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ABSTRACT
The financial, socioeconomic, and ecological impacts of wildfire continue to challenge federal landmanagement agencies in

the United States. In recent years, policymakers and managers have increasingly turned to the field of risk analysis to better

manage wildfires and to mitigate losses to highly valued resources and assets (HVRAs). Assessing wildfire risk entails the

interaction of multiple components, including integrating wildfire simulation outputs with geospatial identification of HVRAs

and the characterization of fire effects to HVRAs. We present an integrated and systematic risk assessment framework that

entails 3primary analytical components: 1) stochasticwildfire simulation andburnprobabilitymodeling to characterizewildfire

hazard, 2) expert-based modeling to characterize fire effects, and 3) multicriteria decision analysis to characterize preference

structures across at-risk HVRAs. We demonstrate application of this framework for a wildfire risk assessment performed on the

Little Belts Assessment Area within the Lewis and Clark National Forest in Montana, United States. We devote particular

attention to our approach to eliciting and encapsulating expert judgment, in which we: 1) adhered to a structured process for

using expert judgment in ecological risk assessment, 2) used as our expert base local resource scientists and fire/fuels specialists

who have a direct connection to the specific landscape and HVRAs in question, and 3) introduced multivariate response

functions to characterize fire effects to HVRAs that consider biophysical variables beyond fire behavior. We anticipate that this

work will further the state of wildfire risk science and will lead to additional application of risk assessment to inform land

management planning. Integr Environ Assess Manag 2013;9:329–342. � 2012 SETAC
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INTRODUCTION
The financial, socioeconomic, and ecological impacts of

wildfire continue to challenge federal land management
agencies in the United States (Thompson et al. 2012; Bruins
et al. 2010). In recent years, policymakers and managers have
increasingly turned to the field of risk analysis to better
manage wildfires and to mitigate losses to highly valued
resources and assets (HVRAs). This trend is evident, for
instance, in the widespread adoption of the Wildland Fire
Decision Support System (Calkin, Thompson et al. 2011;
Noonan-Wright et al. 2011), in the design and delivery of
decision support tools for fuels management (Ager et al.
2011), in the development and implementation of the
National Cohesive Wildland Fire Management Strategy
(Calkin, Ager et al. 2011), and in recent and ongoing efforts
at strategic, integrated risk assessment (Thompson, Calkin,
Finney et al. 2011). Use of wildfire risk assessment models can
facilitate decision making across the fire management
spectrum, with application to fire prevention, hazardous
fuels management, fire detection, initial attack dispatch, and
large fire suppression (Martell 2007).

Wildfire risk analysis is fundamentally interdisciplinary,
requiring the pairing of substantive expertise in the bio-
physical sciences with methodological expertise in the
decision sciences. Assessing wildfire risk entails the inter-
action of multiple components, including geospatial integra-
tion of wildfire simulation outputs with HVRAs (exposure
analysis), and the further characterization of fire effects to
HVRAs (effects analysis). For planning purposes it is critical
that assessment results be both spatial and quantitative
(Thompson and Calkin 2011). Spatially explicit character-
izations of wildfire risk are necessary to reflect variability
in topography, vegetation conditions, ignition density, burn
probability, fire intensity, and spatial patterns of HVRAs.
Quantifying risk facilitates analysis of tradeoffs across
HVRAs, and enables cost-effectiveness analysis as a basis for
evaluating risk mitigation options.

Spatial burn probability modeling enables robust analysis of
HVRA exposure to wildfire, yet lagging behind fire modeling
efforts is a comprehensive understanding of the socioeco-
nomic and ecological consequences of fire (Keane et al. 2008;
Venn and Calkin 2011). This knowledge deficit is manifest in
terms of limited or inadequate empirical observations, a lack
of predictive models, and limited understanding of complex
ecological processes. Models to estimate first-order fire effects
(e.g., tree mortality, soil heating, fuel consumption, and
smoke emissions) do exist, although some level of inference is
still necessary to characterize the broader effects (e.g., habitat
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loss) in which managers are typically more interested
(Reinhardt and Dickinson 2010). Despite these challenges,
it remains critical to characterize likely wildfire-related losses
(and benefits) to assess risk and to prioritize mitigation efforts
accordingly.

In such cases characterized by complexity and uncertainty,
a formal recognition of uncertainty and reliance of expert
judgment is often the most suitable approach (Borchers
2005). Formal elicitation and application of expert judgment
is one of the only options to synthesize available scientific
knowledge for time-sensitive policy or managerial decisions
and can provide increased rigor relative to reliance on
intuition, rules of thumb, or other proxies (Krueger et al.
2012). The application of expert knowledge in ecology and
natural resource management is common (Failing et al. 2004,
2007; Cheung et al. 2005; Marvin et al. 2009; Murray et al.
2009; Runge et al. 2011; Marcot et al. 2012), due largely to
the fact that the types of questions being proposed are
characterized by uncertainty and a lack of data, and because
management decisions based on ecological risk assessment
often cannot afford to delay for further study and analysis
(Kuhnert et al. 2010). Application in the wildfire literature is
extensive, including related but simpler and less formal work
on fire effects analysis (Thompson, Calkin, Gilbertson-Day et
al. 2011), estimation of aerial suppression effects on wildfire
containment time (Plucinski et al. 2011), comparative
assessment of prefire versus during-fire management actions
(Penman et al. 2011), multicriteria analysis exploring the
causative factors of fire (Vadrevu et al. 2009), calibration and
critique of fuel models to design landscape fuel treatment
strategies (Bahro et al. 2007), analysis of forest stand
vulnerability to fire based on structural characteristics
(González et al. 2007), estimation of initial attack crew
productivity (Hirsch et al. 2004), and estimation of aerial
retardant fireline production rates (Mees et al. 1994).

Further challenging integrated risk assessment is a lack of a
common currency across market and nonmarket HVRAs.
Previous quantitative wildfire risk analyses have tended to
focus on assessing risk to commercial resources and assets
such as timber (Konoshima et al. 2010), with little applic-
ability to the natural, cultural, and ecological values for which
federal agencies must manage. Time and resource constraints,
limited studies of nonmarket HVRAs, limited applicability of
benefit transfer approaches, and other factors often prohibit
the use of nonmarket valuation in wildfire risk assessment
(Venn and Calkin 2011). Fortunately, multicriteria decision
analysis techniques can be used to help resource managers
balance and quantify tradeoffs and to articulate preferences
and relative importance of HVRAs (Kiker et al. 2005; Ananda
and Herath 2009).The establishment of relative importance
(RI) weights across HVRAs enables the integrated presenta-
tion of risk, allows for simpler mapping and visualization, and
can facilitate prioritization decisions. The establishment of
RIs further makes clear the delineation between knowledge
and preferences, which is necessary for transparency and rigor
in decision processes (Gregory and Long 2009).

In this article, we demonstrate the application of a
systematic, integrated wildfire risk assessment framework
carried out for the Lewis and Clark National Forest, Montana,
United States. Our framework entails 3 primary analytical
components: 1) stochastic wildfire simulation and burn
probability modeling to characterize wildfire hazard, 2)
expert-based modeling to characterize fire effects, and 3)

multicriteria decision analysis to characterize Forest leader-
ship preference structures. We embed these components
within a spatial, quantitative risk assessment framework that
allows for the portrayal of risk to individual HVRAs and for
an aggregated portrayal of risk across HVRAs with a unitary
metric. In particular we devote attention to our approach to
eliciting and encapsulating expert judgment, in which we: 1)
adhered to a structured process for using expert judgment in
ecological risk assessment, 2) used as our expert base local
resource scientists and fire/fuels specialists who have a direct
connection to the specific landscape and HVRAs in question,
3) introduced multivariate response functions to characterize
fire effects to HVRAs that consider biophysical variables
beyond fire behavior. We anticipate that this work will
further the state of wildfire risk science and will lead to
additional application of risk assessment to inform land
management planning.

METHODS

A framework for quantifying wildfire risk

Figure 1 presents the overall risk assessment framework, its
3 primary analytical components, and its outputs. The overall
process entails collaboration with different types of Forest
staff at different points in the process. Line officers (i.e.,
Forest leadership: Forest Supervisor and District Rangers) are
asked to provide guidance regarding assessment endpoints and
relevant land and fire management plan objectives. Principally
this entails the identification of HVRAs to be included in the
assessment (Component 2), and further the articulation of
relative HVRA importance in the context of fire protection
and/or restoration (Component 3). In different planning
contexts or with different governance structures, the compo-
sition of the group providing value-based information may
differ. Resource specialists, by contrast, are asked to provide
science-based information regarding the possible effects of fire
to the identified set of HVRAs (Component 2).

This framework provides spatially resolved estimates of
wildfire risk on a per-pixel basis, quantified as expected net
value change (NVC), building on work originally proposed by
Finney (2005). We use NVC rather than expected loss to
explicitly recognize possible ecological benefits of fire; thus
terms ‘‘hazard’’ and ‘‘risk’’ should be interpreted in that
context throughout this article. Value change is expressed in
relative terms on a percentage basis, as defined by expert-
based loss/gain functions (e.g., complete loss¼�100%).
These ‘‘response functions’’ output a common measure of
risk, and a given pixel on the landscape can present risk to
multiple (or zero) HVRAs. Equation 1 provides the formula
for calculating E(NVCj)k, the expected net value change to
HVRA j on landscape pixel k. BPik is the probability of pixel k
burning with fire intensity class i, and RFijk the response
function for HVRA j on pixel k at fire intensity class i. To
provide an integrated measure of risk across HVRAs, the
relative importance of each HVRA (RIj) can be derived using
multicriteria decision analysis techniques. Equation 2 displays
how to calculate risk across HVRAs for a given landscape
pixel k. The weighting factor aj captures both the relative
importance and the relative extent of mapped HVRA pixels,
where Nj is the count of total mapped pixels (Eqn. 3).
Incorporating the relative extent of HVRAs will tend to
distribute relative importance across HVRAs with a large
number of mapped pixels, and to concentrate relative
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importance for rare HVRAs. That is, HVRAs with few
mapped pixels will have a high importance per pixel. Finally,
expected net value change across all HVRAs and the entire
landscape can be derived as in Equation 4.

EðNVCjÞk ¼
X

i

BPikRFijk ð1Þ

EðNVCÞk ¼
X

j

EðNVCjÞk � aj ð2Þ

aj ¼ RIj
Nj

and ð3Þ

EðNVCÞ ¼
X

k

EðNVCÞk ð4Þ

Study area

The study area is known as the Little Belts Assessment
Area, comprising 363 678 hectares in the areas around the
Little Belts mountain range (Figure 2). The Little Belts range
is within the Lewis and Clark National Forest (LCNF) in
central Montana, United States. Four Ranger Districts lie
within the study area: Belt Creek, Judith, Musselshell, and
White Sulphur Springs. Relative to other locations in the
mountainous west of the United States, the Little Belts
Assessment Area has a low historic occurrence of large fire,
although large fires do occur, and there exists concern over
increasing wildfire hazard with insect infestations and a
changing climate. Historically, large fires (�121 hectares;
agency reporting standards) within the assessment area have
accounted for approximately 2.5% of all fires, while account-
ing for approximately 95% of all area burned. Thus it is

critical to examine those rare fires that grow large rather than
all ignitions. Across a broader assessment area known as a Fire
Planning Unit, 80 197 hectares burned out of 2 724 390
hectares of burnable area over the period of 1992 to 2009,
which results in a nonspatial, average annual large fire burn
probability of 0.00164. This estimate can serve as a useful
guide for evaluating wildfire simulation outputs, although the
limited historical record may not fully capture the potential
for large fire on this landscape.

Wildfire simulation modeling

A prerequisite step for modeling wildfire growth and
behavior is mapping the vegetative and fuel conditions across
the landscape. Generating this ‘‘fuelscape’’ required critiqu-
ing and updating LANDFIRE version 1.0.5 data (http://
www.landfire.gov) to reflect local knowledge of wildfire
behavior and changes to fuel and vegetation characteristics
from recent insect infestation and wildfire burn severity. A
local critique and update workshop was held with LCNF
vegetation and fire management resource specialists to
accomplish this task, an approach consistent with the
expert-driven development of LANDFIRE data products
(Rollins 2009). The LCNF resource specialists recommended
modification of the surface fire behavior fuel model (Scott and
Burgan 2005) in some areas of the Forest to better reflect the
expected fire behavior. We used data of relative overstory
canopy loss to update forest canopy characteristics for recent
insect infestation and then LCNF resource specialists devel-
oped rules for mapping post-insect disturbance surface and
canopy fuel. The relative overstory canopy loss data was
developed by the USFS Region 1 Geospatial Services Group
using a change detection process that assessed LANDSAT
imagery from 2000 and 2009 and reference data interpreted

Figure 1. Flowchart for integrated wildfire risk assessment process, with 3 primary analytical components identified. The light gray boxes indicate key processes,

and the dark gray boxes indicate modeled outputs.
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from 2009 color infrared NAIP imagery. Rules to update
surface and canopy fuel for recent wildfires not captured in
the LANDFIRE version 1.0.5 data were developed by the
LCNF resource specialists based on burn severity and time
since disturbance as captured in data from the USFS
Monitoring Trends in Burn Severity program (http://www.
mtbs.gov).

To produce spatially resolved burn probabilities, we turned
to the wildfire simulation system FSim (Finney, McHugh
et al. 2011), which combines a number of submodels related
to weather influences, ignition probability, fire spread, and
containment success. FSim simulates fire occurrence and
growth on a daily basis for tens of thousands of fire seasons to
generate estimates of wildfire likelihood given current land-
scape conditions. FSim belongs to a family of fire models
built largely off the FARSITE (Finney 1998) fire modeling
system, with broad application in wildfire risk analysis (Ager
et al. 2011; Finney, Grenfell et al. 2011; Noonan-Wright et al.
2011). In addition to geospatial data on burnable vegetation,
the FSim model is parameterized with data from a local
weather station to generate relevant fire weather streams, and
with local historic fire occurrence data in the form of a spatial
ignition density grid and parameters for a stochastic large-fire
occurrence submodel.

The spatial resolution for this modeling effort was a pixel
size of 90m (0.81ha), for which FSim outputs pixel-specific
burn probabilities partitioned according to 1 of 6 fire intensity
classes. Annual burn probabilities are calculated as the
number of times a pixel burns (at any intensity) divided by
the total number of simulated fire seasons. The spatial pattern
of burn probability is influenced by local ignition likelihood
and by spread potential from remote ignitions. The distribu-
tion of burn probability among the fire intensity classes is
influenced by local fuel type, the simulated wind speed and
fuel moisture at the time the pixel burns, and the orientation
of the flame front with respect to the heading direction (the
flanking and backing portions of a wildfire are less intense
than the heading portion). Collectively the geospatial map-
ping of burn probability and fire intensity characterize wildfire
hazard and provide the foundation for exposure and effects
analysis.

HVRA identification and definition

We asked Forest leadership to identify a suite of priority
HVRA layers with potential to be impacted by wildfire. The
identification process proceeded hierarchically, with 5 pri-
mary HVRAs identified followed by articulation of a series of

Figure 2. Ranger Districts and Little Belts Assessment study area, located in central Montana.
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sub-HVRAs. Table 1 presents the entire set of HVRAs and
sub-HVRAs, as well as their mapped area within the Little
Belts Assessment area, and Figure 3 provides the HVRA
locations within the study area. The Green Trees HVRA
consists of an experimental forest dedicated to long-term
research, popular recreation areas and scenic corridors that
have not been impacted by recent insect or wildfire
disturbance, and commercial timber resources. The Wildlife
Habitat HVRA corresponds to various vegetation and plant
communities that provide habitat for a diversity of important
wildlife species. The Infrastructure HVRA includes a variety
of fire-susceptible structures or developed areas, including
rental cabins, campgrounds, fire lookouts, power lines, etc.
The Watersheds HVRA includes municipal watersheds,
which provide drinking water, and habitat for the Westslope
cutthroat trout, a native species classified as sensitive. Lastly,
the Wildland Urban Interface (WUI) HVRA consists of areas
near residential structures. Upon identifying the list of
HVRAs and, critically, ensuring sufficiency of geospatial data
to map all HVRAs, we were able to proceed to engage experts
and to assign response functions.

Expert Judgment and Response Function Workshop

Factors influencing implementation of expert-based
approaches include identification of the type of information
to be elicited, of the most appropriate experts, of the best way
to encapsulate expert information, and of the best way to

elicit expert information. Further driving many applications
are practical considerations relating to available resources and
timelines. For our purposes we defined an 8-step process for
eliciting expert judgment, premised largely on frameworks
presented by Knol et al. (2010) and Kuhnert et al. (2010).
Below we briefly review each step in the context of the Little
Belts Assessment.

1. Articulate the research question: Our specific problem was
how to characterize wildfire effects to HVRAs and how to
integrate that information with wildfire simulation model-
ing outputs to characterize wildfire risk.

2. Identify and characterize relevant uncertainties: The primary
source of uncertainty is knowledge-based (Ascough et al.
2008), relating to lack of data and predictive models
regarding fire effects to the suite of HVRAs considered.

3. Resolve the scope and format of elicitation: We opted to
establish and align expert subgroups based on relevant
expertise with HVRAs. In essence, we modeled our
approach off an application of the Delphi process detailed
by MacMillan and Marshall (2006), in that we sought to
use multiple experts, sought expert consensus, and
provided multiple opportunities to refine HVRA-specific
response function definitions.

4. Select the experts: Our expert pool included 17 members, a
balance of resource generalists and specialists. In this
context generalists span a range of professions, including
fire management officers, fuels specialists, and foresters.
Specialists, by contrast, are HVRA-specific, including
wildlife biologists, fisheries biologists, soil scientists, and
forest hydrologists.

5. Design the expert judgment elicitation protocol: Our elicita-
tion design used a generic template wherein response
functions output NVC as a function of flame length.
Additionally the protocol included a number of improve-
ments over earlier approaches (Thompson, Calkin, Gil-
bertson-Day et al. 2011), including the definition of
HVRA-specific response functions rather than the assign-
ment of HVRAs to predefined stylized response functions,
and the allowance of multivariate response functions.

6. Prepare the elicitation protocol: We created and distributed
to experts a 4-page brochure, and distributed surveys to
HVRA subgroups that asked experts to discuss the factors
affecting how each HVRA responded to wildfire. Surveys
specifically queried experts regarding 3 key factors: wild-
fire characteristics, HVRA characteristics, and landscape
characteristics. The surveys served to introduce experts to
the mental process of evaluating fire effects, and further to
help identify potential variables to include in response
function definitions.

7. Elicit expert judgment: Our elicitation protocol occurred in
a 1-day group workshop format at the Forest headquarters,
involved multiple individuals who varied by nature of
expertise (generalist versus subject-matter experts), and
was premised on consensus-based definition of quantita-
tive HVRA-specific response functions. We began the
workshop by reviewing the definition of HVRA layers, the
initial feedback from survey responses, and the role of
response functions in the risk assessment framework. We
then broke the larger group into HVRA subgroups,
assigned to define response functions for every HVRA
sublayer and to document rationales behind response
functions.

Table 1. Set of HVRAs and sub-HVRAs, and total mapped area,
included in the Little Belts Assessment

HVRA Sub-HVRA
Mapped
area (Ha)

Green Trees Tenderfoot Creek Experimental
Forest

3516

Visual quality 19 039

Timber base 84 542

Wildlife habitat Aspen 484

Old growth 30 385

Riparian Habitat 19 556

Sagebrush Steppe 9221

Ungulate Winter Range 55 088

Whitebark pine 10 700

Infrastructure High Investment Infrastructure 301

General Investment Infrastructure 771

Power lines 2628

Electronic sites 16

Watersheds Municipal watersheds 2841

Westslope cutthroat trout stream 84 767

WUI — 81 377

HVRA¼highly valued resources and assets; WUI¼wildland urban interface.
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8. Provide feedback and refine: On conclusion of the HVRA
subgroup meetings we rejoined all subgroups together, and
asked each subgroup to present their response function
definitions and justifications. We encouraged objective
critique and debate, which ultimately did lead to
modification of a small subset of response function
definitions.

Establishing relative importance across HVRAs

In parallel with the response function workshop, we asked
Forest Leadership to participate in a relative importance
elicitation workshop. The purpose of the workshop was to
establish quantitative weights that differentiate importance of
HVRAs. The workshop entailed the use of multi-criteria
decision analysis, in effect the Simple-Multi Attribute Rating
Technique (Kajanus et al. 2004). Our application was
premised on 3 key principles: the explicit inclusion of expert
judgment (here the expertise relating to established mana-
gerial priorities), the search for group consensus, and iterative
refinement of stated preference. We assigned weights accord-
ing to a 4-step process (below), which proceeded first across
HVRA categories, and then hierarchically across sub-HVRAs
within an HVRA category:

1. Rank HVRAs (or sub-HVRAs) according to importance to
Forest.

2. Provide qualitative justification for rankings, and their
relation to existing guidance, doctrine, or policy (e.g.,
Forest Management Plans, USDA Strategic Plan)

3. Assign top-ranked HVRA (sub-HVRA) a score of 100;
assign all other HVRAs (sub-HVRAs) relative importance
scores on scale of 0–100. Relative importance scores were
also converted into percentages of overall importance
across HVRAs and across sub-HVRAs within a given
HVRA category.

4. Review, critique, and refine scores (iterative for both
HVRAs and sub-HVRAs).

RESULTS

Wildfire hazard

Figure 4 presents maps of annual burn probability and
mean fireline intensity, clipped to the assessment area. The
highest burn probabilities are concentrated in the southwest
corner, primarily in the White Sulphur Springs Ranger
District as well as along the western periphery of the
Musselshell District. These areas of high burn probability
are characterized by grass and grass-shrub fuelbeds capable of
high spread rates. Burn probabilities are significantly lower
elsewhere, although there is a pocket of higher burn
probability and intensity in Belt Creek, corresponding to Belt
Park, an open grassland where fire can spread rapidly. The

Figure 3. Mapped locations for (A) Green Trees Sub-HVRAs, (B) Wildlife Habitat Sub-HVRAs, (C) Infrastructure Sub-HVRAs, and (D) the Cutthroat Trout Sub-HVRA
(high value watersheds) and the Wildland Urban Interface HVRA. The municipal watersheds sub-HVRA (high value watersheds) is not mapped for security

reasons.
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spatial patterns of mean fireline intensity tend to align with
areas of high burn probability, because both are influenced by
rate of spread. Burn probabilities throughout the study area
provide a range around the nonspatial historical burn
probability average, with most of the area below the average,
and a few areas of high burn probability well above the
average.

Response functions

Table 2 presents response function definitions for all sub-
HVRAs included in the Little Belts Assessment. Justifications
provided by the experts are available from the authors on
request. A wide range of responses to fire are exhibited, from
strongly positive (Aspen Sub-HVRA) to universally negative
(Tenderfoot Creek Experimental Forest Sub-HVRA), with
significant implications for landscape-scale wildfire manage-
ment. Responses for the Experimental Forest are strongly
negative to reflect possible invalidation of experiments and
loss of research data and equipment. The experts anticipated
ecologically beneficial effects from low-to-moderate intensity
fire to multiple Wildlife Habitat Sub-HVRAs, to Green Tree
Dry Forest Sub-HVRAs, and to Westslope cutthroat trout
streams. The Aspen and Whitebark pine Sub-HVRAs in
particular evinced a strong positive response to fire, related to

evolutionary adaptation to fire as well as fire-related mortality
to competing species. These 2 Sub-HVRA response functions
are also notable for their nonmonotonic functional form,
which was not presented as a stylized functional form for
earlier efforts described in the introduction. The experts
anticipated damages for certain fire-susceptible habitat and
forest or timber types, municipal watersheds, and to infra-
structure and the WUI, presuming that susceptibility of loss
increases with flame length. At maximum fire intensities most
Sub-HVRAs experience near total loss, with the exceptions of
Aspen, and watersheds where slope steepness <35%.

In total, the experts defined 10 multivariate Sub-HVRA
response functions, incorporating additional landscape varia-
bles relating to forest type and slope steepness. Forest type is
based largely on species composition, forest structure, and
moisture conditions. Dry forest types evolved with more
frequent, low-intensity fires, which can remove hazardous
fuels and prevent more catastrophic events and thereby incur
a net ecological benefit. Thus response functions for dry forest
Sub-HVRAs differ significantly, with benefits anticipated for
low-to-moderate intensity fires. Slope steepness is an indica-
tor of erosion potential, with higher slopes having increased
likelihood of sediment delivery to water bodies. Thus it is
mostly areas with steep slopes and high fire intensities with
potential for water quality degradation.

Figure 4. Burn probability and mean fireline intensity across study area.
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Relative importance

Table 3 presents the RI scores as assigned for all HVRA and
Sub-HVRAs. As with the response functions, justification
for rankings provided by forest leadership can be made
available from the authors. WUI is the most important
HVRA (RI¼ 100), followed by Infrastructure (RI¼ 90),
Watersheds (RI¼ 70), Wildlife Habitat (RI¼ 50), and Green
Trees (RI¼ 30). The ‘‘% RI’’ column presents normalized
importance scores as a percentage of the total RI among all
HVRAs, representing each HVRA’s share of overall impor-
tance. Sub-HVRAs are ranked according to Sub-RI scores,
with a similar interpretation for the column ‘‘% Sub-RI.’’ The
‘‘% Overall’’ column presents the importance of HVRA/Sub-
HVRA relative to all HVRAs/Sub-HVRAs, and is calculated
as the product of the ‘‘% RI’’ and ‘‘% Sub-RI’’ columns. The

top 3 rankings—WUI HVRA (29.4%), the High Investment
Infrastructure Sub-HRVA (11.0%), and the Municipal
Watersheds Sub-HVRA (10.8%)—collectively comprise over
50% of total importance. This result in part reflects agency
policy prioritizing protection of life and property.

Risk calculations

Table 4 presents expected net value change across all
HVRAs and Sub-HVRAs, summed across Ranger Districts.
These calculations integrate burn probabilities, response
functions, relative importance, and relative extent (Eqns. 1–
4). To reiterate, values presented are total net effects. Thus
where certain HVRAs exhibit a net benefit they still may
incur negative effects at certain intensities (and vice versa).
Looking first at HVRAs, the greatest loss is expected for the

Table 2. Response functions across all HVRA and Sub-HVRAs

HVRAs and Sub-HVRAs Covariate FIL 1 FIL 2 FIL 3 FIL 4 FIL 5 FIL 6

Green Trees

Tenderfoot Creek Experimental Forest — �100 �100 �100 �100 �100 �100

Visuals Juniper, PP, and DF 50 30 10 �50 �70 �100

Visuals Other 10 �20 �40 �80 �80 �90

Timber Douglas-fir and Ponderosa pine types 40 10 �20 �80 �100 �100

Timber Other �10 �30 �70 �90 �90 �100

Wildlife habitat

Aspen — 80 100 100 50 �10 �20

Old growth Dry-site 75 50 30 0 �50 �100

Old growth Wet-site 0 �10 �30 �50 �80 �100

Riparian Habitat — 20 0 �20 �50 �80 �100

Sagebrush Steppe — �10 �30 �50 �90 �100 �100

Winter range — 20 10 �30 �50 �80 �100

Whitebark pine — 80 100 80 �30 �80 �100

Infrastructure

High Investment Infrastructure — �10 �30 �60 �80 �100 �100

General Investment Infrastructure — 0 �10 �40 �70 �90 �90

Power lines — 0 �10 �20 �40 �80 �80

Electronic sites — 0 �10 �20 �40 �60 �80

High value watersheds

Westslope cutthroat trout stream <35% slope 20 20 10 0 �30 �50

Westslope cutthroat trout stream >35% slope 20 20 �10 �30 �50 �80

Municipal watersheds <35% slope 0 0 0 �10 �20 �40

Municipal watersheds >35% slope 0 0 �10 �30 �50 �80

WUI — �10 �30 �60 �80 �100 �100

Response functions are defined on the basis of 6 flame length categories: <2 ft (0.6m); 2–4 ft (0.6–1.2m); 4–6 ft (1.2–1.8m); 6–8 ft (1.8–2.4m); 8–12 ft

(2.4–3.7m); >12 ft (3.7m). FIL¼fire intensity level; HVRA¼highly valued resources and assets; WUI¼wildland urban interface.

336 Integr Environ Assess Manag 9, 2013—MP Thompson et al.



WUI. Infrastructure comes next in terms of expected loss, the
magnitude of which is approximately 52% of the loss to WUI.
Expected losses to Green Trees are 9% of WUI losses. Both
High Value Watersheds and Wildlife Habitat are anticipated
to benefit from fire. The overall magnitude of beneficial
impacts to habitat is approximately 15% of the magnitude of
negative impacts to WUI. Within certain HVRA categories,
there exists significant variation in wildfire effects across
Sub-HVRAs. This variation can manifest in terms of the
magnitude of likely fire-related impacts, for instance the
steeper loss to High Investment Infrastructure relative to
Electronic Sites (Infrastructure HVRA). Variation is also
evident in the direction of impacts, for instance with
significant benefits for Aspen and significant loss for Sage-
brush Steppe (Wildlife Habitat HVRA).

Figure 5 presents expected losses and benefits to all HVRAs
and Sub-HVRAs, expressed relative to WUI, which has the
greatest expected loss. The High Investment Infrastructure
Sub-HVRA has the second greatest expected loss (27% of
WUI), and the Sagebrush Steppe Sub-HVRA the third
greatest expected loss (23% of WUI). Conversely, Aspen
(32% of WUI), and Whitebark Pine (11%) are likely to
experience net benefits from wildfire. Using 10% loss/benefit

as an arbitrary ‘‘significant fire impact’’ threshold, only 7 of 16
HVRAs and Sub-HVRAs would be significantly impacted by
fire (5 negative, 2 positive). Because risk calculations already
incorporate relative importance and relative extent, this
type of information could be a useful filter for discerning
mitigation priorities.

The White Sulphur Springs Ranger District comprises by
far the largest share of overall wildfire risk, more than the
other 3 districts combined (Table 4). This result is influenced
by several factors. First, high burn probabilities and mean fire
intensities are found within the White Sulphur Springs
Ranger District (Figure 4). Second, highly susceptible HVRAs
(WUI, Infrastructure, Sagebrush Steppe, and Tenderfoot
Creek Experimental Forest) are exposed to that hazard
(Figure 3). Also, the White Sulphur Springs Ranger District
is slightly larger than the others. If risk per unit area were
uniform across the study area, White Sulphur Springs would
still have the largest share of overall risk due merely to its
larger size.

The Belt Creek Ranger District has the second highest
expected loss, driven primarily by WUI and Infrastructure.
This district has pockets of high burn probability largely
coincident with HVRAs (WUI and Infrastructure). By

Table 3. HVRA and Sub-HVRA RI weight assignments, sorted according to RI and Sub-RI

HVRA RI % RI Sub-HVRA Sub-RI % Sub-RI % Overall

WUI 100 29.4 — — — 29.4

Infrastructure 90 26.5 High Investment Infrastructure 100 41.7 11.0

General Investment Infrastructure 60 25.0 6.6

Power lines 50 20.8 5.5

Electronic sites 30 12.5 3.3

Sub-HVRA RI total 240 100 26.5

Watersheds 70 20.6 Municipal watersheds 100 52.6 10.8

Westslope cutthroat trout stream 90 47.4 9.8

Sub-HVRA RI total 190 100 20.6

Wildlife habitat 50 14.7 Aspen 100 21.3 3.1

Riparian Habitat 100 21.3 3.1

Whitebark pine 100 21.3 3.1

Sagebrush Steppe 80 17.0 2.5

Old growth 50 10.6 1.6

Ungulate winter range 40 8.5 1.3

Sub-HVRA RI total 470 100 14.7

Green trees 30 8.8 Tenderfoot Creek Experimental Forest 100 52.6 4.6

Timber base 50 26.3 2.3

Visual quality 40 21.1 1.9

Sub-HVRA RI total 190 100 8.8

HVRA RI total 340 100 100

HVRA¼highly valued resources and assets; RI¼ relative importance; WUI¼wildland urban interface.
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contrast areas within the Judith Ranger District tend to have
lower burn probabilities and fire intensities, and so expected
losses are far smaller in magnitude, with benefits anticipated
to Whitebark Pine.

The distribution of overall wildfire risk among ranger
districts (or any geographic area) is potentially useful for
allocating risk mitigation resources among the ranger districts
(e.g., funding for fuel treatments). Alternatively, instead of
the sum, as we show here, the mean wildfire risk per unit area
(total area, burnable area, or area with 1 or more HVRAs) can
be calculated for geographic units within each ranger district
(watersheds, for example). Mean wildfire risk by watershed
is potentially useful for prioritizing watersheds within each
ranger district.

DISCUSSION

The value of incorporating exposure, effects, and relative
importance

Figure 6 illustrates how the primary components (wildfire
hazard, response functions, and relative importance) jointly
influence wildfire risk calculations. Specifically, the figure

illustrates the value of incorporating response functions and
relative importance, and how this information might lead to
alternative mitigation strategies relative to strategies informed
by exposure analysis alone. Figure 6A displays exposure
analysis, mapping each HVRA/Sub-HVRA according to mean
burn probability and mean fireline intensity. Burn probabil-
ities and fireline intensities evince a strong positive correla-
tion, reflective of their relation to rate of spread. The Aspen
Sub-HVRA is an interesting exception. Fuel conditions
within the Aspen Sub-HVRA—light surface fuel with no
potential for crown fire—produce only low fireline inten-
sities. The Aspen stands are small and scattered (Figure 3B) so
their BPs are influenced by the conditions around them more
than within them, and many of the stands are located near
fast-spreading sagebrush-grasslands, resulting in relatively
high BPs.

Figure 6B incorporates response functions across the
distribution of flame lengths, but absent burn probabilities,
hence presenting conditional net value change. The product
of the x- and y-axes in Figure 6B represents expected net
value change for each HVRA/Sub-HVRA. If fire effects were
directly proportional to mean fireline intensity, the general

Table 4. E(NVC) across all HVRAs and Sub-HVRAs

HVRAs and Sub-HVRAs

Net response (by Ranger District)
HVRA and

Sub-HVRA totalsBelt Creek Judith Musselshell White Sulphur Springs

Green Trees �0.02 �0.01 0 �0.33 �0.36

Tenderfoot Creek Experimental Forest �0.01 0 0 �0.33 �0.34

Visual quality 0 0 0 0.03 0.03

Timber base �0.01 �0.01 0 �0.03 �0.05

Wildlife habitat 0.13 0.2 0.02 0.23 0.58

Aspen 0.05 0.06 0.17 0.99 1.27

Old growth 0.02 0.04 0.02 0.02 0.1

Riparian Habitat �0.02 �0.02 �0.02 �0.15 �0.21

Sagebrush Steppe �0.02 �0.07 �0.14 �0.68 �0.91

Ungulate Winter range �0.01 �0.01 �0.03 �0.04 �0.09

Whitebark pine 0.11 0.2 0.02 0.09 0.42

Infrastructure �0.45 �0.26 �0.37 �0.99 �2.07

High Investment Infrastructure �0.28 �0.14 �0.22 �0.44 �1.08

General Investment Infrastructure �0.1 �0.07 �0.11 �0.14 �0.42

Power lines �0.07 �0.04 �0.03 �0.4 �0.54

Electronic sites 0 �0.01 �0.01 �0.01 �0.03

Watersheds 0.08 0.05 0 0.03 0.16

Municipal watersheds �0.01 0 0 0 �0.01

Westslope cutthroat trout stream 0.09 0.05 0 0.03 0.17

WUI �0.91 �0.39 �0.16 �2.51 �3.97

Ranger District totals �1.17 �0.41 �0.51 �3.57 �5.66

E(NVC)¼ expected (net value change); HVRA¼highly valued resources and assets; WUI¼wildland urban interface.
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pattern in Figure 6A would be similar to that in Figure 6B. By
contrast, Figure 6B shows a wide range of responses to fire,
with multiple HVRA/Sub-HVRAs evincing strong positive
and negative responses to fire.

Figure 6C further incorporates relative importance weights
(see Eqns. 2 and 3), which serves to broaden the spread across
HVRA/Sub-HVRAs on the y-axis. This panel presents
expected loss on a per unit area basis. Electronic Sites (Elec)
and High Investment Infrastructure (High), in particular,
show strong weighted negative response, due not only to their
relative importance but also their scarcity on the landscape
(relative extent; Table 1).

Last, Figure 6D plots weighted conditional net response
against expected annual area burned. Figure 6D, in effect,
presents the information on net response per unit area from
Figure 6C multiplied by the total mapped area. Although the
weighted net response of the WUI HVRA is orders of
magnitude less than the weighted net response of High
Investment Infrastructure, for example, the WUI still presents
significantly higher overall risk (Figure 5), due to the larger
mapped area (Table 1) and expected annual area burned.
Thus this Figure 6D highlights how the areal extent of an
HVRA/Sub-HVRA can influence risk calculations.

Absent information on fire effects or relative importance,
Figure 6A might lead to, for instance, the presumption that
the Tenderfoot Experimental Creek Forest (TCEF) is the
lowest mitigation priority. Figure 6B, however, indicates
that the TCEF Sub-HVRA has a strong negative response to
fire despite low fireline intensities, reflecting the response
function where fire of any intensity is considered negative
(Table 2). Additionally, Figure 6C can highlight ‘‘low hanging
fruit’’ for risk mitigation strategies. Treating fuels in a
relatively small area proximal to High Investment Infra-

structure, for example, could yield significant reductions in
expected loss. That is, Figure 6C can help highlight areas
where treatments are likely to be cost-effective. Figure 6D
further helps illustrate how risk is allocated across HVRAs,
which can be useful for higher-level allocation of mitigation
investments.

The value of integrated risk assessment

Assessing wildfire risk is a crucial component to mitigation
planning. A spatial, quantitative approach to characterizing
wildfire risk allows for clear identification of areas on the
landscape where aggressive treatment might be cost-effective,
or alternatively where fire may play a benign or even
beneficial role and could be promoted. The definition of
HVRA response as a function of fire behavior can facilitate
the design of fuel treatments to target desired fire intensities
and HVRA responses. The addition of landscape variables
resulted in very different response function definitions,
enabling improved targeting of high-risk landscape areas.
The integration of relative importance weights allows for
comparison of landscape areas with a common currency. Our
reliance on formality and documentation in the elicitation of
expert input enables transparency and future external review
of risk assessment results (Otway and von Winterfeldt 1992).
Furthermore, the explicit separation of fire effects from
management priorities avoids previously highlighted pitfalls
of reliance on expert judgment in risk analyses that do not
clearly distinguish expressions of knowledge from expressions
of preference (Maguire 2004).

A number of potential extensions to the wildfire risk
assessment framework are presented here. Response functions
could be extended to accommodate multiple fire behavior

Figure 5. Summary of relative losses and benefits across all HVRAs and Sub-HVRAs, inclusive of all Ranger Districts on the Little Belts Landscape.
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metrics, for instance fractional area burned of an HVRA in
addition to fire intensity. The set of input variables could be
extended to include output from other models, for instance
predicted postfire erosion rates (Miller et al. 2011). Charac-
terizing risk to human communities could incorporate
structure fire modeling (Mell et al. 2010), and socioeconomic
and demographic data could be used to distinguish vulner-
ability across at-risk communities (Gaither et al. 2011).
The structure of response functions could also be modified,
to include Bayesian approaches, multicriteria hierarchies, or
fuzzy logic. A much more expansive modification could
model longer-term temporal dynamics, considering the roles
of multiple disturbance processes, vegetation succession,
climatic changes, and even population growth.

Adherence to these recommendations in future applica-
tions will depend, in part, on research and development
efforts but critically on the level of resources committed and
the sufficiency and availability of scale-appropriate geospatial
data. A fundamental component of the assessment framework
is geospatial analysis, and in our experience, a necessary first
step is to establish clear and consistent definitions of
geospatial data (fire and fuels data in addition to HVRA

data). Only then can the assessment proceed to wildfire
modeling, HVRA fire effects analysis, and HVRA relative
importance articulation. Including information from other
sources creates tradeoffs to consider surrounding the cost of
obtaining information, uncertainties, and the value of addi-
tional information (in terms of improving decision making).
The use of additional models for instance entails work on
parameterization, critique, and validation, and may require
the recruitment of other experts. For large scale assessments
the broad assignment of response functions and the use of off-
the-shelf models may be appropriate, whereas for smaller
assessments the inclusion of local expertise is likely necessary.

We acknowledge several potential limitations of our
approach to eliciting expert judgment. Our use of a consensus
approach presented no opportunity to estimate the uncer-
tainty surrounding elicitations. We did, however, provide
multiple opportunities for feedback and refinement of
response functions, and disagreement across experts was
minimal. Mental heuristics and biases could also influence
results, which we hoped to minimize through the use of
straightforward response function structure and through a
separate process for establishing relative importance scores.

Figure 6. Illustration of how wildfire hazard, response functions, and relative importance jointly influence evaluation of wildfire risk to HVRAs. (A) Illustrates
exposure analysis, mapping each HVRA/Sub-HVRA according to mean burn probability and mean fireline intensity. (B) Response functions are incorporated; the

y-axis displays conditional net response (NVC), i.e., the net effects across fire intensity distributions without incorporating burn probability. (C) Further

incorporates relative importance and relative extent, where the y-axis presents theweighted, conditional net response. (D) presents the same y-axis as (C), plotted
against the expected annual area burned.
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It might be fruitful in future efforts to devote additional time
for preworkshop training to familiarize experts with the
process of defining response functions.

Because of the complexity of the risk calculations it can be
difficult to analyze model sensitivities, uncertainties, and
errors. Nevertheless, resource managers will want to explore
the potential impacts of various assumptions and to examine
how those impacts may influence fire management decisions.
It is a straightforward exercise to vary response function
definitions to see how risk to individual HVRAs may change,
and further to vary relative importance weights to see how
weighted risk values change. In our experience, risk calcu-
lations are quite robust to changes in response functions and
relative importance scores, insofar as changes are largely
marginal (e.g., the response to fire at a given intensity level
does not switch from strongly positive to strongly negative; an
HVRA does not switch from most to least important). Spatial
variability in fire likelihood and intensity is a strong driver of
results, for which assessment of model uncertainty and error
is more complex. In many cases a limited fire history against
which to compare model results presents challenges to model
validation. Uncertainties and errors in fire modeling systems
can stem from multiple sources: data quality and availability
(fire history, terrain, fuels, weather, etc.), user error, model
error, and propagated error. Current models have been shown
to underpredict crown fire behavior in certain circumstances
(Cruz and Alexander 2010), and a comprehensive analysis of
how uncertainties in fuel types, fuel moistures, wind speeds,
wind directions, etc., could affect modeled fire behavior has
not been carried out. Because FSim uses ensemble forecasting,
however, it does provide a mechanism to capture uncertainty
surrounding input conditions and parameters, in particular
fire weather, and allows for probabilistic predictions of
fire behavior. Ultimately, results are contingent on careful
calibration and critique of fire and fuels models to minimize
potential errors and uncertainties (Stratton 2009; Thompson
and Calkin 2011; Scott et al. 2012).

CONCLUSIONS
In this article, we detailed a structured process for eliciting

expert judgment of fire effects to highly valued resources and
assets and illustrated its integration into a wildfire risk
assessment performed for a National Forest in Montana.
Our aim was to use expert knowledge in a transparent and
credible manner to inform ecological models and to support
real-world natural resource and conservation decision making.
A major strength of the risk framework is its generality—the
geospatial intersection of wildfire behavior metrics with
mapped HVRAs and response functions—and therefore its
amenability to alternative characterizations of wildfire hazard
and fire effects. The response function approach in particular
is suitable for encapsulating data, models, and expert judg-
ments in a number of ways, as we described. A further
strength is the scalability of the framework, which can be
applied to facilitate local project planning all the way to
national-scale strategic assessments. Our work supports the
incorporation of risk management principles into federal land
management, and aligns well with ongoing and emerging lines
of research into wildfire modeling, comparative wildfire risk
assessment, and fuel treatment and firefighting effectiveness,
ultimately promoting efficient wildfire risk mitigation plan-
ning. Future work entails continued expansion of our risk
assessment and response function framework, application of

the framework to support planning within federal land
management agencies, and integration of the assessment into
a broader structured decision process for efficient prefire
planning efforts. Ideally these efforts will promote cost-
effective budgetary allocations across the wildfire manage-
ment spectrum, critical at a time of increasing fiscal austerity.
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