzie et al. 2000; Littell et al. 2009). Further work is necessary, though, 
to connect the IA relationship to estimates of fire sizes, or fire-size distributions. 

Another metric of fire frequency, the fire cycle, or natural fire rotation, refers, 
on a particular landscape, to the time it takes to burn an area equal to that land-
scape. The fire cycle is presumably independent of spatial scale if the sample 
landscape is much larger than the largest fire recorded within it (Agee 1993), but 
calculating it depends on accurate estimates of the sizes of every fire in the sam-
ple. This is a difficult task in historical low-severity fire regimes, in which most 
fire-frequency work has been done (Hessl et al. 2007; Swetnam et al., Chap. 7). 
Furthermore, Reed (2006) showed that the mathematical equivalence between the 
fire cycle and the mean point FRI holds only if all fires are the same size, limiting 
the usefulness of the fire cycle as a metric of fire frequency.  

2.3.3 Fire Hazard 

Fire hazard in fire-history research quantifies the instantaneous probability of 
fire, and is derivable from distribution functions of the exponential family (e.g., 
negative exponential and Weibull) associated with the fire cycle (stand-replacing 
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fire––Johnson and Gutsell 1994) and the distribution of fire-free intervals (fire-
scar records––McKenzie et al. 2006a). The hazard function may be constant over 
time, reflecting a memory-free system in which current events do not depend on 
past events, and producing exponential age class distributions of patches in stand-
replacing fire regimes (Johnson and Gutsell 1994). In contrast, an increasing ha-
zard of fire over time (or decreasing, but this is rarely seen in fire regimes) reflects 
a causative factor, i.e. the growth of vegetation and buildup of fuel that facilitates 
fire spread. This increasing hazard is represented mathematically by a shape pa-
rameter in the Weibull distribution that is significantly greater than 1 (if this pa-
rameter is 1 the distribution reduces to the negative exponential––Evans et al. 
2000). Moritz (2003) observes, however, that the ecological significance of the 
shape parameter covaries with the scale parameter, representing, with fire, the 
mean fire-free interval. For long fire-free intervals, shape parameters ≤ 2 represent 
fire hazard that increases negligibly over time (Moritz 2003). 

When the hazard function changes with spatial scale, it reflects changing con-
trols on fire occurrence. McKenzie et al. (2006a) and Moritz (2003) identified pat-
terns in hazard functions that were associated with the relative strength of transient 
controls on fire occurrence and fire spread. In low-severity fire regimes in dry fo-
rests of eastern Washington state, USA, McKenzie et al. (2006a) sampled compo-
site fire records at different spatial scales to examine the scale dependence of fire 
frequency and fire hazard. At small sampling scales, hazard functions were signif-
icantly greater than 1 (increasing hazard over time), particularly in watersheds 
with complex topography, but declined monotonically with increasing sampling 
scale (Fig. 2.2). McKenzie et al. (2006a) suggest that fire hazard on eastern Wash-
ington landscapes increases over time at spatial scales associated with a characte-
ristic size of historical fires, reflecting the effects of fuel buildup within burned 
areas.  

 
Put Figure 2.2 here 
 
In high-severity fire regimes of shrublands in southern California, USA, Moritz 

(2003) found no scale dependence in the hazard function except for one landscape 
whose location and topography protected it from extreme fire weather (Fig. 2.3). 
Fire hazard increased in response to the increasing flammability of fuels over 
time. Over most of the region, however, fuel age-classes burned with equal like-
lihood, because almost all large fires occurred during extreme fire weather, pro-
viding sufficient inertia to overcome the patchiness of fuels and rendering the ha-
zard function essentially constant. In both these examples, then, scaling laws in 
fire hazard were apparent only when controls were “bottom-up” (Kellogg et al. 
2008, McKenzie et al., Chap. 1; Moritz et al., Chap. 3), i.e., produced by interac-
tions between fine-scale process (the buildup of fuels over time) and landscape 
pattern (topography and the spatial variability in fuel loadings), and where ex-
treme fire weather was uncommon. 
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Put Figure 2.3 here 

2.3.4 Correlated Spatial Patterns 

We emphasized earlier that a key property of landscape fire is contagion. The 
relative connectivity of landscapes with respect to fire spread and the momentum 
provided by fire intensity and fire weather jointly affect the probability that two 
locations will experience the same fire event. If this probability attenuates syste-
matically with distance, it can in theory be represented by a scaling law related to 
contagion.  

The cumulative effect of these probabilities over time can be seen clearly as the 
similarity between two locations of the time series of years recording fire. In low-
severity fire regimes, this similarity is measured between two recorder trees (point 
fire records) or area samples (composite fire records). Kellogg et al. (2008) com-
piled these time series for every recorder tree in each of seven watersheds in 
Washington state, USA. They used a classical ecological distance measure, the 
Jaccard distance (closely related to the Sørensen’s distance [see below]––
Legendre and Legendre 1998), to compare pairs of recorder trees at different geo-
graphic distances, generating scatterplots analogous to empirical variograms (he-
reafter SD variograms). Spherical variogram models, and power-law functions, 
were fit to these aggregate data for each watershed (McKenzie et al. 2006b; Kel-
logg et al. 2008; and the example below). Both types of models had better expla-
natory power in more topographically complex watersheds. 

2.3.5 Mechanisms 

Power laws abound in nature and society, but to date explicit mechanisms that 
produce them, and the parameters associated with their variability, have been dif-
ficult to identify. Purely stochastic processes can produce power laws (Reed 2001; 
Brown et al. 2002; Solow 2005), as can general dimensional relationships among 
variables, the most familiar being Euclidean geometric scaling (Brown et al. 
2002). Brown et al. (2002) suggest that when scaling exponents in power laws (α 
in Eq. 2.1) take on a limited or unexpected range of values they are more likely to 
have arisen from underlying mechanisms. Examples of this are in organismic bi-
ology, where the fractal structure of networks and exchange surfaces clearly leads 
to allometric relationships (West et al. 1997, 1999, 2002), and in ecosystems in 
which there are strong feedbacks between biotic and hydrologic processes (Scan-
lon et al. 2007; Sole 2007). 

How might we identify the mechanisms behind scaling laws in fire regimes? 
We propose two general criteria, based on our overview above, as hypotheses to 
be tested. Criterion #1 suggests how mechanisms produce scaling laws, whereas 
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criterion #2 provides necessary conditions for scaling laws in fire regimes to be 
linked to driving mechanisms. 

 
1) Bottom-up controls are in effect: Drawing on O’Neill et al. (1986), we 

propose a hierarchical view of fire regimes that focuses interest on landscape 
scales (Fig. 2.4). Mechanisms at a finer scale below drive fire propagation, and in-
teractions between process (fire spread) and pattern (topography and fuels) gener-
ate complex spatial patterns. When landscape spatial complexity is sufficient, fire 
spread and fuel consumption produce the spatial patterns that are reflected in the 
IA relationship, the hazard function, and the SD variogram. Conversely to one pa-
radigm of complexity theory that posits that simple generating rules can produce 
complex observable behavior, we therefore see that relatively simple aggregate 
properties of natural phenomena––scaling laws––are the result of complex interac-
tions among driving mechanisms. 

 
Put Figure 2.4 here 
 
2) Contagion provides a linkage among observations: We submit that if 

events (fires) are separated by more distance in space or time than some limit of 
contagion, observed scaling laws cannot be reasonably linked to a driving me-
chanism. Mechanism requires “entanglement” (as in the quantum-mechanical 
sense). For example, both SOC and HOT, mentioned above, require that events 
within a domain influence each other, whether one event resets system properties 
in proportion to its magnitude (SOC) or multiple events interact as they propagate 
through a system (HOT). The range limit of contagion clearly changes as a func-
tion of variation in fine-scale drivers. As we said earlier (see also McKenzie et al., 
Chap. 1), increasing energy (momentum) effectively increases connectivity, e.g., 
when extreme fire weather overcomes barriers to fire spread that are associated 
with landscape heterogeneity (Turner and Romme 1994). 

 
Criterion #2 does not preclude some mechanism for power-law behavior across 

continental-to-global scales; it just limits the hierarchical interpretation in criterion 
#1 to spatial scales at which contagion occurs. Other explanations for power laws 
in nature and society do exist, however, including the purely mathematical (Reed 
2001; Solow 2005). 

2.4 Example––Power Laws and Spatial Patterns in Low-Severity 
Fire Regimes 

We now turn to an example, briefly alluded to above, from low-severity fire 
regimes of eastern Washington state, USA (Everett et al. 2000; Hessl et al. 2004, 
2007; McKenzie et al. 2006a, Kellogg et al. 2008; Kennedy and McKenzie, n.d.). 
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Detailed fire-history data were collected in seven watersheds east of the Cascade 
crest, along a southwest–northeast gradient (Fig. 2.5). In contrast to most fire his-
tory studies, exact locations of all recorder trees were identified, creating an un-
precedented opportunity for fine-scale spatial analysis (McKenzie et al. 2006a; 
Hessl et al. 2007; Kellogg et al. 2008). For a detailed description of the data and 
methods, see Everett et al. (2000) or Hessl et al. (2004). 

 
Put Figure 2.5 here [but “a” and “b” should be on facing pages] 
 
Kellogg et al. (2008) fit the aforementioned empirical SD variograms to spheri-

cal models, in keeping with standard practice in geostatistics (Rossi et al. 1992), 
which uses variograms chiefly for spatial interpolation. Interpolation is generally 
only feasible with spherical, exponential, or Gaussian variogram models, due to 
certain mathematical conveniences (Isaaks and Srivistava 1989), but the spherical 
model in particular is a rather cumbersome artifact, with two separate equations 
applying to observations within or beyond the range (Kellogg et al. 2008). 
McKenzie et al. (2006b) examined the same empirical variograms in double loga-
rithmic space and found that for some watersheds, the variograms seemed linear 
or nearly so, both graphically and when fit with linear regression. This suggested 
that power laws govern the correlated spatial pattern of fire histories. The ob-
served pattern in these variograms was consistent across varying distance lags 
used to construct the variogram. We seek to test the hypothesis in criterion #1 
(above) by trying to replicate the power-law behavior by controlling fine-scale 
processes (bottom-up control), using a neutral landscape model (Gardner and Ur-
ban 2004). 

2.4.1 Neutral Model for Fire History 

McKenzie et al. (2006a) developed a simple neutral fire history model to simu-
late recorder trees on landscapes that are scarred by fires of different sizes and fre-
quencies. The purpose of the neutral model is to separate intrinsic stochastic 
processes from the effects of climate, fuel loadings, topography and management. 
We have enhanced the model to spread fires probabilistically on raster landscapes 
(Kennedy and McKenzie [n.d.]; Fig. 2.6). The raster model produces 200-year fire 
histories on a neutral landscape, with homogenous topography and fuels. The ras-
ter landscape is initialized with a spatial point pattern of recorder trees; this pattern 
is simulated as a Poisson pattern of complete spatial randomness (CSR—Diggle 
2003). A mean fire return interval (µfri) is specified for the whole “landscape”, 
yielding a random number of fires (nfire), drawn from a negative exponential dis-
tribution, within the 200-year fire history. For each fire, a random fire size is 
drawn from a gamma probability distribution (Evans et al. 2000) with the scale 
and shape parameters adjusted to produce a specified mean fire size (µsize). For 
each fire in the fire history, an ignition point (pixel) is randomly assigned and the 



11 

 

fire is spread until it reaches the randomly drawn fire size (i.e., area), or until all 
tests for fire spread fail in a given iteration. When a pixel is burned, each of the 
four immediate neighbors that are not yet burned is tested for fire spread against 
the spread probability (pburn). After the neighbors are tested for fire spread, the 
burned pixel can no longer spread fire. 

 
Put Figure 2.6 here 
 
In a given fire, if a pixel is burned, then all trees located in that pixel are tested 

independently for scarring in the same time step. This is a simple probability test, 
with a specified scar probability (pscar) that is uniform across all trees. This neutral 
model was produced in particular to evaluate whether the pattern in the observed 
SD variogram could be replicated by a simple stochastic model of fire spread, and 
to explain what differentiates variograms that appear linear in log-log space from 
those that do not. In order to satisfy the second goal, we considered whether the 
value of Sørensen’s distance between two trees could be predicted by features of 
the neutral model. 

2.4.2 Prediction of Sørensen’s Distance 

The Sørensen’s distance can be analytically derived from conditional probabili-
ties associated with fire spread and the scarring of recorder trees. Within the con-
text of this neutral model, and under several assumptions verified by simulation, 
Kennedy and McKenzie (n.d.) found that the Sørensen’s distance (SD) for a pair 
of trees a given distance apart is predicted by two features of the neutral model. 
The first is the probability a tree in a burned pixel is scarred (pscar, which is spatial-
ly independent), which in the neutral model is constant across all recorder trees in 
the simulated landscape. The second model feature is the probability that two trees 
are both in a burned pixel in a given fire year (but not necessarily the same burned 
pixel). Specifically, for the pair of trees A and B, we calculate the probability that 
tree B is in a burned pixel (Bfire) given that tree A is in a burned pixel 
(P(Bfire|Afire)). For the stochastic model we consider the expected value of SD, and 
we found that it is predicted by (Kennedy and McKenzie, n.d.) 

 
 ( ) ( )1 | *fire fire scarE SD P B A p= −  (0.2) 

 
The probability the second tree is in a burned pixel given the first is in a burned 

pixel is not constant across pairs of trees, as it depends on the distance between the 
two trees, the fire size, and fire shape (Fig. 2.7).  

 
Put Figure 2.7 here 
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As the distance between two trees approaches 0, then the conditional probabili-
ty the second is in the fire given that the first is (P(Bfire|Afire)) approaches 1, and 
Eq. 2.2 reduces to 

 
 ( ) 1 scarE SD p= −  (0.3) 
 
Therefore, one can estimate the pscar from an empirical SD variogram by the 

mean SD at the smallest distance bin. Simulations confirmed that the value of pscar 
would be ≥ the mean value at the smallest distance bin. 

We used a least-squares nonlinear regression algorithm in the R statistical pro-
gram (nls; R Foundation 2003) to fit simulated P(Bfire|Afire) against distance (up to 
half the maximum distance between simulated recorder trees––the same criterion 
used to evaluate SD), for three candidate functions (Kennedy and McKenzie, n.d.). 
The best fit with respect to an information–theoretic criterion (AIC) was found 
with a three-parameter function: 

 
 2

0 1( | ) b
fire fireP B A b b d= −  (0.4) 

and, therefore, 
 2

0 1( ) 1 ( )b
scarE SD p b b d= − −  (0.5) 

     
The coefficients {b0, b1, b2} thereby characterize the change in P(Bfire|Afire) 

with distance, and consequently the change in SD with distance. The estimates of 
b0, b1 and b2 in the neutral model change with increasing fire size, in a manner that 
depends on the shape of the fire (Fig. 2.7). Fire shape is closely associated with 
pburn, with lower values of pburn producing more irregular and complex shapes (Fig. 
2.6). As the fire becomes larger and more regular, then the relationship between 
P(Bfire|Afire) approaches a straight line with intercept b0 and slope –b1, i.e., b2 gets 
closer to 1 (Fig. 2.7c; Table 2.1), and the slope (b1) becomes less negative. In con-
trast, for irregularly shaped fires characteristic of pburn= 0.5, the decline of 
P(Bfire|Afire) remains non-linear with estimates of b2 well below 1 across a range of 
values for µsize (Fig. 2.7c).  

Note also that when b0=1/pscar, a power law describes the SD variogram, be-
cause we have: 

 
 2

1( ) b
scarE SD p b d= , (0.6) 

 
which is the power-law relationship presented in Eq. 2.1. 

Recall that the relationship P(Bfire|Afire) is independent of pscar, and values of 
{b0, b1, b2} change with pburn and µsize. It is therefore possible to calibrate the val-
ues of µsize, pburn and pscar to make b0*pscar arbitrarily close to 1, and thus manipu-
late simulated results to produce a power-law relationship in the SD variogram. In 
the neutral model this is a consequence of the mathematical relationships that we 
have found, yet the exercise of calibrating the parameters reveals under what con-
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ditions, as represented by µsize, pburn and pscar, power laws should be expected. 
These can then be compared to the patterns observed in real landscapes, and indi-
cate the ecological conditions under which power laws are produced. 

The challenge, then, is to evaluate the relevance of the neutral model results for 
real landscapes insofar as the derived mathematical relationships are able to pre-
dict the patterns observed. We fit Eqs. 2.3, 2.5, and 2.6 to the SD variograms of 
real landscapes on a gradient of topographic complexity; first we estimate pscar as 
the mean SD at the smallest distance bin in the observed SD variogram, then we 
fit Eq. 2.5 to the variogram in order to estimate the coefficients {b0, b1, b2}. Here 
we compare the two watersheds from Kellogg et al. (2008) that are at opposite 
ends of this topographic gradient: Twentymile (least complex) and Swauk Creek 
(most complex). Coefficient estimates are in Table 2.1, and Fig. 2.8 shows the 
contrasting fits of the SD variograms from Twentymile and Swauk Creek in log-
log space. Clearly the relationship for Swauk Creek follows a power law (b0 * pscar 
= 1.492 * 0.689 = 1.028 ≈ 1; Eq. 2.6), whereas Twentymile does not (0.7 * 0.979 
= 0.685). 

 
Put Figure 2.8 here 
 
These results suggest preliminary support for the hypothesis associated with 

Criterion #1 (above): Topographic complexity provides a bottom-up control on the 
spatial patterns of low-severity fire, producing relatively small fires and irregular 
fire shapes (SD increases more rapidly with distance, and reaches a higher peak, in 
Swauk Creek than Twentymile; Fig. 2.7). Neutral model runs with pburn = 0.5 (ir-
regular fire shapes; Fig. 3.6a) and relatively small mean fire sizes produced coeffi-
cient estimates similar to Swauk ({b0, b1, b2}; Table 2.1) and SD variograms that 
followed power laws with pscar near that estimated for Swauk. In contrast, neutral 
model runs with pburn = 0.75 (regular fire shapes; Fig. 2.6c) and larger mean fire 
sizes produced coefficient estimates and SD variograms similar to those from 
Twentymile (Table 2.1).  

What do we gain, then, by deconstructing these scaling laws via simulation; 
e.g., can we back-engineer a meaningful, preferably quantitative, description of 
fire regime properties that is relevant for landscape ecology and fire management? 
Certain combinations of the probability of scarring, the probability that a cell 
burns given that a neighboring cell has burned, and the mean fire size produce 
power-law behavior in an aggregate measure––the SD variogram––that represents 
the spatial autocorrelation structure of fire occurrence. For example, a low proba-
bility of scarring suggests variable fire severity at fine scales. A moderate likelih-
ood of a cell’s burning given that its neighbor has burned (i.e., pburn=0.5) suggest 
fine-scale controls on fire spread (topography and spatial heterogeneity of fuels). 
Mixed-severity fires subject to fine-scale landscape controls over time (decades to 
centuries) engender complex patterns that nevertheless produce simple mathemat-
ical structures (power laws). Further simulation modeling such as we describe here 
should illuminate what additional structures and scaling relationships can arise 
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from the universe of complex interactions between the contagious process of fire 
and landscape controls. 

2.5 Conclusions and Implications 

Scaling laws in fire regimes are one aggregate representation of landscape con-
trols on fire. Cross-scale patterns can reflect landscape memory (Peterson 2002). 
For example, fire-size distributions on landscapes small enough for fires to inte-
ract hold a memory of previous fires (Malamud et al. 1999; Collins et al. 2009), as 
do shape parameters of the hazard function on landscapes in which fuel buildup is 
necessary to sustain fire spread (Moritz 2003; McKenzie et al. 2006a). Scaling 
laws in our SD variograms hold a memory of all historical fires registered by re-
corder trees. We have conjectured above that scaling laws arise when bottom-up 
controls are in effect, but an additional possibility is that scaling relationships may 
be non-stationary over time, reflecting changes or anomalies in top-down controls, 
specifically climate (Falk et al. 2007). Mean fire size, fire frequency, and fire se-
verity change with changes in climate and land use (Hessl et al. 2004; Hessburg 
and Agee 2005; Littell et al. 2009). A rapidly changing climate may at least 
change the parameters of scaling relationships, such as exponents in power laws 
derived from frequency distributions, and at most make them disappear altogether. 
Such behavior could indicate that a fire-prone landscape had crossed an important 
threshold (Pascual and Guichard 2005), with implications for ecosystem dynamics 
and management. 
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Table 2.1. Parameter estimates for neutral model results with varying µsize (0.07, 0.20) and pburn 
(0.5, 0.75), and for the observed variograms (Twentymile, Swauk). Note that the coefficients b1 
are all negative, also indicated, for clarity, by the minus sign in Eq. 3.4. 

 

  b0 b1 b2 
µsize 0.07  pburn 0.50 1.430 -0.1990 0.235 
 pburn 0.75 1.240 -0.0247 0.469 
µsize 0.20 pburn 0.50 1.060 -0.0437 0.351 
 pburn 0.75 1.030 -0.0010 0.805 
Twentymile pscar 0.704 0.979 -0.0008 0.788 
Swauk pscar 0.689 1.492 -0.2270 0.195 
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Fig. 2.1. Interval-area (IA) relationships (power laws) in log-log space for two watersheds in 
eastern Washington. WMPI = Weibull median probability interval. The more negative slope in 
Swauk Creek is a result of smaller fire sizes and more frequent fire occurrence than in Quartzite. 
Quartzite displays a minor but noticeable (concave down) departure from linearity. Redrawn and 
rescaled from McKenzie et al. (2006a). 

Fig 2.2.The Weibull shape parameter decreases with scale of sampling in two watersheds in 
eastern Washington. WMPI = Weibull median probability interval. Horizontal line marks the 
value (1.6) at the 95% upper confidence bound for testing whether the parameter is different 
from 1.0—meaning no increasing hazard over time. Fires were larger and less frequent in Qua-
rtzite than in Swauk Creek, so a shape parameter significantly greater than 1.0 may still be neg-
ligible ecologically, because shape and scale parameters co-vary (Moritz 2003 and Fig. 2.3). Re-
drawn from McKenzie et al. (2006a). 

Fig. 2.3. Hazard function scale and shape parameters sampled at different scales in high-severity 
fire regimes in shrublands of southern California. The single point in the upper right represents 
one sample at the finest spatial scale that was protected from extreme fire weather and shows 
significantly increasing hazard over time. The positive covariance of the two parameters widens 
confidence intervals on significance tests of the shape parameter’s difference from 1.0, sensu 
McKenzie et al. (2006a) and Moritz (2003), such that even values ≈ 2.0 may not indicate increas-
ing fire hazard with time. Redrawn from Moritz (2003). 

Fig. 2.4. Scaling laws in fire regimes are expected when bottom-up controls predominate and 
they interact strongly with landscape elements.  For the contagious process of fire, fine-scale me-
chanisms provide momentum and topography and spatial pattern of fuels control connectivity 
(see text for discussion of contagion).  In contrast, top-down controls (climate) increase fire size 
and therefore fire synchrony on landscapes where they are dominant, e.g., with gentle topogra-
phy or continuous fuels.  This favors irregular frequency distributions and lessens the scale de-
pendence of fire frequency, hazard functions, and spatial patterns. 

Fig. 2.5.  Fire history study sites, east of the crest of the Cascade Mountains, Washington, USA . 
(a) Watershed locations. (b) Inserts that display hill shaded topography with dots representing the 
locations of recorder trees. 

Fig. 2.6. Fire spread for (a) pburn=0.75 and (c) pburn =0.50.  A complete spatial randomness (CSR) 
process generates recorder trees (points), with trees scarred by associated fire (black-filled points 
in b and d).  A higher pburn yields a more regular fire shape, although the difference in fire shape 
is difficult to discern visually in the scar pattern. 

Fig. 2.7. Verification of the derivation of E(SD) via simulation and nonlinear regression.  (a) 
P(Bfire|Afire) with distance (d) predicted by 3-parameter model (neutral model µsize =0.15=1500 
pixels).  (b) The fit to P(Bfire|Afire) { }0 1 2, ,b b b

∧ ∧ ∧  , with the pscar set in the simulation (=0.5), used to 

predict E(SD) and compared to calculated SD variogram from the same simulation (i.e., Equa-
tion  2.5).  It fits well.  (c) The relationship of P(Bfire|Afire) with distance changes with mean fire 
size (µsize) and fire shape as modified by the burn probability (pburn);  (d) these differences are al-
so shown in changes to the shape of the SD variogram. 
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Fig. 2.8.  Observed SD variograms for the least (Twentymile; a,b) and most (Swauk; c,d) topo-
graphically complex sites.  Swauk increases more rapidly at smaller distances, and reaches a 
higher value.  The Swauk fit is almost indistinguishable from the power-law prediction, with a 
small separation at the lowest distance bins. 
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