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Information regarding the extent, timing andmagnitudeof forest disturbance are key inputs required for accurate
estimation of the terrestrial carbon balance. Equally important for studying carbon dynamics is the ability to
distinguish the cause or type of forest disturbance occurring on the landscape.Wildfire and timber harvesting are
common disturbances occurring in boreal forests, with each having differing carbon consequences (i.e., biomass
removed, recovery rates). Development of methods to not only map, but distinguish these types of disturbance
with satellite data will depend upon an improved understanding of their distinctive spectral properties. In this
study, wemapped wildfires and clearcut harvests occurring in a Landsat time series (LTS) acquired in the boreal
plains of Saskatchewan, Canada. This highly accurate referencemap (kappa=0.91) depicting the year and cause
of historical disturbances was used to determine the spectral and temporal properties needed to accurately
classifyfire and clearcut disturbances. The results showed that spectral data from the short-wave infrared (SWIR;
e.g., Landsat band 5) portion of the electromagnetic spectrumwasmost effective at separating fires and clearcut
harvests possibly due to differences in structure, shadowing, and amounts of exposed soil left behind by the two
disturbance types. Although SWIR data acquired 1 year after disturbance enabled the most accurate
discrimination of fires and clearcut harvests, good separation (e.g., kappa≥0.80) could still be achieved with
Landsat band 5 and other SWIR-based indices 3 to 4 years after disturbance. Conversely, minimal disturbance
responses in near infrared-based indices associated with green leaf area (e.g., NDVI) led to unreliably low
classification accuracies regardless of time since disturbance. In addition to exploring the spectral and temporal
manifestation of forest disturbance types, we also demonstrate how Landsat changemapswhich attribute cause
of disturbance can be used to help elucidate the social, ecological and carbon consequences associated with
wildfire and clearcut harvesting in Canadian boreal forests.
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1. Introduction

Over 75% of Canada's roughly 400 million ha of forest and
woodland are classified as boreal forest (Brandt, 2009). Boreal forests
are subject to frequent natural (e.g., fire, insect and wind) and
anthropogenic (e.g., industrial development, land use change and
harvesting) disturbance events (Wulder et al., 2009a), which can lead
to considerably different ecological effects (Niemelä, 1999). Fire is the
primary disturbance agent in the region (Heinselman, 1983;Weber &
Flannigan, 1997) with return intervals typically around 50 to
150 years (Payette, 1992). Shifts in fire regime between the 1960s–
70s and the 1980s–90s resulted in a doubling of annual burned area
and more than double the frequency of large fire events (Kasischke &
Turetsky, 2006). Over the past 30 years, the high latitudes of North
America have experienced a 1.5 to 2.0 °C rise in temperature
(Easterling et al., 2000). Studies have shown that in some boreal
ecozones, fire cycles are well correlated with growing season
temperatures and precipitation anomalies (Skinner et al., 1999;
Zhang & Chen, 2007), leading some to suggest that increased
warming is contributing to the increased frequency and severity of
fires (Gillett et al., 2004). Despite increases in frequency and severity,
wildfires are an integral component of Canadian boreal ecosystems
(Wulder et al., 2007), withmany tree species requiring fire to prepare
the soil and/or encourage seeding.

In addition to fire, roughly one quarter of Canada's boreal forest area
is managed for industrial wood production. Like fire frequency,
harvesting levels (in terms of area) have also increased over recent
decades (Government of Canada, 1995, 2008), with a drop evidenced
around 2006 coinciding with a decline in global economic activity.
Harvesting rates are generally governed by an annual allowable cut of
1% of area eligible for harvest. In the boreal plains ecozone for example,
the annual area of land harvested increased by 125% between 1975
and 1993 (Government of Canada, 1996) as new, previously unaccessed
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areas, were opened for harvesting. Although selection harvesting
methods are being used more frequently across Canada, clearcut
harvesting has been and continues to be the dominant harvesting
practice (Fricker et al., 2006), as it is most appropriate for emulation of
natural processes and to encourage self-seeding and regeneration
(Perera et al., 2004; Wulder et al., 2007). It is estimated that 88% of the
approximately 42 million ha of timber harvested in Canada between
1920 and 1996 were clearcut (Government of Canada, 1995, 2008).
While harvesting is limited by regulation, wildfires – especially in the
northern boreal – burn without suppression and can vary markedly
in area burned. In more southern managed areas of the boreal, fire
suppression is common to protect forest resources and co-located
communities.

Although fires and clearcuts both result in tree mortality and loss
of biomass, each impacts the landscape at different scales, frequencies,
and levels of intensity, ultimately leading to different patterns of
landscape structure (e.g., patch size and shape, Gluck & Rempel, 1996;
Schroeder & Perera, 2002) and vegetation regrowth (e.g., species
composition, Ilisson & Chen, 2009). Given the large land area affected
by fire and harvesting, it is not surprising that disturbance dynamics
have been identified as one of the key drivers of the net carbon
balance in forests (Goetz et al., 2009; Harmon, 2001; Kurz & Apps,
1999; Kurz et al., 2009). As each disturbance type impacts the carbon
cycle in different ways (Mkhabela et al., 2009), it is important that
effects from human action are separated from those of natural origin
(Birdsey et al., 2007). As a result, maps that attribute forest
disturbance to fire or clearcut harvest would improve estimates of
carbon lost to the atmosphere, as well as facilitate the tracking of
carbon gained by vegetation recovery.

Recent advances in satellite mapping technology have led to the
development of algorithms which can track and characterize forest
disturbances at continental and global scales. For example, the
MODerate-resolution Imaging Spectroradiometer (MODIS) global
disturbance index (MGDI; Mildrexler et al., 2007) uses 1 km spatial
resolution Land Surface Temperature (LST) and Enhanced Vegetation
Index (EVI) data fromMODIS to detect broad scale forest disturbances
resulting from fire, insect infestation and hurricanes (Mildrexler et al.,
2009). The MODIS burned area algorithm (Giglio et al., 2009)
combines 500 m MODIS reflectance imagery with 1 km MODIS active
fire observations to produce automated monthly estimates of burned
area for the global land surface (MODIS MCD45 burned area product;
Giglio et al., 2009; Roy et al., 2005). Although the global disturbance
index can accurately detect a variety of forest disturbances which
occur over large areas (see Coops et al., 2009), the type of disturbance
is not automatically attributed. The MODIS burned area product has
also proven accurate; however, the 1 km pixels limit the minimum
detectable size of disturbance, often leading to high rates of omission
error (Roy & Boschetti, 2009). In addition, disturbance products
developed with coarse resolution imagery are less capable of
detecting small scale disturbances such as those from forest harvest-
ing activities (Wulder et al., 2009a).

Another option for mapping historical forest disturbances from fire
and clearcutting is through the use of the Landsat archive of optical
satellite images (Cohen & Goward, 2004). In addition to being
systematically collected and consistently calibrated, Landsat data are
well suited for studying vegetation disturbance dynamics as informa-
tion is collected in a number of important spectral wavelengths (e.g.,
visible, near-infraredand shortwave-infrared)with apixel size (28.5 m)
capable of resolving most disturbance types (e.g., natural and
anthropogenic) which occur in forest systems (Townshend & Justice,
1988;Wulder et al., 2008). The recent free release of the Landsat archive
(Woodcock et al., 2008) has eliminated the prohibitive costs of
assembling long image time series and has resulted in an increase in
the development of automated algorithms (Huang et al., 2010a;
Kennedy et al., 2007) which are capable of detecting changes in forest
cover over large temporal and spatial extents.
Despite this progress, however, little work has gone into
identifying signal characteristics which might ultimately support
automated labeling of the causes ofmapped disturbances. There have
been LTS-based maps separating different disturbance causes (e.g.,
Healey et al., 2008), but classification decision rules have been
empirical and ad hoc. Our objective is to determine if the physical
changes resulting from fire and clearcut harvesting yield sufficiently
distinct spectral patterns to allow for accurate classification through
time. This improved understanding will ultimately support the
development of more automated disturbance labeling protocols for
disturbance type (e.g., fire, harvest) from the spectral trends present
in Landsat time series.

To address our objectives we use a near-annual, 16 image (22 year)
Landsat time series (LTS) located in the boreal plains ecozone of central
Saskatchewan, Canada. An analyst driven, multi-temporal RGB color
composite change detection approach (Sader & Winne, 1992; Wilson
& Sader, 2002) is used to map both year and type of forest disturbance.
An independent, design-based accuracy assessment based on visual
interpretation of LTS data is used to determine the accuracy of the
disturbancemap.Once validated, the disturbancemap is used to conduct
an iterative classification test aimed at determining how spectral
wavelength and time since disturbance impact the spectral discrimina-
tionoffire andclearcutdisturbances.Usingsix Landsatbands and indices
associated in the literature with either forest structure (e.g., short-wave
infrared reflectance) or green leaf area (e.g., vegetation indices such as
NDVI),we determine the time interval required to accurately classify the
two disturbance types using images acquired 1 to 10 years after
disturbance. We conclude by highlighting potential applications of LTS
disturbance maps which attribute cause of disturbance, such as linking
forest policy to harvesting rates, estimating burned area and tracking
rates of post-disturbance vegetation recovery.

2. Methods

2.1. Study area

The study area is located in central Saskatchewan (Fig. 1) within
the 740,000 km2 Boreal Plains ecozone, one of 15 terrestrial ecozones
in Canada (Marshall & Schut, 1999). The area is characterized by
moderate topography, with elevation ranging from 600 to 760 m.
Nearly 84% of the land surface is forested, with white spruce (Picea
glauca), black spruce (Picea mariana), jack pine (Pinus banksiana),
and tamarack (Larix laricina) making up the primary main stand
conifer species in this region. There is also a wide distribution of
broadleaf trees, particularly white birch (Betula papyrifera), trem-
bling aspen (Populus tremuloides), and balsam poplar (Populus
balsamifera). Soils are characteristically dark gray and gray luvisols,
which tend to form under the mixed-wood and conifer forests of the
region (Morrison & Kraft, 1994). In poorly drained areas, peat bogs
are common. Precipitation is about 400 mm over much of the
ecozone, nearing 500 mm along the southern boundary. The mean
daily January temperature ranges from −17.5 °C to −22.5 °C, with
the mean daily July temperature ranging from 12.5 °C to 17.5 °C
(Lands Directorate, 1986).

2.2. Landsat time series (LTS)

The LTS consists of 16 growing season (May–September), Landsat
TM and ETM+images (WRS-2, path 37 row 22) (Table 1). Themajority
of images fall on an annual time step (i.e., one image per year) with the
longest gapbetween successive images being twoyears. The images, at a
spatial resolution of 28.5 m, were ortho-rectified and converted to
surface reflectance using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS,Masek et al., 2006). Tominimize unwanted
spectral variability resulting from seasonal sun-surface-sensor view
angle effects each image was normalized to a common radiometric



Fig. 1. Location of Landsat path 37 row 22 study area in the boreal plains ecozone, Canada.
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reference image (the1987 image in this case). Pseudo-invariant features
(i.e., pixelswith stable reflectanceover time) locatedwith the iteratively
re-weightedMultivariate Alteration Detection (MAD) algorithm (Canty
& Nielsen, 2008) were used in conjunction with reduced major axis
regression (Cohen et al., 2003; Larsson, 1993) to match the individual
spectral bands of each image to the reference scene (Schroeder et al.,
2006). Masks of cloud and cloud shadow were derived with the
algorithm of Huang et al. (2010b). The identified areas were then filled
using a temporal interpolation approach which estimates spectral
values using the temporally nearest pixel observations acquired before
and after the cloudy observations (see Eq. 5, Huang et al., 2010a).
Table 1
The Path 37 row 22 Landsat time series (LTS).

Sensor Date

TM 5/23/1986
TM 8/30/1987
TM 9/4/1989
TM 8/22/1990
TM 9/10/1991
TM 6/27/1993
TM 9/1/1994
TM 6/17/1995
TM 9/10/1997
TM 8/28/1998
ETM 7/22/1999
ETM 8/12/2001
TM 8/23/2002
TM 8/12/2004
TM 9/3/2006
TM 9/24/2008
2.3. Spectral bands/indices

Six Landsat spectral bands/indices commonly used in the ecolog-
ical remote sensing of forest environments (Cohen & Goward, 2004)
are used to determine how spectral wavelength and time since
disturbance impact the classification of fire and clearcut disturbances.
The selected bands/indices fall into two general groups according to
their sensitivity to either forest structure or green leaf area. Consisting
of bands/indices primarily derived from short-wave infrared (SWIR)
reflectance, the forest structure group includes 1) Landsat band 5
(B5), which is acquired directly by the Landsat sensor in the mid-
infrared spectral region (1.55–1.75 μm), 2) Tasseled Cap Wetness
(Crist & Cicone, 1984), which is the third component of a guided
principal component transformation representing a contrast of TM
bands 5 and 7 with the other four TM bands (based here on the
reflectance transformation of Crist, 1985); and, 3) the forestness index
(FI, Huang et al., 2008, 2009, 2010a), which is an integrated z-score
measure of a pixels likelihood of being forested, calculated with TM
bands 3, 5 and 7 as:

FIp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where bi and SDi are the mean and standard deviation of forest
training pixels within an image for band i, bpi is the band i spectral
value for pixel p, and NB is the number of spectral bands. In forested
environments both B5 and Wetness have been found to be sensitive
to vegetation density and structure, shadowing, and leaf moisture
content (Crist & Cicone, 1984; Horler & Ahern, 1986). In boreal forests
of Russia, B5 has been shown to effectively discriminate clearcut, fire
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and insect disturbance classes (Ranson et al., 2003), while Wetness
has been previously shown to be insensitive to topographically
induced illumination angle (Cohen & Spies, 1992). FI is an inverse
measure of the likelihood a pixel is forested, thus an FI value close to
zero indicates a pixel is close to the spectral value of undisturbed
forest, while high FI values indicates a pixel is likely non-forest. FI is
sensitive to forest structure and has also proven useful for detecting
forest change without prior knowledge of forest type (i.e., conifer vs.
deciduous) (Huang et al., 2010a).

The green leaf area group, consisting of indices derived primarily
from near-infrared (NIR) reflectance, includes 4) normalized difference
vegetation index (NDVI, Rouse et al., 1973),which is a ratio ofmeasured
red and NIR reflectance calculated as: (TM4−TM3)/(TM4+TM3), 5)
normalized burn ratio (NBR, Key & Benson, 2005), which is a ratio of
mid-infrared and NIR reflectance calculated as: (TM4−TM7)/(TM4+
TM7), and 6) Tasseled Cap angle (TCA, Powell et al., 2010), a new
transformation calculated as: arc tan (Tasseled Cap Greeness/Tasseled
Cap Brightness). NDVI has been found to be sensitive to the vigor and
density of green vegetation, leaf area, and the fraction of photosynthet-
ically active radiation absorbedbyplant canopies (Sellers et al., 1992). In
sparsely vegetated areas NDVI has been shown to be highly influenced
by background soilmaterial (Huete, 1988) and in densely forested areas
NDVI has been shown to reach a saturation point (Asrar et al., 1984;
Turner et al., 1999),with estimationof LAI≥4 oftenbecoming imprecise
(Baret & Guyot, 1991; Running et al., 1986). Widely used to estimate
burn severity (Eidenshink et al., 2007), NBR is primarily sensitive to
living chlorophyll, moisture content of leafs and soils, and char and ash
(Elvidge, 1990; Key, 2006). It has been shown to be negatively impacted
by topographic effects (Verbyla et al., 2008) leading some to question
whether NBR is consistently sensitive to various levels of fire severity
(French et al., 2008; Roy et al., 2006; Wulder et al., 2009b). Although
personal observations have led the authors to believe TCA behaves
similarly to NDVI, it has not beenwell studied, thuswe include it here as
a means of better understanding its response to fire and clearcut
disturbance. Further, TCA offers an additional benefit of offering a
spectral bridge between Landsat MSS (which does not contain SWIR
bands) and the later TM and ETM+series of sensors in support of time
series based investigations (that is, prior to the July 6, 1982 launch of
Landsat-4 back to the July 23, 1972 launch of Landsat-1).

2.4. Canadian Large Fire Database

Data on forest fires collected by provincial, territorial and other
federal agencies across Canada have been compiled into the Canadian
Large Fire Database (LFDB, Amiro et al., 2001; Stocks et al., 2003). The
initial effort compiled reliable data on forest fires (excluding range-
lands) greater than 200 ha occurring between 1959 and 1999, with
later mapping efforts utilizing satellite observations (see Fraser et al.,
2004). The database includes information on fire ignition date, area
burned, suppression efforts, cause of ignition and mapped spatial
location, including both point and polygon GIS layers. Efforts have
been made since the initial compilation of the data set to update it
both backward and forward in time, resulting in the version used here
which includes fires occurring from 1917 to 2006. Based on the fire
perimeter data, the study area contains more than 30 fires (6 with
partial coverage) dating between 1980 and 2006. Ranging in size and
burn intensity, this subset of known fires offers an excellent sample
from which to investigate the spectral and temporal effects which
impact disturbance type classification. Here the fire perimeter data
are used to guide the collection of sample data for training and
validating the disturbance type map.

2.5. Forest disturbance type mapping

Forest disturbance maps were derived via multi-temporal RGB
color composite analysis (Coppin et al., 2004; Sader & Winne, 1992;
Wilson & Sader, 2002). The basis of this approach relies on analyst
interpretation of three dates of imagery which are simultaneously
projected on the computer screen using the red, green, and blue color
display channels. Using concepts from color additive theory, major
changes in forest cover between image dates appear in unique
combinations of primary and additive colors depending onwhich date
of imagery is coupled with which RGB display channel. Although
the RGB composite approach is based on interpretation of three dates
of imagery at any one time, the spectral training signatures used to
classify disturbance were derived using the full suite of images
comprising the LTS. Thus, our application of RGB composite analysis is
considered an analyst driven multi-temporal, multi-spectral change
detection technique.

Here the RGB composite approach was used to collect training data
through simultaneous interpretation of individual Landsat images, RGB
color composites of B5, ancillary data (e.g., Google earth) and fire
perimeters from the LFDB (Amiro et al., 2001; Stocks et al., 2003). We
opted to interpret and classify B5 data, as the SWIR bands of Landsat
have been previously found useful for characterizing both vegetation
condition and for detecting forest disturbances (Cohen&Goward, 2004;
Healey et al., 2006;Kennedy et al., 2007; Ransonet al., 2003). Passing the
B5 image combinations through the RGB color gun we identified
disturbance years,whichwere subsequently interpreted to be the result
of fire or clearcutting through inspection of pre- and post-disturbance
false color composite Landsat images and the LFDBperimeters (see Fig. 2
for an example). Using this guided change detection approach we
iteratively located and identified fire and clearcut disturbances through
time, from which we collected training samples for use in supervised
classification. Training samples were collected to avoid interior
undisturbed patches, while at the same time ensuring that the full
range of spectral variability resulting from differences in topography,
shadowing, and burn severity were captured. Collectively, the digitized
training samples captured thousands of pixels per year and disturbance
type. Although we mapped and validated disturbances occurring prior
to the first image date (i.e., pre-1986), we excluded this disturbance
interval from further analysis given the difficulty associated with
knowing exactly when those disturbances took place on the landscape.
Furthermore, spectral limitations prevented mapping fires which
occurred in the last image date (i.e., 2008).

In addition to year and type of forest disturbance, we also classified
persistent forest, persistent non-forest, and water classes. The term
“persistent” is used to indicate that the forest or non-forest cover type
stayed the same over the full 22 year period of observation. Here non-
forest includes urban features, agricultural lands and other vegetated
surfaces which were not determined to be forested (e.g., non-forested
wetlands and bogs). To create the final disturbance map the collected
training data and the stack of B5 images were used as inputs into a
supervised minimum distance to means classifier (Jensen, 2004).
Areas on the map which experienced multiple disturbances during
the period of observation were coded so as to reflect the year of initial
disturbance. After validating the accuracy of the disturbance map, the
fires and clearcuts occurring between 1987 and 1995 were used to
perform the iterative classification test described below in Section 2.7.

2.6. Disturbance map validation

The temporal depth of forest change information derived from
LTS pose numerous challenges for collecting suitable reference data
for map validation. Existing data sets can be difficult to retrieve and
are often of insufficient temporal extent and resolution to adequately
validate the possible annual time steps of satellite derived historical
disturbance maps. Given that forest disturbances (at least those
impacting the upper canopy) result in discrete spectral changes
which can be reliably labeled by experienced analysts (Cohen et al.,
1998; Masek et al., 2008), validation of LTS change maps has
increasingly relied upon the use of interpreter labeled sampled



Fig. 2. An example of sample data collection using RGB composite change detection approach. RGB color composites of Landsat B5 were used to locate forest disturbances,
which were interpreted as fire or clearcut using pre- and post-disturbance Landsat data (shown as 4,3,2 false color composite) and LFDB perimeters (yellow outline). Digitized
samples (−−−) were used to develop training signatures for use in supervised classification.
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points (e.g., Cohen et al., 2010; Thomas et al., 2011). Although high
spatial resolution aerial photographs (e.g., Google earth images) and
ancillary datasets such as national forest inventory data or GIS layers
(e.g., LFDB) are often used to aid interpretation, in most cases the LTS
images themselves serve as the primary data source from which
reference data are collected. One benefit of this approach is that the
entire landscape can be sampled and all years evaluated. In addition,
the flexibility of this approach allows the use of any number of
different design-based sampling schemes to calculate map accuracy.

Here we use a stratified random design where sample points are
distributed according to strata, which are defined in this case by the
individual disturbance map classes (both by year and type of
disturbance). To account for the fact that the class area proportions are
unbalanced we used inclusion probabilities to achieve design-based
inference ofmap accuracy. For the samples in each stratum the inclusion
probability, or probability that a particular map pixel is included in the
sample,was calculatedas: (#of pixels in strata/#of reference samples in
Table 2
The Landsat images used in the iterative classification test according to disturbance year an

Disturbance year Post-disturbance image (time since disturbance)

1987 1989 (2) 1990 (3) 1991 (4)
1989 1990 (1) 1991 (2) 1993 (4)
1990 1991 (1) 1993 (3) 1994 (4)
1991 1993 (2) 1994 (3) 1995 (4)
1993 1994 (1) 1995 (2) 1997 (4)
1994 1995 (1) 1997 (3) 1998 (4)
1995 1997 (2) 1998 (3) 1999 (4)
strata)/#of pixels indisturbancemap(Stehman&Czaplewski, 1998). To
achieve a reasonable balance between the number of samples required
to fully validate the disturbance map and the time required for
interpretation we elected to use a balanced sample of 30 points per
class (there are 29 disturbance classes plus persistent forest, persistent
non-forest, andwater), resulting in a total of 960 validation samplepoints.

To minimize the error associated with co-locating single pixels,
each validation sample consisted of a 3×3 pixel block, centered on the
sample point location. A window majority rule was used which
required at least 7 of the 9 pixels in the block to be of the same map
class (Thomas et al., 2011). This allowed samples to be located close to
class edges yet sufficiently distant that interpreter confusion was
minimized. Reference data (i.e., year and type of disturbance) was
collected for each sample point through simultaneous inspection of
individual LTS images (displayed in chronological sequence from
earliest to latest), B5 RGB color composites, high spatial resolution
imagery (from Google earth) and plots of B5 spectral response
d post-disturbance image interval.

1993 (6) 1994 (7) 1995 (8) 1997 (10)
1994 (5) 1995 (6) 1997 (8) 1998 (9)
1995 (5) 1997 (7) 1998 (8) 1999 (9)
1997 (6) 1998 (7) 1999 (8) 2001 (10)
1998 (5) 1999 (6) 2001 (8) 2002 (9)
1999 (5) 2001 (7) 2002 (8) 2004 (10)
2001 (6) 2002 (7) 2004 (9) 2006 (11)
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(similar in logic to the trajectory window in Cohen et al., 2010). The
recorded reference data are used to generate an error matrix, as well
as unbiased estimates of map accuracy.

2.7. Iterative classification test

To determine the impact that time since disturbance and spectral
wavelength have on classification accuracy, we used the fire and
clearcut disturbances mapped between 1987 and 1995 to perform an
iterative classification test using the six Landsat bands/indices
described in Section 2.3. Fire and clearcut patches larger than 15 ha
(hectares) from these dates were buffered internally by 100 m to
remove edge effects. For the remaining “core” fire and clearcut
disturbance pixels, date-neutral time-since disturbance stacks were
created, showing the sequence of bands/indices following themapped
disturbances. Because the Landsat images were not all acquired on an
annual time step, the spectral data used in each post-disturbance
image represented slightly different time intervals (Table 2). For
labeling purposes we report time since disturbance as the amount of
time which occurs most frequently in each post-disturbance image
interval (see Table 2).

From these time-since disturbance stacks (one stack for each of the 6
tested bands or transformations), a random sample of spectral values
from 500 burn pixels and 500 harvest pixels was assembled. For each
band or index, 10 classifications were performed at each interval since
disturbance (n=7, Table 2) to label disturbance cause at each of
the core pixels. The “fire” and “harvest” classes were “trained” with a
minimum distance to means classifier with 10 spectral values per
disturbance type drawn randomly from the above pool of 500.

The remaining disturbance pixels not used for classification training
were used to calculate Cohen's kappa statistic (Jensen, 2004; Landis &
Koch, 1977), a conservative measure of classification accuracy which
accounts for chance agreement. A kappa of 1 is taken to represent
perfect agreement and a kappa of 0 represents the level of agreement
expected solely by random chance. Themean and standard deviation of
the classification kappa values is reported for each of the Landsat bands/
indices and time steps following disturbance. Additional descriptive
statistics were collected relating spectral values for all core “fire” and
Fig. 3. Landsat disturbance maps showing ye
“harvest” pixels at each time step to detail the stability and separability
of signatures for the two disturbance processes under each of the six
data types.
3. Results

3.1. Forest disturbance type map

Simultaneous interpretation of the individual Landsat images, B5
color composites, and the LFDB perimeters allowed for the successful
identification and sampling of both wildfire and harvest disturbance
types, as well as the persistent forest and non-forest classes. The
combination of analyst-interpreted training data and the RGB color
composite change detection approach yielded maps of both year and
type of forest disturbance (Fig. 3a and b). Based on the disturbance
map 3558 km2 of forest area was disturbed in the study area during the
21 year period from 1987 to 2008 (21 years as disturbances mapped in
first LTS image could not be temporally assigned). This amount of
mapped disturbance equals 13.64% of the land base (excluding water
and pre-1986 disturbance classes), of which 9.59%was attributed tofire
and 4.05% to clearcutting.
ar (a) and type (b) of forest disturbance.

image of Fig.�3
image of Fig.�4
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The annual rate of forest disturbance was calculated by dividing the
area mapped in each disturbance interval by the total area of forest
disturbed between 1987 and 2008. Dividing this ratio by the number of
years between each image acquisition resulted in the annual rate of
forest disturbance (Fig. 4). As the spring 1986 and late summer 1987
images cover two summerharvestingperiodswe took this image pair to
represent a two year interval when calculating annual rates. The results
indicate that the annual rate of disturbance due to clearcutting stayed
relatively consistent through time, with amaximum rate of disturbance
(1.33%) in 1987 and aminimum (0.15%) in 2008. Annual rate of wildfire
on the other hand were characterized by episodic fluxuations due to
large fire years in 1987 (9.27%) and 1995 (11.74%), and no fires in 1993,
2001, and 2008. The average annual rate of forest disturbance in the
study area over this 21 year period was 1.49% (2.18% from fire, 0.79%
from clearcutting).

3.2. Disturbance type map validation

To validate the disturbance type map we compared it with the
interpreted reference data using a standard error matrix. To achieve
unbiased estimates the samples comprising the error matrix were
weighted according to their inclusion probabilities as in Stehman and
Czaplewski (1998). The weighted error matrix was used to calculate
measures of overall agreement such as overall accuracy (calculated as
the sumof values in the primary diagonal/total number of samples) and
kappa, aswell as per class user's and producer's accuracies. Commission
and omission error were obtained by subtracting 100% from the user's
and producer's accuracies respectively (Janssen & van der Wel, 1994).

Based on the error matrix shown in Table 3, the disturbance type
map had an overall accuracy of 93%. The kappa value of 0.91 suggests a
high level of agreement between the map and reference data, even
after chance agreement is accounted for. When averaged over all map
classes the user's accuracy and producer's accuracy indicate that the
map has higher omission (7.5%) than commission (3.57%) error. The
higher omission rate however is largely driven by the static classes
(i.e., persistent forest, persistent non-forest, and water). When only
the disturbance classes are considered, the map has higher overall
commission error (7.93%). It should be noted that although the overall
accuracy of the map was found to be high, the accuracy measures
should be viewed with caution as the same interpreter was used to
map disturbances and perform the validation. Although this bias
potentially inflated the calculated accuracy metrics, the validation
effort nevertheless provided an overall sense ofmap reliability, as well
as highlighted the main sources of map error.

For instance, the majority of error in the disturbance map comes
from the high omission error (27.11%) of the persistent non-forest
class. This error is the result of known areas of persistent non-forest
being incorrectly classified as disturbed (either by fire or clearcut) or
persistent forest. These incorrectly classified areas are predominately
non-forested wetlands, which can vary spectrally from year to year
due to differences in precipitation, lake levels and the timing of bud
break. These often sharp year to year phenological differences can
result in spectral confusion with the forest disturbance classes.

The second most prevalent error in the disturbance map occurs
when known areas of fire disturbance are incorrectly classified as
clearcut. These map errors are the result of salvage harvesting which
occurs shortly (i.e., the year or two) after a fire event, with precision in
our case driven by the interval between image dates. In this instance
the spectral response of fire disturbance is eclipsed by the stronger
spectral change associated with clearcutting. In these situations the
second, more spectrally discrete disturbance is captured by the
classification algorithm. In situations where salvage harvesting occurs
several years (or images) after a fire event, potential exists that more
detailed training signatures could be developed to capture both
disturbance types and inform upon forest salvage activities. Long term
reporting of both harvest and burned area without compensating for
salvage will result in overestimation of disturbed area (essentially
through double counting of the same locations).

A third type of error occurred when areas of fire were labeled with
the wrong year of disturbance. This error occurred primarily in 1995
when areas of coniferous forest (which are spectrally dark in B5) were
severely burned. The spectral similarity between pre-disturbance
conifer forest and post-disturbance burn scar resulted in a two year
(or one image interval) delay in detecting the onset of disturbance.
While SWIR data alonewere found to accurately classify year and type
of disturbance, it is possible that including additional spectral bands
and/or image transformations (e.g., multi-spectral classification)
could help minimize these types of minor misclassification errors.

3.3. Iterative classification test

The kappa statistics derived via the iterative classification test
revealed dramatic differences in the ability of the various Landsat
spectral bands and vegetation indices to classify the fire and clearcut
disturbances (Fig. 5). The results showed that all three Landsat bands/
indices sensitive to forest structure effectively classified the distur-
bance types using imagery acquired 1 year after disturbance. Using
this image, B5 recorded the highest overall kappa (0.89) of any of the
six Landsat bands/indices tested. Although B5 scored the highest
kappa, both wetness (kappa=0.78) and FI (kappa=0.81) also
yielded high kappa scores. While B5 had the highest kappa when
classifying the image acquired 1 year after disturbance, it still
recorded a kappa of near perfect agreement (0.81) when classifying
the image acquired 4 years after disturbance. Over time, the structure
bands/indices all showed similar patterns of decreasing kappa. By
10 years after disturbance all three forest structure bands/indices
yielded classifications that were no better than random chance. In
addition to scoring the highest kappa, B5 displayed virtually no
variation in kappa until 8 years after disturbance. Wetness displayed a
consistently small amount of variation in each of the time since
disturbance intervals. Although displaying a relatively small amount
of variation early in time, FI displayed the highest variation (standard
deviation=0.19) of any of the structure bands/indices 8 years after
disturbance.

Regardless of the amount of time after disturbance, the Landsat
spectral indices primarily sensitive to green leaf area were not
successful in classifying the disturbance types. Opposite of the
structure data, the green leaf area indices all recorded their highest
kappa scores when classifying the image acquired 10 years after
disturbance (Fig. 5). The highest kappa was recorded by TCA (0.41),
which at best could be interpreted only as moderate classification
accuracy. All of the other kappa scores recorded by the green leaf area
indices could be interpreted as having only fair to less than chance
agreement. Over time, the green leaf indices all recorded similarly low
patterns of kappa and relatively high levels of variation. Not only did
NDVI display a relatively high level of variation through time, by year
10 after disturbance it had the highest overall variance (standard
deviation=0.38) of any of the six Landsat bands/indices tested. The
maximum variance recorded by NDVI was twice as large as the
maximum variance recorded by the structure bands/indices.

3.4. Spectral properties of core burned and harvested pixels

Descriptive analysis wasmade of the spectral values of the core fire
and harvested pixels used in the iterative classification test. Fig. 6
shows the relationship among spectral values for burned, harvested
and undisturbed forest pixels, as exhibited through each of the 6
studied bands or indices. Spectral values for fire and harvest are most
separable from each other and from the general forest population in
the SWIR-based bands: B5, Wetness and FI. Initial spectral differences
between fire and harvests are alsomore durable over time in the SWIR
bands than the bands influenced more directly by NIR reflectance.



Table 3
Error matrix for the LTS disturbance type map. Class label abbreviations are: PF=persistent forest, PNF=persistent non-forest, CC=clearcut, F=fire. Numeric labels represent year of disturbance (e.g., 87=1987). Disturbances in 1986
represent areas that are not forested in time 1 but become forested by the last image date. Results are shown as area percentages (e.g., 40.43 refers to 40.43% of the LTS disturbance map). Note that themajority of samples fall along the primary
diagonal of the matrix, indicating the map and reference data are in agreement. Off diagonal samples indicate errors, which in this case are mostly the result of fires which are incorrectly classified as clearcuts and persistent non-forest areas
which are incorrectly classified as forest disturbance.

Reference dataLTS map

PF
PNF
Water
86 CC
87 CC
89 CC
90 CC
91 CC
93 CC
94 CC
95 CC
97 CC
98 CC
99 CC
01 CC
02 CC
04 CC
06 CC
08 CC
86 F
87 F
89 F
90 F
91 F
94 F
95 F
97 F
98 F
99 F
02 F
04 F
06 F

Total
n
Producers

PF

40.43

0.02

40.46
28
99.94

PNF

4.49
15.61

0.08
0.13
0.02

0.29

0.01

0.58
0.06

0.01
0.08
0.02
0.03

21.41
63
72.89

Water

15.89

15.89
30

100.00

86 CC

2.16

0.01

2.16
28
99.74

87 CC

0.81

0.81
26
100.00

89 CC

0.40

0.40
23

100.00

90 CC

0.13

0.13
30

100.00

91 CC

0.33

0.33
31

100.00

93 CC

0.31

0.31
28

100.00

94 CC

0.01
0.33

0.34
29
96.76

95 CC

0.01
0.01
0.07

0.09
32
76.00

97 CC

0.36

0.36
23

100.00

98 CC

0.38

0.38
17

100.00

99 CC

0.13

0.13
30

100.00

01 CC

0.34

0.34
28

100.00

02 CC

0.27

0.27
30

100.00

04 CC

0.39

0.39
29

100.00

06 CC

0.01
0.16

0.03

0.21
32
79.07

08 CC

0.06

0.06
26

100.00

86 F 87 F 89 F 90 F 91 F 94 F 95 F 97 F

0.16

0.02 0.09

0.01

0.11

5.23
1.86

1.18
0.01 0.06

0.08
0.03

2.27
0.39 1.08

5.38 1.88 1.29 0.06 0.08 0.03 2.77 1.08
29 30 39 27 29 30 45 22
97.03 99.08 91.81 100.00 100.00 100.00 81.92 100.00

98 F 99 F 02 F 04 F 06 F

Total n Users

44.93 30 90.00
15.61 30 100.00
15.89 30 100.00

2.40 30 90.00
0.94 30 86.67
0.52 30 76.67
0.13 30 100.00
0.33 30 100.00
0.33 30 93.33
0.35 30 93.33
0.07 30 100.00
0.46 30 76.67
0.66 30 56.67
0.13 30 100.00

0.01 0.36 30 93.33
0.27 30 100.00
0.40 30 96.67
0.16 30 100.00

0.01 0.07 30 86.67
5.81 30 90.00
1.93 30 96.67
1.18 30 100.00
0.07 30 90.00
0.08 30 100.00
0.03 30 100.00
2.27 30 100.00
1.47 30 73.33

0.19 0.19 30 100.00
0.15 0.17 30 90.00

1.12 1.20 30 93.33
0.64 0.69 30 93.33

0.84 0.91 30 93.33

0.19 0.16 1.12 0.64 0.85 100.00 960
30 28 28 28 32

100.00 92.60 1000.00 100.00 98.97
Overall 0.93
Kappa 0.91
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Fig. 5. Average kappa for the six Landsat spectral bands/indices based on 10 iterative classifications per time since disturbance interval. Error bars represent ±1 standard deviations.
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4. Discussion

4.1. Forest disturbance type mapping

In this study, an analyst driven RGB color composite change
detection approach was used to map year and type of forest
disturbance through time using a 22 year (16 image) LTS. Others
have found RGB composite analysis to be a useful method formapping
changes in forest cover over time (Hayes & Sader, 2001; Healey et al.,
2005; Wilson & Sader, 2002) and here we extended the application to
map patterns of spectral change associated with fire and clearcut
disturbance events. The simultaneous interpretation of LFDB burn
perimeters, individual Landsat images and RGB color composites
provided the necessary backdrop for mapping both the timing and
cause of forest disturbance. By using the full temporal context of the
multi-temporal Landsat data, we found that within the general signal
1 3 4 5 7 8 10 1 3 4

1 3 4 5 7 8 10 1 3 4
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Fig. 6. Average spectral response of the six Landsat bands/indices to fire and clearcutting
of forest disturbance each of the disturbance types yielded distinctly
different patterns of SWIR reflectance (e.g., see B5 Fig. 2), allowing
their successful classification through space and time.

The disturbance type map was found to have high overall accuracy
(93%) even after accounting for chance agreement (i.e., kappa=0.91).
Aside from minor misclassifications which resulted from image
misregistration and cloud filtering, the majority of map error was
the result of persistent non-forest (in particular bogs and wetlands)
being misclassified as forest disturbance and areas burned by fire
being misclassified as clearcut.

Eliminating false change detections that occur in wetland areas is
extremely difficult when using imagery acquired on an annual time
step. Wetlands are a land condition, not exclusively cover, and are
subject to intra- and inter-annual variations based upon considera-
tions including water levels, precipitation amounts and weather.
Natural fluxuations in the timing of bud break and lake water levels
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can result in large, year to year spectral changes which resemble
the discrete spectral change typically associated with forest distur-
bance. Furthermore, the annual image time step (i.e., 1 image date per
growing season) makes it extremely difficult to detect non-stand
replacing disturbances (e.g., fire or thinning) which occur immedi-
ately prior to stand replacing disturbances (e.g., clearcut salvage
harvesting). It is interesting to note that both main types of error
(wetland misclassification and omission of non-stand replacing
disturbance) observed in this study have been previously found to
occur in other LTS change maps derived on an annual time step
(Huang et al., 2010a; Thomas et al., 2011).

Improving LTS temporal precision through the use of intra-annual
images could help minimize false change detections which occur in
wetland areas and could also lead to better disturbance type
attribution in areas which undergo multiple disturbances. Lastly,
increased LTS temporal precision would also stand to improve the
performance of cloud filtering algorithms, thus minimizing misclassi-
fications which can occur when disturbances fall within filtered
areas. Aside from identifying potential improvements, our validation
confirms that the disturbance typemap is of high overall quality and is
thus suitable for exploring the spectral and temporal properties of
clearcut and fire disturbances.

4.2. Spectral properties of fire and clearcut disturbance types

The classification test showed that the three SWIR-based Landsat
bands/indices associated with forest structure, shadowing, and
canopy moisture content were most effective at discriminating the
fire and clearcut disturbance types. Clearcutting involves removing
most of the forest canopy on a site, thus it resulted in a large initial
change in spectral values (Fig. 6). Depending on burn severity, fires
remove variable amounts of forest canopy cover, leaving behind a
complex mosaic of live vegetation, downed wood and dead standing
trees. This complexmosaic of ground cover results inmore shadowing
and structure, which provides for less spectral change than caused
by the clearcut disturbances (Fig. 6). Ultimately it was this initial
difference in magnitude of spectral change which led to the accurate
separation of the two disturbance types. Although Landsat B5
achieved the highest overall kappa (Fig. 5) we believe all the SWIR-
based bands/indices have the potential to accurately classify the two
disturbance types, especially when imagery is acquired on an annual
or biannual (e.g., 1 to 2 years after disturbance) time step. Given the
additional processing and storage costs of the transformations,
though, B5 alone is likely to be suitable for many applications.

The structural differences associated with the loss of forest canopy
cover persisted for several years such that the disturbance types were
still accurately classified (e.g., kappa≥0.80) up to 4 years after
disturbance. This is an important finding as many areas in northern
boreal forests are impacted by frequent cloud and snow cover,
limiting the number of clear images from which to map forest change
with Landsat data. In cases where imagery is not available it is
promising that accurate disturbance type classification can still be
achieved within this slightly longer acquisition window. As time
progressed and successional recovery of vegetation began to
dominate the spectral signal, the fire and clearcut disturbances
began to overlap in spectral space (Fig. 6), causing kappa to steadily
decline after about 5 years post-disturbance (Fig. 5). By 8 to 10 years
after disturbance the kappa scores indicated that classification was no
better than random agreement. The diminishing detectability of fire
disturbance over time found here is supported by similar findings in
research on the capture of insect infestation (Wulder et al., 2005).

The green leaf area indices on the other hand, all achieved
unreliably low kappa scores (Fig. 5), indicating that they could not
distinguish wildfires and clearcut harvests regardless of time since
disturbance. The spectral data show that the green leaf indices all
responded similarly to the loss of forest canopy cover initiated by fire
and clearcut disturbance (Fig. 6). Although clearcuts seemed to
produce a slightly larger loss of leaf area, the relatively similar
magnitude of spectral change the year after disturbance suggests that
there was either very little difference in the amount of vegetation/
canopy cover initially removed by the two disturbance agents, or that
the vegetation indices did not consistently respond to the physical
differences brought on by fire and clearcutting. While it is beyond the
scope of this study to infer which of these factors is driving the initial
response of green leaf area, it is worth noting that others have found
that changes in near-infrared reflectance (used in part to develop
NDVI and NBR) do not always correlate well with disturbance
events (Healey et al., 2006; Huang et al., 2010a; Olsson, 1994). The
potentially unpredictable response of near-infrared reflectance to
disturbance may also be a factor in some questioning the consistency
of NBR response to various levels of burn severity (French et al., 2008;
Roy et al., 2006; Wulder et al., 2009b).

In contrast to the structure data, the green leaf area indices all
recorded their highest kappa scores when classifying the image
acquired 10 years after disturbance (Fig. 5). This rise in accuracy is due
to the steeper slope of leaf area recovery for clearcuts, which by 8 to
10 years after disturbance resulted in a noticeable degree of spectral
separation from fires (Fig. 6). Although average kappa scores
increased over time, so too did the variance (Fig. 5), indicating that
the recovery of green leaf area is highly variable for both fire and
clearcut disturbances. This spectral variability meant that the
classification results were more heavily impacted by the random
selection of training pixels used in the iterative classification test.
Though the spectral overlap prevented discrimination of the two
disturbances, it is interesting to note that on average clearcuts seem to
recover green leaf area more quickly than fires (Fig. 6).

We foresee that the results of this study could support amendment
of current change detection algorithms to carry out automated labeling
of cause of disturbance in the boreal forests of Canada. Additional
decision rules based on identified FI thresholds could be added to VCT
(Huang et al., 2010a), for example, while the differential trajectories
shown in Fig. 6 could be used in a trend-based algorithm such as
LandTrendr (Kennedy et al., 2010) to estimate disturbance causes.
This type of investigation is envisioned to provide a template in support
of developing broader application of semi-empirical, automated
approaches to attributing causal agents to mapped disturbances.

4.3. Applications of disturbance type maps

The disturbance type map indicates that 13.64% of the forested
land base was disturbed in the study area between 1987 and 2008.
While high levels of disturbance such as observed here are relatively
common in boreal forests, studies have shown that disturbance from
fire and clearcut harvesting impact forest composition (Johnstone
et al., 2004; McRae et al., 2001), forest fragmentation (Fitzsimmons,
2003), biodiversity (Bradshaw et al., 2009; Peltzer et al., 2000), bird
habitat (Hobson & Schieck, 1999), and water quality (Pinel-Alloul
et al., 2002) in different ways. Thus, maps which attribute cause of
disturbance offer several advantages over maps which simply label
timing of disturbance. We briefly present three examples showcasing
potential applications of disturbance type maps.

4.3.1. Policy and management
Once disturbance types are partitioned it is evident that the primary

disturbance agent in the study area is large fire events. Whereas fire
events episodically disturbed large areas, clearcutting affected less area
but was more consistent through time. The classification results showed
that the level of clearcutting within the study area dropped to its lowest
rate (0.15%) in 21 years in 2008. North American forest harvest rates are
typically correlated with forest product markets (Masek et al., in press),
thus U.S. housing starts are often used as a surrogate for timber and pulp
demand in Canada. As U.S. housing starts also reached their lowest levels
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in more than five decades in 2008 (U.S. Census Bureau, 20101) it is
possible that the weakened global and U.S. economic conditions
beginning in 2006 resulted in a slowing of harvesting activities in Canada
(Natural Resources Canada, 20102) that may have been evidenced in the
study area. We recognize that as time progresses harvesting over any
given managed forest must decrease as the previously harvested areas
become ineligible for re-harvesting given the period of time necessary
for suitable regeneration to occur. Wildfire in areas that could have
otherwise been eligible for harvesting further serve to reduce the rate of
forest clearing in statically defined study regions. Nonetheless, as our
change map resolves both year and type of disturbance, subtle changes
in harvesting levels can be more easily ascribed to the economic, social
and environmental policies which might be influencing their temporal
patterns.

Opportunities exist with the approach demonstrated to produce
meaningful associations between policy/management and disturbance
rates when the findings are considered in the context of a particular
management (say a timber supply area) or ecologically meaningful
spatial unit (e.g., watershed and ecozone). In some cases, more
contextually meaningful study areas will require extending the RGB
change detection approach to larger spatial extents. Although
our application of the RGB change detection approach did require
significant expertise in image interpretation, it is possible that the
temporal signatures developed with our user intensive approach could
be extended to larger areas through incorporation with automated
disturbance mapping algorithms.

4.3.2. Estimating burned area
Burned area is an important variable required to estimate carbon

emissions from wildfire. Although the LFDB is an excellent source of
information regarding the timing and location of Canadian wildfires,
the burn perimeters are digitized by a number of different agencies
and interpreters; thus, accuracy can be of variable quality. Although
more recent records in the LFDB are from satellite-based observations,
it has been shown that manually interpreted fire perimeters and
coarse resolution satellite classifications tend to overestimate burned
area (Fraser et al., 2004) due to inclusionof unburned islands and other
non-forest land features (e.g., water). Disturbance type maps, such as
the one produced here, offer a potentially more reliable way of
estimating burned area as the spatial resolution of Landsat allows for
the exclusion of unburned areas (and other non-forested land features
such as water), as well as detection of smaller fires (b200 ha) which
are not included in the LFDB. Given disparities in data quality, scale
and accuracy it is not surprising that the LFDB perimeters and LTS
disturbance map result in different year-to-year estimates of burned
area. As these differences can be especially pronounced in large fire
years (e.g., we found a 35% difference between mapped burned area
and LFDB burned area in 1987 and a 51% difference in 1995) it is
possible that previous studieswhich used LFDB perimeters to estimate
carbon emissions overestimated the amount of land area affected by
fire. Amiro et al. (2001), for example, assume that unburned islands
make up less than 5% of the area within burn perimeters. The results
of our study suggest that LTS-based maps which accurately separate
fire from other disturbances may offer new insight into burn area
heterogeneity occurring within burn boundaries, as well as refined
estimation of the amount of land area affected by fire.

4.3.3. Tracking vegetation recovery
Given the link between green leaf area and the photosynthetic

capacity of vegetation, tracking forest recovery through monitoring of
spectral data such as NDVI has important implications for estimating
productivity (e.g., NPP) of forests. At the pixel level spectral recovery is
impacted by the severity of disturbance and the rate and composition of
1 http://www.data360.org/dsg.aspx?Data_Set_Group_Id=47.
2 http://canadaforests.nrcan.gc.ca/statsprofile.
regrowing vegetation. When viewed with coarse spatial resolution
imagery vegetation dynamics can spectrally mix with unburned islands
andother non-forested land features, resulting in potentially accelerated
recovery signals. For example, studieswhichhave trackedpost-fireNDVI
recovery in boreal forests have found spectral recovery times to be 6
(Goetz et al., 2006) to 9 years (Hicke et al., 2003) when using 8-km
Advanced Very High Resolution Radiometer (AVHRR) imagery and
15 years when using 1 km MODIS imagery (Cuevas-González et al.,
2009). Our 30 m data suggest that NDVI in severely burned areas could
take upwards of 20 years to fully recover to pre-fire levels. This
demonstrates how scaling and spectral mixing can influence the
calculated rate of spectral recovery (i.e., larger pixels=faster recovery
times). Although the ecological relationship between spectral recovery
and forest regeneration is not well understood, the use of Landsat
disturbance type maps such as the one produced in this study should
help minimize unwanted spectral mixing, allowing for at minimum a
better characterization of areaswhich are progressing toward successful
tree re-establishment versus those areas which may have become
stagnated in earlier stages of succession.

5. Conclusion

In this study we used an RGB composite change detection approach
to interpret and train a supervised classification in which fire and
clearcut harvest disturbances were accurately mapped through
time using a dense time series of B5 data from Landsat. Using the
disturbancemapweperformeda classification testwhichdemonstrated
that spectral data from the SWIR (e.g., B5, Wetness and FI)) portion of
the electromagnetic spectrumwasmost effective at separating fires and
clearcut harvests possibly due to differences in structure, shadowing,
and amounts of exposed soil left behind by the two disturbance types.
Although B5 data acquired 1 year after disturbance produced the most
accurate classification of the disturbance types, good separation could
still be achieved up to 4 years after disturbance. The classification
test also showed that fire and clearcut disturbances initiated similar
patterns of initial loss and accrual of green leaf area which prevented
successful disturbance type classification with vegetation indices such
as NDVI. Several potential uses of LTS disturbance type maps were
discussed, suchas linking social and economic policy toharvesting rates,
estimating burned area and tracking rates of post-disturbance vegeta-
tion recovery. Overall, given the distinct temporal response of SWIR
reflectance produced by fire and clearcut harvests, we are encouraged
that, following additional research, automated disturbance type
mapping may be increasingly feasible. Expanding currently applied
LTS algorithms – which are capable of mapping timing, extent, and
magnitude of forest disturbance – to also include disturbance type
would be a significant development. As disturbance from fire and
harvesting have vastly different carbon consequences, improving
capacity to accurately attribute disturbance type through space and
time stands to benefit future studies aimed at quantifying the
environmental impacts associated with forest disturbance in Canadian
boreal forests and elsewhere.
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