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Abstract Wildland fuels are important to fire man-

agers because they can be manipulated to achieve

management goals, such as restoring ecosystems,

decreasing fire intensity, minimizing plant mortality,

and reducing erosion. However, it is difficult to

accurately measure, describe, and map wildland fuels

because of the great variability of wildland fuelbed

properties over space and time. Few have quantified

the scale of this variability across space to understand

its effect on fire spread, burning intensity, and

ecological effects. This study investigated the spatial

variability of loading (biomass) across major surface

and canopy fuel components in low elevation northern

Rocky Mountain forest and rangeland ecosystems to

determine the inherent scale of surface fuel and canopy

fuel distributions. Biomass loadings (kg m-2) were

measured for seven surface fuel components—four

downed dead woody fuel size classes (0–6 mm,

6–25 mm, 25–75 mm, and 75 ? mm), duff plus litter,

shrub, and herb—using a spatially nested plot sampling

design within a 1 km2 square sampling grid installed

at six sites in the northern US Rocky Mountains.

Bulk density, biomass, and cover of the forest canopy

were also measured for each plot in the grid. Surface

fuel loadings were estimated using a combination of

photoload and destructive collection methods at many

distances within the grid. We quantified spatial vari-

ability of fuel component loading using spatial vario-

grams, and found that each fuel component had its own

inherent scale with fine fuels varying at scales of

1–5 m, coarse fuels at 10–150 m, and canopy fuels

from 100 to 500 m. Using regression analyses, we

computed a scaling factor of 4.6 m for fuel particle

diameter (4.6 m increase in scale with each cm

increase in particle diameter). Findings from this study

can be used to design fuel sampling projects, classify

fuelbeds, and map fuel characteristics, such as loading,

to account for the inherent scale of fuel distributions to

get more accurate fuel loading estimations.
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Introduction

Most natural resource management and landscape

ecology analyses use the mean of an ecosystem

characteristic to represent that characteristic within a

polygon or patch (Keane et al. 1998; Jensen and

Bourgeron 2001). However, many biological and

environmental variables are so highly variable in time

and space that the mean often doesn’t fully capture the

influence, uncertainty, and importance of that charac-

teristic across the landscape (Hunter and Price 1992).

Daily precipitation, for example, is meaningless if the

value is calculated as an average across a year because

every day would have light rain (Berndtsson 1988). In

ecology, it is often the variability of a characteristic

across space that governs its impact and importance on

ecosystems (Goldwasser et al. 1994), and nowhere is

that more evident than in wildland fuel science.

Fuel properties, such as loading (Brown and See

1981), heat content (Van Wagtendonk et al. 1998),

particle density (Harmon et al. 2008), size (Van

Wagtendonk et al. 1996), and moisture (Agee et al.

2002), are amazingly variable in time and in space,

and this variability has both direct and indirect

influences on wildland fire effects and behavior. Fire

spread, for example, is greatly influenced by the

spatial distribution of fuels in three dimensions (Rocca

2009; Parsons et al. 2010); fine scale patches without

fuels can dictate the direction, speed, and intensity of

fire spread (Agee et al. 2000; Thaxton and Platt 2006;

King et al. 2008). To assign average fuel values to

large areas, such as frequently done when creating fuel

maps (Keane et al. 2001; Reeves et al. 2009), ignores

the extraordinary influence that fuel variability can

have on wildland fire processes. In fire ecology, for

example, it is often the uneven distribution and

consumption of fuel across multiple scales that

determine patterns of post-fire plant mortality, plant

growth, and colonization dynamics (DeBano et al.

1998), yet impacts of this complex fuel patchwork are

disregarded when managers assume uniform fuel

distributions.

Wildland fuel is the one factor that can be directly

manipulated to achieve management goals, such as

restoring ecosystems, lowering fire intensity, mini-

mizing plant mortality, and reducing erosion (Graham

et al. 2004; Ingalsbee 2005; Reinhardt et al. 2008).

As a result, comprehensive descriptions of fuels are

needed in nearly every phase of fire management

including fighting wildfires (Graham et al. 2004;

Ohlson et al. 2006; Chen et al. 2006), implementing

prescribed burns (Agee and Skinner 2005), describing

fire danger (Deeming et al. 1977), and predicting fire

effects (Ottmar et al. 1993; DeBano et al. 1998).

Consistent and accurate fuel descriptions are critical

inputs to the fire behavior and effects models that are

used to plan, prioritize, design, and implement

important fuel treatments that could save lives and

property (Reinhardt and Keane 1998; Andrews 2008;

Hessburg et al. 2010). Fuel loadings are also used to

predict smoke emissions (Ottmar 1983; Hardy et al.

1999), quantify carbon pools (Reinhardt and Holsing-

er 2010), describe wildlife habitat (Bate et al. 2004),

and evaluate site productivity (Hagan and Grove 1999;

Brais et al. 2005; Woodall and Nagel 2006). There-

fore, an accurate quantification of fuels and their

variability is essential for most fire management

analyses.

Wildland fuel components, however, are often

difficult to measure, describe, and map for many

reasons. A fuelbed can consist of many fuel compo-

nents, such as litter, duff, logs, and cones, and the

properties of each component, such as loading,

mineral content, and moisture, can be highly variable,

even within a single fuel particle, such as a twig, log,

or grass blade (van Wagtendonk et al. 1996). Since

each component is composed of different sized fuel

particles, these properties can vary at different spatial

scales (Habeeb et al. 2005). The within stand

variability of fuel loading, for example, can be as

high as the variability across a landscape, and this

variability is different for each component, each fuel

size, and each landscape setting (Brown and Bevins

1986, Keane 2008a). Fuel loadings are so highly

variable that they often have poor correlations to

vegetation characteristics, topographic variables, or

climate parameters (Brown and See 1981; Rollins

et al. 2004; Cary et al. 2006). It is the uneven

distribution of fuel across space that confounds many

fire management applications such as fuel classifica-

tion, mapping, and fire behavior prediction.

The research presented here is a comprehensive

effort to describe the spatial scale of variability of fuel

loading for six common forest and rangeland ecosys-

tems in the northern Rocky Mountains. We measured

loadings for important fuel components within a large

grid to describe their variability across several spatial

scales using geostatistical techniques. We then related
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spatial variability statistics to fuel component sizes

to scale fuel properties across space and compared

these statistics across the sites. A companion paper

addresses the variability of other fuel properties:

particle density, bulk density, and mineral content, but

also presents additional detail on the methods and

results used in this study (Keane et al. 2012, in press).

Results from this study have important implications

for fire management in that they show that many

conventional fuel sampling techniques, fuel classifi-

cations, and map products may be limited for certain

applications, and that fuel science technologies need

to incorporate fuel loading variability in their design.

Background

Wildland fuel is defined here as the organic matter

available to foster fire ignition and sustain combustion

(Albini 1976; Sandberg et al. 2001). The fuelbed is

composed of basic elements called fuel particles that

are grouped into fuel components based on size, type,

and condition (Table 1). Surface fuel is the biomass

within 2.0 m vertical of the mineral soil surface and is

often divided into duff and litter, downed and dead

woody biomass in a range of diameter classes, and live

and dead standing vegetation (Table 1). Downed dead

woody fuel is commonly separated into four compo-

nents (Table 1) based on the diameter size classes

required by fire behavior prediction systems (Andrews

2008). Each surface fuel component is often described

by a unique set of characteristics for their use in fire

management. Fuel loading is defined as the mass of a

fuel component per unit area (kg m-2) and it is the

only characteristic evaluated in this paper. The density

of woody fuel particles (particle density, kg m-3) is

the mass per unit volume of fuel particles, which is a

function of the species, particle size, and degree of

decay. Particle density is a major parameter that we

used to determine fuel loadings. Bulk density is the

Table 1 Descriptions of the three canopy fuel characteristics and the seven surface fuel components sampled in this study

Fuel component Fuel component

variable name

Common name Size Description

Canopy fuels

All canopy fuels CFL Canopy Fuel Loading

(kg m-2)

All dead and live biomass

less than 3 mm diameter

above 2 m

Biomass per unit area of the burnable crown

fuel

CBD Canopy Bulk Density

(kg m-3)

All dead and live biomass

less than 3 mm diameter

above 2 m

Maximum bulk density of the canopy for the

burnable crown fuel across all 1 m layers

CC Canopy cover (%) All dead and live biomass

less than 3 mm diameter

above 2 m

Vertically projected canopy cover of the

canopy fuels

Surface fuels (loading, kg m-2)

Downed dead

woody

1 h Twigs \1 cm (0.25 inch) diameter Woody fuels that are disconnected from

parent plants and lying on the fuelbed

within 2 m of the ground
10 h Branches 1–2.5 cm (0.25–1.0 inch)

diameter

100 h Large Branches 2.5–7 cm (1–3 inch)

diameter

1,000 h Logs 7 ? cm (3 ? inch)

diameter

Shrubs Shrub Shrubby All shrubby material less

than 5 cm in diameter

All burnable shrubby biomass with branch

diameters less than 5 cm

Herbaceous Herb Herbs All sizes All live and dead grass, forb, and fern

biomass

Duff Duff Duff All sizes Partially decomposed biomass whose origins

cannot be determined

Litter Litter Litter All sizes excluding woody Freshly fallen non-woody material which

includes needles, leaves, cones, pollen

cones

We combined the duff and litter layer together in this study because it was often difficult to distinguish between the two layers

Landscape Ecol (2012) 27:1213–1234 1215

123



amount of biomass per unit volume measured as the

mass of a fuel component(s) in the volume that defines

the fuelbed (Brown 1981). This volume is usually

estimated as a unit area times the height of the fuelbed.

We used the bulk densities of the litter, duff, shrub,

and herb fuelbed components to estimate their

loadings.

Canopy fuel is burnable aerial biomass that is higher

than 2.0 m above the ground, and consists primarily

of branches and foliage, but also includes arboreal

mosses, lichens, dead ladder fuels, and other hanging

dead material such as dead needles and branches

(Reinhardt et al. 2006). Many fire behavior prediction

systems do not differentiate between canopy fuel

components because of the low resolution of crown fire

models (Rothermel 1991) and the minor influence that

large canopy fuel has on crown fire behavior (van

Wagner 1977). As a result, canopy fuel is often only

described by the biomass that can be burned in a crown

fire, defined in this study as all canopy material less

than 3 mm in diameter (Call and Albini 1997). This

burnable canopy biomass, when summed over a unit

area, is called the canopy fuel loading (CFL, kg m-2).

Since the remaining coarse canopy material (greater

than 3 mm diameter) rarely burns in a wildfire or

prescribed fire, it is often ignored in fire models, yet this

material is fundamentally important in carbon dynam-

ics (Finkral and Evans 2008; Reinhardt and Holsinger

2010). Canopy bulk density (CBD, kg m-3), defined as

the mass per unit volume of burnable canopy biomass

(again, foliage and twigs less than 3 mm in diameter),

is perhaps the most important canopy fuel property

(van Wagner 1977; Alexander 1988), but it is also the

most difficult to measure because it requires detailed

knowledge of the vertical distribution of crown

biomass (Alexander 1988) and there are few standard-

ized field methods for estimating CBD. The most

popular method for estimating CBD involves using

measurements of tree diameter, height, and crown base

height for all trees in a plot to calculate crown biomass

distribution from allometric crown biomass equations

(Reinhardt et al. 2006).

Fuel variability

Spatial variability has been assessed for ecophysio-

logical attributes (Rodeghiero and Cescatti 2008), soil

properties (Grunwald et al. 2007), weather variables

(Augustine 2010), hydrological parameters (Russo

and Bouton 1992), and vegetation characteristics

(Powell and Hansen 2007). However, few studies

have directly assessed the spatial variability of wild-

land fuels. Kalabokidis and Omi (1992) used quadrats

to assess spatial variability of sagebrush ecosystems to

determine optimal sampling strategies. Reich et al.

(2004) evaluated the coarse-scale (30 m) spatial

variability of several fuel components for a large

landscape in the Black Hills, USA by modeling fuel

properties from remote sensing products and found

that the variability was correlated to topography and

vegetation, but they did not evaluate the inherent scale

of this variability or spatial variability at finer scales

(\5 m) across fuel components. Hiers et al. (2009)

measured small scale variations in fuel heights that

were quantified using LIDAR and found that these

heights were spatially independent after small lag

distances (0.5 m2). Parsons et al. (2010) simulated fine

scale variations in fuel characteristics for a small area

using the FUEL3D program and input these fuel

distributions into highly mechanistic computational

fluid dynamics models. Spatial variation of grasslands

have been described in the context of population

dynamics and restoration potential (Thorhallsdottir

1990; Peters et al. 2006) and fuel loadings have been

manipulated at fine scales (1–5 m) to investigate the

influence of fine fuel mosaics on fire intensity and

effects (Thaxton and Platt 2006; Rocca 2009). Several

studies have described the patterns of fuel distribu-

tions across the landscape, but few have actually

quantified the variability of fuel properties across

space (Miller and Urban 2000; Jia et al. 2006;

Kennedy et al. 2008; King et al. 2008). Van Mantgem

and Schwik (2009) found insignificant spatial auto-

correlation for a number of stand and surface fuel

characteristics, but their 50 m sampling grid was

probably too coarse for describing variability in finer

fuels.

Spatial variability is often described using the

semivariogram that graphically represents the spatial

continuity of a data set (Bellehumeur and Legendre

1998; Townsend and Fuhlendorf 2010). The semi-

variogram depicts the spatial autocorrelation of mea-

sured sample points. Once each pair of locations is

plotted, a model is fit through them. Unique semivari-

ogram characteristics are commonly used to describe

spatial variability (Fig. 1). Theoretically, at zero

distances, the semivariogram intercept value is zero,

but, most semivariograms exhibit a nugget effect
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(intercept values greater than zero) that is often

attributed to measurement errors or spatial sources

of variation at distances smaller than the sampling

interval (or both). Natural phenomena, such as fuels,

can vary spatially over a wide range of scales and the

distance where the curve first flattens is known as the

range; sample locations separated by distances closer

than the range are spatially autocorrelated, whereas

locations farther apart are not. Semivariogram range is

important in ecology because it represents the scale at

which the entity is best described in space or the

‘‘inherent’’ scale. The value of the semivariogram

model at the range is called the sill (Townsend and

Fuhlendorf 2010), and it represents the maximum

variation on the landscape.

Methods

Study sites

Six study sites were selected for sampling after

extensive GIS analyses and field reconnaissance

(Fig. 2; Table 2). We targeted the most common

mature forested and rangeland vegetation types in the

northern Rocky Mountains, but these areas had to be

(1) homogeneous with respect to vegetation and

topography, (2) large with at least 2.0 km2 in area to

accommodate large sampling grids, (3) flat with less

than 10 % slope to minimize the influence of slope on

woody fuel alignment, and (4) accessible within at

least 1 km of a road. Few contiguous, homogeneous

areas met our criteria, especially for high elevation

forests and forested ecosystems that are rare on the

landscape. As a result, we sampled only low-elevation

semi-arid and temperate ecosystems (Table 2). We

could not replicate our sampling for the same ecosys-

tem type because of the rarity of potential sampling

sites in the US northern Rocky Mountains.

The first site sampled was in University of Montana’s

Lubrecht State Forest (Lubrecht Forest, LF) in west-

central Montana (Fig. 2; Table 2)—a second-growth

dry mixed conifer stand of ponderosa pine (Pinus

ponderosa), Douglas-fir (Pseudotsuga menziesii), and

western larch (Larix occidentalis) that had been thinned

approximately nine years prior to sampling so some

residual down woody fuels were still present on the site.

The ponderosa pine-Douglas-fir stand on the Ninemile

Ranger District of the Lolo National Forest (Ninemile,

NM) was on a gentle (\10 %) south-east facing slope in

the Douglas-fir/ninebark habitat type (Pfister et al. 1977)

that had a prescribed burn implemented approximately

eight years prior to sampling. The Tenderfoot Forest

(TF) site is on the Tenderfoot Creek Experimental

Forest in the Lewis and Clark National Forest in central

Montana and was composed of an open lodgepole pine

overstory with a history of non-lethal surface fires and an

understory fuelbed that consists primarily of low grouse

whortleberry (Vaccinium scoparium) shrubs with scat-

tered downed woody fuels. The Silver Mountain (SM)

site is an open pinyon pine (Pinus edulis) and juniper

(Juniperus occidentalis) woodland with woody scat-

tered fuels, sparse sagebrush shrubs, and frequent bare

soil and gravel patches. The Colville Forest (CF) site

was a ponderosa pine savanna with a rough fescue

(Festuca scabrella) undergrowth and thickets of Doug-

las-fir trees scattered in a matrix of widely spaced

ponderosa pine trees that had been thinned in a 2007 fuel

treatment to reduce crown fuels.

Field measurements

Canopy and surface fuels were sampled differently in

this study because of methodological, logistical, and

scale issues (Scott and Reinhardt 2002; Reinhardt

et al. 2006). Only loadings for those surface fuel

components described in Table 1 were sampled in this

study because they are common inputs to fire models.

Loadings for other fuel components, such as stumps,

squirrel middens, and animal scat, were not included

because these components were rare on the landscape,

had no standardized sampling methods, and were

Fig. 1 Important characteristics of a semivariogram. The nugget,

sill, and range are commonly used to describe the spatial variability

of an ecological characteristic. From the SAS/STAT(R) 9.3 Users

Guide (http://support.sas.com/documentation)
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difficult to measure in the context of this study. We

also sampled particle density, mineral content, and

bulk density for seven surface components which was

used to compute loadings, but those results were

reported in Keane et al. (2012, in press). For canopy

fuels, we calculated biomass of burnable canopy

material (dry weight mass in kg of all fuels less than

3 mm diameter) from allometric tree structural rela-

tionships summarized into two measurements—can-

opy fuel loading (CFL, kg m-2) and canopy bulk

density (CBD, kg m-3). Canopy cover (CC, percent)

is the vertically projected cover of all canopy fuels

including the particles greater than 3 mm diameter.

We installed a nested grid design within a square

1.0 km2 (1,000 m by 1,000 m) grid in the center of

each selected study site (Fig. 3) (Bellehumeur and

Legendre 1998; McCollum 2005). Corners of this

‘‘sampling grid’’ were monumented and georefer-

enced, and the sides were oriented along the four

cardinal directions. Transects were established across

each corner, and at 100 m intervals along each grid

side. Starting in the NW corner, we established

sampling points at 200 m distances along each of the

west-east running transects, but staggered the start of

the 200 m distance by 100 m on every other transect

(Fig. 3). This design provided additional distances

between sampling points.

We established a set of nested plots at each grid

sampling point (Fig. 4). The largest plot was a 400 m2

circular macroplot that was established at each sample

Fig. 2 The six sites selected for this study: a Colville Forest

(CF) is a pine savanna in eastern Washington, b Ninemile Forest

(NF) is a ponderosa pine-Douglas-fir grassland that was recently

burned by a prescribed fire, c Silver Mountain (SM) is a pinyon-

juniper woodland in west-central Utah, d Tenderfoot Forest

(TF) is an even-aged lodgepole pine forest in central Montana,

e Lubrecht Forest (LF) is a pine-fir-larch forest in west central

Montana that was recently thinned as a fuel treatment, f Bighole

Valley (BV) is a sagebrush grassland in southwest Montana
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point for measuring tree population data. Measured

tree data were used as input to allometric biomass

equations to calculate the canopy fuels variables

(Reinhardt et al. 2006). We recorded species and

health class for all trees above 10 cm DBH (diameter

breast height), then measured their DBH (cm), tree

height (m), canopy fuel base height (m), crown class,

crown position, and live crown ratio using FIREMON

methods (Lutes et al. 2006).

We then installed a 100 m2 circular subplot within

the macroplot on which we sampled logs ([8 cm

diameter) and live trees greater than 1.37 meters tall but

less than 10 cm DBH (saplings) (Fig. 4). Saplings were

individually measured for species, DBH class (2 cm

size classes), height, and crown base height (Lutes et al.

2006). These sapling measurements were augmented

with the tree measurements to compute canopy fuel

variables. We also measured the length, and the small

and large end diameters, of each log (downed dead

woody fuel particles greater than 8 cm diameter) within

subplot boundaries, and then assessed the log’s decay

class using the five rot classes described in the

FIREMON Fuel Loading method. A log’s length was

measured along the longitudinal axis and terminated at

the end of log or boundary of subplot; only logs whose

central longitudinal axis was above the litter-duff

surface were measured. From a 10 % random sample

of measured logs, we sawed at least three cross-sectional

areas from selected logs within the subplot to measure

log densities which were used to compute loading. Sub-

sampled logs were selected for each species and rot

class. Cut log samples were placed in labeled paper bags

and transported back to the lab where they were dried

and weighed to determine particle density.

We then centered a 1 m2 square microplot over

each grid point and measured tree seedling character-

istics, loadings of shrub, herb, and fine woody (\8 cm

diameter twigs and branches), depth of duff and litter,

and cover and height of all vascular plant species

(Fig. 4). Seedlings (trees\1.37 meters in height) were

Table 2 General description of the selected study sites

Site name Code Habitat typea Cover type Structural

stage

Primary fuels Dominant

undergrowthb
Past activities

Lubrecht

ForesT

LF PSME/VACA,

PSME/VAGL

Ponderosa

pine/

Douglas-

fir/western

larch

Mature Partially decomposed

light thinning slash

Pinegrass, snowberry,

spirea, and elk sedge

Recent thinning nine

years prior to

sampling

Tenderfoot

Forest

TF ABLA/VASC Lodgepole

pine

Pole-

mature

Low live shrub,

scattered woody

Grouse whortleberry,

elk sedge, arnica

Low intensity surface

fire approximately

64 years prior to

sampling

Ninemile NM PSME/PHMA

PSME/SYAL

Ponderosa

pine-

Douglas fir

Mature Grass, widely scattered

thinning slash

Pinegrass, elk sedge,

snowberry,

kinnikinnick

Thinning and

prescribed burn

approximately

8 years prior to

sampling

Bighole

Valley

BV NA Sagebrush

grasslands

Mature Sagebrush, grass Mountain sagebrush,

bluebunch

wheatgrass,

History of cattle

grazing

Silver

Mountain

SM NA Pinyon Pine/

Juniper

Mature Patchy, light

herbaceous fuels

Sagebrush, ephedra,

poa

History of cattle

grazing, Wildland fire

excluded from these

landscapes.

Colville

Forest

CF PSME/SYAL

PSME/VACA

Ponderosa

pine

savanna

Mature Grass, scattered woody Rough fescue,

pinegrass, snowberry

History of frequent

burning and grazing

a Habitat types were keyed from Pfister et al. (1977) and the codes are PSME-Douglas-fir (Pseudotsuga mensezii), ABLA-subalpine fir (Abies
lasiocarpa), PHMA-ninebark (Physocarpus malvaceus), VASC-grouse whortleberry (Vaccinium scoparium), VAGL-blue huckleberry (Vaccinium
globulare), VACA-dwarf huckleberry (Vaccinium caespitosum), SYAL-snowberry (Symphoricarpus alba)
b Scientific names are pinegrass (Calamgrostis rubescens), rough fescue (Festuca scabrella), kinnikinnick (Arctostaphylos uva-ursi), elk sedge (Carex

geyerii), spirea (Spirea betulafolia), mountain sagebrush (Artemisia tridentata vaseyana), arnica (Arnica latifolia), sagebrush (Artemisia tridentate),
poa (Poa secunda and bulbosa), ephedra (Ephedra viridis)
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counted by species and height classes. Fuel loadings

for the 1 h, 10 h, 100 h, shrub, and herb fuel

components were visually estimated using the photo-

load technique (Keane and Dickinson 2007), and

depth of both the duff and litter were measured at 13

points within the microplot (Fig. 4) using FIREMON

Fuel Loading methods where we inserted a ruler

downward through the duff and litter until we hit

mineral soil. Vertically projected canopy cover (%)

and average height (m) of all vascular plant species

within the microplot were estimated using the Cover

Frequency method in FIREMON.

At four sampling points in the grid we installed an

intensive macroplot and microplot grid to intensify

sampling and to increase the number of fine scale

distances (Fig. 3). We installed a 5 m by 5 m grid

containing 25 microplots with the center of the

microplot grid located at the center of the sampling

grid point. All 25 microplots in the intensive microplot

grid were measured exactly the same as the other

Fig. 3 The sample grid

installed in the center of

each selected study area

with the four sub-grid areas

that received additional

sampling to intensify the

grid. A set of nested plots
were installed at each of the

sample points shown in the

grid
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microplots on the 1 km2 sampling grid. We also

randomly selected 20 % of the microplots, including

those on the intensive microplot grid, to destructively

sample for all fuel components to measure actual fuel

loadings to calibrate the photoload visual estimates.

On these randomly selected microplots, we collected

all the fuel for the three fine down, dead woody, shrub,

and herb components and sorted them on site into

separate paper bags. These bags were labeled and

placed in a burlap bag for transport to the lab where

they were dried and weighed to determine loading.

Last, we installed a 0.25 m2 (50 9 50 cm) square

nanoplot in the northwest corner of the microplot to

measure duff and litter fuel loadings (Fig. 4). We

measured duff and litter depths for five points at each

corner of the nanoplot and directly in the middle. Duff

and litter depths were measured using FIREMON

procedures from the top of the mineral soil to the top

of the litter material at the point of measurement. We

then collected duff and litter material from nanoplots on

the 20 % randomly selected microplots mentioned

above using a flat shovel and stored the extracted profile

in a labeled burlap or paper bag (Snell 1979; Stephens

et al. 2004). Litter and duff were dried and weighed to

determine loading then converted to bulk density using

the depth measurements, and the calculated bulk

densities were used to calculate duff ? litter loading

for all the remaining microplots from measured depths.

Dry weights of all collected fuels were calculated by

weighing the fuel after it has been dried in an oven for

3 days at 80 �C.

Analysis

Calculating surface fuel loadings

Fine fuel loadings were estimated for all microplots

using the photoload sampling technique because it was

easy, fast, and somewhat accurate (Sikkink and Keane

2008). However, photoload loading estimates are

Fig. 4 The set of nested
plots that was established at

each of the sampling points

in the grid. All plots used the

same plot center. The

400 m2circular macroplot

was used to measure trees;

the 100 m2 circular subplot

was used to measure logs

and saplings; the 1 m2

square microplot was used

to measure fine fuel loading,

tree seedling density, and

shrub and herb biomass,

cover, and height; and the

0.25 m2 square nanoplot

was used to measure duff

and litter depths and loading
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based on visual assessments, which may be of

sufficient resolution and quality for fire management

applications, but probably should be further refined for

research purposes. Therefore, we regressed the photo-

load estimates for the fine woody, shrub, and herb

fuels to the destructively sampled loading estimates

for the 20 % sub-sampled microplots and used the

slope of the regression line as a correction factor to

multiply the remaining photoload estimates to ‘‘cor-

rect’’ the visual photoload estimates for all microplots.

The goodness of fit (R2) ranged from 0.47 to 0.83 and

correction factors ranged from 0.3 to 1.46 for fine fuel

loadings (Keane et al. (2012, in press).

Log loadings on the subplot were calculated by

summing the mass of all measured logs on the

macroplot and dividing by 100 (area of subplot) to

convert to kg m-2. Mass of individual logs (kg) was

calculated by multiplying log volume by the measured

wood density (D, kg m-3). Log volume was calcu-

lated using the following formula:

V ¼ l

3
ðas þ alÞ þ

ffiffiffiffiffiffiffiffiffiffi

ðasal

p

Þ
h i

ð1Þ

where as and al are the areas (m2) of the small and

large end of the fuel particle (a = pd2/4 where d is the

log diameter), respectively, and l is the length of the

log (m) assuming log shape is approximated as a

truncated frustum. Wood density (kg m-3) was

directly measured from all cross-sectional samples

taken by species and rot class from the site. If a species

or rot class density was un-sampled, we used values

taken from the literature (Harmon et al. 2008).

Loading (kg m-2) for the duff and litter layer was

calculated by multiplying the volume of the duff and

litter layer (m3) by measured bulk density (kg m3) and

dividing by area of the microplot (m2) (Snell 1979;

Woodard and Martin 1980; Stephens et al. 2004).

Volume was calculated by multiplying average depth

(m) from the 13 measurements by microplot area

(1 m2). Bulk density for duff ? litter is taken from the

average of all bulk densities calculated from the 20 %

destructively collected nanoplot samples (Keane et al.

2012, in press). To compute field sampled duff ?

litter bulk densities, we first computed loading by

dividing dry weight of the litter ? duff profile by the

nanoplot area (0.25 m2). We then divided this loading

by the volume of the nanoplot duff-litter profile using

the average depth of the five nanoplot depth measure-

ments and nanoplot area.

Calculating crown fuel variables

Canopy fuel loading (CFL) and canopy bulk density

(CBD) were computed using the FUELCALC program

(Reeves et al. 2009), which computes several canopy fuel

characteristics based on allometric equations relating

individual tree size, canopy, and species characteristics

to crown biomass. CFL is computed by dividing the

sum of all burnable canopy biomass (particles \3 mm

diameter) by the area of the macroplot (400 m2).

FUELCALC then computes vertical canopy fuel distri-

bution using the Reinhardt et al. (2006) algorithms that

distribute crown biomass over the live crown for each

tree anddivides the canopyfuel into horizontal layers ofa

user-specified width and reports the CBD value for the

layer with the greatest bulk density. Canopy cover (CC,

percent) was visually estimated in the field at the

macroplot level using FIREMON methods.

Scaling spatial variability

We used spatial autocorrelation analysis to fit semi-

variograms for the spatial distribution of loadings of

each surface and canopy fuel component to determine

the scale at which that fuel component is best

measured and described (SAS/STAT(R) 9.3 Users

Guide http://support.sas.com/documentation). Four

types of models were used to fit the spatial fuel loading

data to the spatial variogram (Gaussian, pure nugget,

exponential, and spherical) and the range, sill, and

nugget values were taken from model with the best

goodness of fit statistics (R2, standard error, mean

square error). Often, we found poor results for two or

more variogram models because of abundant zero data

values, and in these cases we picked the model that

gave us the lowest semivariogram range, or if there

were greater than 25 % zero values, we eliminated that

fuel component from the spatial analysis. We recorded

range, sill, and nugget values by fuel component

(particle size) and sample site to evaluate if the spatial

properties of fuels are scalable and constant across

components and ecosystems. We also evaluated

whether spatial variation in the fuel variable is iso-

tropic and whether the variation is stationary—

homogeneous in space. Two spatial statistics were also

computed to describe the spatial distribution of fuel

variables—Moran’s I and Geary’s C—but results are

minimally reported here (see Keane et al. 2012, in

press).
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We estimated scaling factors for all surface fuel

components by performing linear (Y = a ? bX) and

non-linear (ln(Y) = a ? (b)ln(x)) regression, using

the semivariogram range as the dependent variable

(Y) and surface fuel component particle size as the

independent variable (Y). Duff ? litter particle size

was assumed to be 0.2 cm as derived from needle

dimensions measured from the collections taken at

the destructively sampled plots (Keane et al. 2012, in

press). Herbaceous particle diameter size was assigned

a value of 0.1 cm and shrub particle size was assigned

0.5 cm based on measurements taken from the plants

cut in the destructively sampled plots and from values

in the literature. Because logs were rare across most

site grids, loadings for downed woody fuels greater

than 8 cm (1,000 h) were stratified into three broad

size classes (8–11, 11–16, 16 ? cm) to fit the loading

distribution of coarse woody debris. The midpoints of

these diameter classes (9.5, 13, and 22 cm) were used

in the regression analyses. Canopy fuels were not

included in the scaling analyses but were correlated to

surface fuel loadings.

Results

Spatial variability

Surface fuels

It appeared that most surface fuel components were

highly variable both within and across study sites

(Fig. 5). The highest loads were found in the duf-

f ? litter fuel component ranging from 0.2 (BV) to

11.3 kg m-2 (LF), which comprised over 90 % of the

total fuel load for the fuelbed (see Table 2 for sample

site descriptions and codes). Duff ? litter loads also had

high standard deviations (0.22–6.6 kg m-2), but some

of the lowest coefficients of variation (58–149 %) with

respect to the other fuel components (Keane et al. 2012,

in press). Logs, the largest down woody fuel component

(1,000 h), had the highest variability of all down woody

components across all sites (from no logs in the BV

sagebrush-grassland to an average of 0.57 kg m-2 in TF

lodgepole pine forests) with low standard deviations

(0.57 kg m-2 at TF), yet their coefficients of variations

were approximately the same as the other woody fuel

components (101 % at NM pine-fir to 603 % at SM

pinyon-juniper). One hour fuel loadings were low

ranging from 0.005 (BV) to 0.066 kg m-2 (TF) with

high coefficients of variation (80 % at CF to 187 % at

NM). The 10 h woody fuels averages were higher

(0.009 for BV to 0.458 for LF) for four sites (LF, TF,

BV, and SM), probably as a result of management

activities, and as a consequence, the variability was also

the highest with ranges (max–min) of 0.214 (BV) to

9.859 kg m-2 (LF). The sagebrush grassland BV load-

ings were low and variable because sagebrush shrubs

rarely produced woody material greater than 2.5 cm in

diameter. Shrub and herbaceous loads were the least

variable of all surface fuels with shrub loading average

ranging from 0.05 (sites LF, TF, CF) to 0.225 kg m-2

(sagebrush BV) with low standard deviations

(0.042 kg m-2 in TF lodgepole to 0.187 kg m-2 in

SM pinyon-juniper). Herb loadings were low for all sites

(0.011 kg m-2 at SM to 0.056 kg m-2 at CF) with

correspondingly low standard deviations and ranges

(0.019–0.112 kg m-2).

In general, all spatial semivariogram statistics

seemed to increase with fuel particle size (Table 3;

Fig. 6) with the smallest particle sized fuel compo-

nents (duff ? litter, herbs, 1 h, and shrubs) having the

lowest values for sill and nugget. Duff ? litter had

both the lowest (0.063) and the highest (3.59) values

for the sill, indicating a great disparity in spatial

variance across sites for this component. Shrub fuels

showed similar behavior in that low sill values (\0.7)

were calculated for all but the shrubby pinyon-juniper

SM site (sill[2.0). In contrast, 1 h and herb fuels had

some of the lowest spatial variance with sills ranging

from 0.03 to 0.67 in semivariance. Downed woody

fuels semivariance seemed positively correlated with

the size of the woody particle except for 1,000 h fuels

where semivariance generally decreased. Sill values

for 1 h fuels (0.03–0.28) were generally lower than

10 h fuels (0.35–2.19), which were generally lower

than 100 h fuels (0.76–3.59), but values for the

1,000 h fuels (0.05–2.12) were more similar to 10 h

fuels and did not increase over 100 h fuels. This is in

contrast to 1,000 h fuels which had the highest

standard deviations, but those deviations were less

than 50 % of the mean (Fig. 5).

Semivariogram range statistics provided the most

important information on the spatial dynamics of

surface and canopy fuels because range values repre-

sent inherent patch sizes. Overall, it appeared that the

range generally increased with fuel particle size

(Table 3). Duff ? litter ranges were the lowest and
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span from 0.5 at LF pine-fir-larch to 2.5 m at CF pine

savanna. Herbs have the next lowest patch size with

ranges that went from 0.5 on LF to 3.5 m on NM, both

were pine-fir sites. Shrub fuels appeared to vary at the

next highest scale with ranges from 0.9 (CF) to 3.6 m

(LF) with the highest of 15.1 m at SM indicating

Fig. 5 Box and whisker plots of measured loadings (kg m-2)

for each fuel component across all six sample sites: a Lubrecht

Forest (LF), b Tenderfoot Forest (TF), c Ninemile Forest (NF),

d Bighole Valley (BV), e Silver Mountain (SM), and f Colville

Forest (CF). Note that the scales of the Y-axis are different for

each site to show that the loading distribution and variability

across components are similar across sites but the magnitudes

are different
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higher shrub discontinuity in pinyon-juniper ecosys-

tems. Fine woody fuels varied at about the same scale

as shrubs depending on particle size with 1 h fuel

ranges from 2.5 (SM) to 16.3 m at LF, 10 h ranges

from 0.88 at BV to 11 m at TF, and 100 h ranges from

2.4 to 4.6 m. Logs had the highest inherent patch sizes

ranging from 22 at NM to 157 m at SM. Semivario-

gram ranges for 100 h woody fuels were more

consistent than most of the finer fuels which is

probably a result of the rarity of 100 h fuel particles

on nearly all study sites.

Spatial variogram nugget values generally increased

with particle size, but these results were highly site

specific (Fig. 6). Overall nugget results were confusing

and did not provide any additional information about

spatial fuel variability because it was difficult to fit

semivariograms with the data collected in this project

(Keane et al. 2012, in press). Nugget values usually

represent the amount of error involved in the measure-

ment of the response variable, in this case fuel loading.

Nugget values were the lowest for these loading

measurements of fine woody debris (1, 10, 100 h)

probably because they were quantified by corrected

visual estimates. The highest nugget values (1.1, 1.7)

were for logs, which were easier to measure but were

rarer within the sampling grid. Moran I values were low

for all fuel components (\0.4), but they were highest for

the finer fuel components of duff ? litter, shrubs, and

1 h woody fuels indicating that these fuels have the

greatest spatial structure.

Canopy fuels

Canopy fuel characteristics were quite similar across

all forested sites and across all three variables (Fig. 7).

The canopy characteristic used most in fire manage-

ment, canopy bulk density (CBD), ranged from 0.02 to

0.28 kg m-3 with standard deviations from 0.01 to

0.18, but the coefficient of variation only ranged from

only 48 to 65 %. The variabilities of CBD, CFL, and

CC were comparable across sites, especially when

they were standardized with the mean (CVs were

around 50 % of mean ranging from 20 to 65 %).

Variabilities of canopy variables were high for the SM

pinyon-juniper forest because it had a discontinuous

forest canopy and highly dense tree crowns. The

Bighole Valley (BV) site was a sagebrush-grassland

site so there were no canopy fuels on any of the plots

within that grid.

Spatial statistics for CC, CBD, and CFL spatial

variograms also seemed remarkably similar across sites

(Table 3). There were no range and sill values for the

CF and NM sites because both variograms could only

be fitted with a pure nugget model, and no canopy

variogram statistics are reported for the BV grassland

site because there were no trees. Values for the

semivariogram ranges for the remaining sites ranged

from 100 to 440 m for CBD, 310–600 m for CFL, and

230–407 m for CC. The lowest ranges were found for

the closed forest of LF and TF (lodgepole), while the

highest values were for the open SM and NM forests.

CFL had the highest patch sizes (310–600 m) and these

were significantly different from CBD and CC

(p \ 0.05). The sill and nugget were significantly

different across all three canopy characteristics with

CBD consistently having the lower semi-variance and

CC with the highest (Table 3), probably due to differ-

ences in how each are estimated. Moran’s I statistics

were also quite low for the canopy fuel characteristics

with the highest value at 0.17 in the TF lodgepole pine

site indicating a lack of spatial structure in canopy

characteristics (Keane et al. 2012, in press). Moran’s I,

however, was statistically similar across the three

canopy characteristics with CC having the greatest

variation in spatial structure.

Scaling

Regressions of the range to fuel particle size across all

sites and for each site provided a means to quantify

scaling factors for surface fuels. Using linear regres-

sion, we found that there was approximately a 4.67 m

increase (slope) in the semivariogram range for each

cm increase in fuel particle diameter size when the

range data was pooled across all sites (Slope b value

with a significant R2 of 0.66 but a high standard error

of 21 m) and when we transformed the data using the

natural log (non-linear regression), we got similar

results but with lower standard error (significant R2 of

0.65 and standard error of 2.7 m) (Table 4; Fig. 8).

We also found that the linear regression scaling factors

(Slope-b) were greatly different across sites ranging

from 2.46 for pine-fir NM site to 9.97 m for the

lodgepole TF site (Table 4), but the goodness of fit (all

R2 significant ranging from 0.71 to 0.91) and standard

errors (1.6–24 m) were somewhat similar, except

at the SM site where the intercept (4.65 m), slope

(-0.46), and R2 (0.02) indicated an extremely poor
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scaling relationship. Also, non-linear regression

results for each site did not improve upon the linear

model coefficient of determinations (R2 ranging from

0.62 to 0.76) but they did improve the standard errors

(2–5 m), except for the SM site (Table 4).

Interestingly, the semivariogram ranges were not

related to any of the three canopy fuel characteristics

(Fig. 9). Canopy loading (CFL) seemed to have the

highest correlations with fuel component ranges

(\0.40, see Keane et al. 2012, in press), especially

for logs and herbs. Canopy cover (CC) had no

predictive value for quantifying fuel component patch

sizes. Duff ? litter semivariogram ranges had the

weakest relationships to the three canopy variables

Table 3 Semi-variogram statistics for all surface and canopy fuel components across the six sites

Fuel

component

Big Hole (BV)

sagebrush

grasslanda

Silver Mountain

(SM) pinyon

juniper

Colville Forest

(CF) pine

savannah

Ninemile

(NM)

pine-fir

Lubrecht Forest

(LF) pine-

fir-larch

Tenderfoot

Forest (TF)

lodgepole pine

Range (m)

1 h 4.67 2.50 2.83 16.30 8.90 6.02

10 h 6.60 2.46 0.88 4.95 2.23 11.10

100 h No 100 h 2.46 2.54 4.56 2.41 4.14

1,000 h No Logs No Logs 84.01 22.01 87.30 157.01

Shrub 2.44 15.10 0.85 1.79 3.61 2.66

Herb 0.72 1.11 0.80 3.50 0.52 1.83

Duff/litter 0.45 1.41 2.54 1.29 0.48 0.85

CFL (kg m-2) – 560.00 – 600.00 310.00 560.00

CBD (kg m-3) – 440.00 – 412.00 100.00 120.00

CC (%) – 407.00 – – 230.00 300.00

Sill ((kg m-2)2)

1 h 0.128 0.174 0.282 0.051 0.029 0.524

10 h 0.350 0.917 0.744 2.188 1.825 1.274

100 h No 100 h 0.736 3.590 3.510 2.689 1.018

1,000 h No Logs 2.129 1.967 0.055 1.825 1.778

Shrub 0.657 2.040 0.302 0.634 0.390 0.426

Herb 0.175 0.480 0.140 0.671 0.080 0.200

Duff/litter 0.058 2.770 3.590 0.268 0.445 0.249

CFL (kg m-2) – 0.050 – 0.020 0.017 0.010

CBD (kg m-3) – 0.008 – 0.001 0.001 0.002

CC (%) – 0.159 – – 0.048 0.030

Nugget ((kg m-2)2)

1 h 0.072 0.019 0.052 0.007 0.008 0.085

10 h 0.121 0.000 0.000 1.500 0.575 0.478

100 h No 100 h 0.053 2.260 1.430 0.449 0.190

1,000 h No Logs 1.142 0.377 0.000 1.700 0.000

Shrub 0.389 0.000 0.000 0.000 0.050 0.000

Herb 0.000 0.000 0.000 0.103 0.000 0.073

Duff/litter 0.059 0.000 2.260 0.115 0.000 0.016

CFL (kg m-2) – 0.050 0.006 0.026 0.015 0.006

CBD (kg m-3) – 0.013 0.001 0.001 0.001 0.001

CC (%) – 0.202 0.107 0.120 0.103 0.027

Details of variogram models and model fitting are described in Keane et al. (2012, in press). No canopy fuel values are reported for

the BV sagebrush grassland because there was no tree canopy. Range and sill values for the CF and NM sites are missing because the

low number of data points could only be fit by a pure nugget model which has no range or sill
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even though canopy loading and bulk densities have

been correlated to duff ? litter amounts (Keane

2008a).

Discussion

Results from this study showed that surface fuel

components varied at different scales; patch sizes

tended to increase with increasing fuel particle

diameters at a rate of 4.6 m per cm particle diameter

(Table 4). However, we also found that there were

strong site-to-site differences in this estimate

(2–10 m) so the rate of this increase depends on local

conditions, such as stand density, species composition,

productivity, and stand history (Fig. 8; Table 4).

There was also an associated increase in spatial

variability as fuel particle and patch sizes increased,

both in measurement error (nugget) and overall

variation (sill) (Table 3). While this spatial variability

and range were poorly explained by canopy fuel

variables (Fig. 9) and forest stand characteristics

(Keane et al. 2012, in press), they provide important

ecological information for the design of fuel measure-

ment, description, and mapping projects; ignoring this

variability may have undesirable consequences for fire

management.

High spatial variability in wildland fuel is a result of

many factors, mainly deposition, decomposition, and

disturbance, acting across different time and space

Fig. 6 Spatial semi-variogram statistics for each surface fuel component arranged from smallest to largest particle size across all

sample sites: a range, b sill, c nugget, d Moran’s I
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scales. Most important are the sources of fuel (namely

plants) that are distributed across space in complex

patterns (Dale 1999). Large fuels, such as branches and

boles, tend to accumulate directly under the plant

sources, especially trees, and decompose slowly so

they are present for longer times. On the other hand,

small fuels, such as needles and twigs, can be blown

farther away from the parent plant and fall in a more

uniform pattern, and they also decompose quicker,

which might also explain their low fine scale variability

(Harmon et al. 1986; Keane 2008b). Disturbances,

such as windthrow, low intensity fires, and insect

outbreaks, also impact fuel distributions at finer scales

(Van Wagtendonk 1972; Brown and Bevins 1986)

because their effects are different across fuel sizes

(Brown et al. 1991; Thaxton and Platt 2006). In mixed

species stands, for example, fuels can accumulate

unevenly beneath trees harvested for canopy fuel

reduction (sites LF, CF) or killed by mountain pine

beetle (Page and Jenkins 2007; Jenkins et al. 2008), and

fires can differentially kill plants and consume fuels in

a patchwork of burned, partially burned, and unburned

areas that influence future ecosystem responses such as

the colonization of future plants (site NM).

Spatial scaling analysis results for the Silver

Mountain site were considerably different from all

other sites in this study (Tables 3, 4). The low

goodness of fit statistics (R2 \ 0.2) and negative slope

(-0.46) indicated that wildland fuels on this site are

distributed at approximately the same scale regardless

of size (around 1–15 m). Moreover, nearly all fuel

components had high variation (Table 3). This was

probably a result of low fuel loadings for all fuel

components (\0.2 kg m-2) in this sparse depauperate

pinyon-juniper stand. There were many microplots

and nanoplots without fine fuels resulting in an

Fig. 7 Box and whisker plots of the three canopy fuel

characteristics. a Canopy fuel loading (CFL, kg m-2); b canopy

bulk density (CBD, kg m-3); and c canopy cover (CC, %) across

all sites: Lubrecht Forest (LF), Tenderfoot Forest (TF),

Ninemile (NM), Silver Mountain (SM), and Colville Forest

(CF). Bighole Valley (BV) was a sagebrush grassland site with

no trees and therefore the site had no canopy fuels
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abundance of zero loading values making it difficult to

fit a semivariogram model. We probably should have

used a larger sampling frame for quantifying fine fuel

loadings at this site to minimize zero values and

optimize spatial sampling intensities (see next section).

Another interesting finding of this study was the

lack of correlation of stand-level variables to fuel

component semivariogram ranges (i.e., patch sizes).

Few surface fuel range values correlated to canopy

fuel characteristics (Fig. 9), and surface fuel compo-

nent loadings were poorly related to the stand

variables of average diameter, average tree height,

basal area, and tree density (Keane et al. 2012, in

press). Canopy fuel variables were also uncorrelated to

surface fuel loadings and their spatial statistics

(Fig. 9). These results have been found by others

when analyses were done across large regions (Brown

and Bevins 1986), but studies where measurements

were done at small scales are lacking.

Study limitations

There are some limitations in this study design that

may have influenced our quantifications of spatial

variability. First, we sampled woody fuels in the

uneven size classes commonly used by fire behavior

modeling (Table 1), and the stratification of woody

fuel loadings by these unbalanced diameter classes

may have introduced some unwanted uncertainty.

Loadings, especially for 100 h fuels, for example, can

be highly variable because particle diameters range

from 2.5 to 8 cm resulting in a possible tenfold range

in volume or loading. To further compound this

problem, branch diameter size distributions differ by

species and position in the canopy (Brown 1978).

Subalpine fir, for example, has smaller branches than

ponderosa pine (Minore 1979; Reinhardt et al. 2006),

and as a result, fir branches are never large enough to

represent the full 2.5–8 cm diameter range encom-

passed by 100 h fuel (Table 1). Smoke emissions

predictions, carbon inventories, and fuel consumption

would be greatly improved if woody fuel particles

were sampled at size classes that match the resolution

of measurement accuracy, rather than the resolution of

the fire models.

Another limitation is that our sampling density and

resolution may not have matched the exact scale of the

fuel particle spatial distribution (e.g., Silver Mountain).

Since we had no prior knowledge of the inherent

scale of fuel component loadings, we implemented a

Table 4 Regression statistics for the relationships of semivariogram range to fuel particle size for all and each site

Sites Intercept—a (SE) Slope—b (SE) Coefficient of

determination R2 (%)

Model significance

(p value)

Residual standard

error (m)

Linear model Y = a ? bX

All sites -0.08 (3.76) 4.62 (0.50) 66.2 \0.0001 21.29

Big Hole Valley 0.74 (1.11) 4.62 (1.71) 70.8 0.074 1.64

Silver Mountain 4.65 (3.13) -0.46 (1.88) 1.5 0.818 5.98

Colville Forest -0.54 (7.23) 3.90 (0.78) 78.1 0.002 17.12

Ninemile 4.31 (3.10) 2.46 (0.33) 88.5 \0.0005 7.35

Lubrecht Forest -8.35 (10.5) 6.07 (1.13) 80.5 0.001 24.77

Tenderfoot Forest -5.68 (7.62) 9.97 (1.27) 91.2 \0.0005 17.11

Non-linear model (ln(Y) = a ? b ln(X))

All sites 1.58 (0.14) 0.73 (0.08) 64.7 \0.0005 0.97

Big Hole Valley 1.72 (0.57) 0.98 (0.41) 66.1 0.094 0.78

Silver Mountain 1.12 (0.46) 0.21 (0.33) 8.7 0.569 0.98

Colville Forest 1.26 (0.37) 0.80 (0.20) 70.6 0.005 1.10

Ninemile 1.91 (0.32) 0.56 (0.17) 61.7 0.012 0.93

Lubrecht Forest 1.36 (0.38) 0.83 (0.20) 71.3 0.004 1.11

Tenderfoot Forest 1.96 (0.34) 0.85 (0.20) 75.7 0.005 0.95

Loadings for downed woody fuels greater than 8 cm (1,000 h) were stratified into three size classes (8–11 cm, 11–16 cm, 16 ? cm)

and the midpoints of these diameter classes were used in the regression. All sites described in Table 1

SE standard error
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methodology that we thought was appropriate. And,

because it took over 4 weeks to sample a site, we used

only four intensive microplot grids (4 9 25 m2 =

100 m2) in the 1 km2 sample grid. This 1 % sample

may be too small for accurate descriptions of spatial

variability of surface fuels at fine scales. Moreover, the

distance between the subplots used for sampling log

loadings may have been too great to accurately describe

log spatial variability. Additional analysis of our data

revealed that the subplot size was indeed large enough to

minimize log fuel sampling variability, but that there

should have been more intensive sampling at 5, 10, and

15 m distances. For logistical reasons, we used only four

static nested sampling frames for describing fuels,

when in reality, some surface fuel components are

ineffectively sampled at these scales, as we found from

our study results (Table 3). Large branches (100 h) on

the SM site, for example, were probably inappropriately

sampled with only a 1 m2 microplot because of

abundant zero values (Table 3).

Because of the highly restricted site selection

criteria, this study was implemented on only six study

sites which represent a small number of forest and

range vegetation types in the northern Rocky Moun-

tains. As a result, study results are probably specific to

the few sites that we sampled and probably shouldn’t

be extrapolated to other sites. As mentioned, it took

well over a month to conduct the measurements on one

study site so our sampling time was somewhat limited

because of cost concerns. Moreover, it was difficult to

find study sites that fit our selection criteria because

the complex interactions between wildland fire, man-

agement activities, and topography rarely created the

large, flat, homogeneous sites needed for this study. In

the future, we will relax site selection criteria and

move from small heterogeneous 1 km2 patches to

large landscapes ([1,000 ha).

Management implications

Findings from this study have profound implications

in wildland fire science research and management that

could fundamentally change the way we measure,

classify, and map fuels and model fire in the future.

Most importantly, it is clear that each wildland fuel

component varied at unique scales and this means that

methods for describing and quantifying fuel properties

(fuel sampling) must accommodate the inherent scales

of each fuel component in their design. Fine fuels, for

example, should be sampled with a sampling frame

that is large enough to minimize spatial sampling bias

but small enough to adequately capture spatial vari-

ation (1–5 m). A hierarchically nested fixed-area plot

design, similar to the one used in this study, may be a

possible solution where fine fuels are sampled within

1–5 m2 microplots, logs are sampled on 50–100 m2

plots, and canopy fuels are sampled on 400–1,000 m2

plots. In addition, it appeared that loadings of surface

and canopy fuel components were uncorrelated so any

sampling or analysis method that attempts to quantify

fuel variability and distribution from stand conditions

are suspect. Critical research is needed to develop

methods that accurately quantify fuels within fixed

Fig. 8 Regression results for the relationship of the semivari-

ogram range to fuel particle size for all fuel sizes using a linear

regression and b non-linear regression. Loadings for downed

woody fuels greater than 8 cm diameter (1,000 h) were stratified

into three size classes (8–11, 11–16, 16 ? cm) and the

midpoints (9.5, 13, and 22 cm) of these diameter classes were

used in the regression
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plots and are also easy to use with limited training and

resources.

Wildland fuel mapping must also account for

variability of fuels across space. Fine fuel variability

within the 30 m pixel size commonly used in many

land management mapping efforts may be so high that

it may overwhelm fuel quantification, compromise

accuracy assessments, and ineffectively predict fire

behavior and effects (i.e., fine scale variations in fuel

loadings and structure affect fire spread and subse-

quent fire intensity, see Parsons et al. 2010). The

resolution of remotely sensed imagery, biophysical

modeling, and GIS analysis probably should match the

spatial variation (i.e., patch size) of the fuel compo-

nent being mapped; twigs, for example, should be

mapped using 1–5 m pixel size. Spatially explicit fire

behavior and effects models that use fuel maps could

intensify the native mapping grid with simulation

algorithms that stochastically distribute fuels across

space at the appropriate resolutions.

Fuel classifications, such as fire behavior fuel models

(Scott and Burgan 2005), fuel loading models (Lutes

et al. 2009), and fuel characteristics classification

system fuelbeds (Ottmar et al. 2007), may also have

limitations for fire behavior and effects applications.

These classifications are ‘‘point’’ estimations of fuel

loadings, yet many assign the categories from these

classifications to large areas using vegetation attributes

(Reeves et al. 2009) ignoring the influence of the fuel

variability on fire prediction and the lack of correlation

of fuel loadings with vegetation attributes (Fig. 9;

Keane et al. 2012, in press). The next generation of

fuel models may need to contain spatial statistic

parameters that can be used to generate realistic spatial

distributions of fuel component loadings so that effec-

tive fuel maps can be created at any scale and resolution.

Fig. 9 Relationship of the semi-variogram range for each surface fuel components across all five forested sites to the average of canopy

fuel variables of a loading (CFL), b bulk density (CBD), and c cover (CC) across all sites
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