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Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used
throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects
models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large data-
set of Forest Inventory and Analysis (FIA) surface fuel estimates (n = 13,138) to create a new fuel classi-
fication called Fuel Type Groups (FTGs) from FIA forest type groups, and then keyed an FLM, FCCS, and
FTG class to each FIA plot based on fuel loadings and stand conditions. We then compared FIA sampled
loadings to the keyed class loading values for four surface fuel components (duff, litter, fine woody debris,
coarse woody debris) and to mapped FLM, FCCS, and FTG class loading values from spatial fuel products.
We found poor performances (R2 < 0.30) for most fuel component loadings in all three classifications that,
in turn, contributed to poor mapping accuracies. The main reason for the poor performances is the high
variability of the four fuel component loadings within classification categories and the inherent scale of
this variability does not seem to match the FIA measurement scale or LANDFIRE mapping scale.

Published by Elsevier B.V.
1. Introduction

Fuel classifications have been used extensively in wildland fire
science and management to simplify fuel inputs into fire behavior
and effects models (Burgan, 1987; Keane, 2013). Wildland fuels are
the dead and live biomass available for fire ignition and combus-
tion (Albini,1976; Sandberg et al., 2001). In most fuel classifica-
tions, fuel particles are stratified into unique categories called
fuel components (Table 1), such as duff, litter, and shrubs, and each
component is assigned attributes based on the input requirements
of fire software applications (e.g., Anderson, 1982; Arroyo et al.,
2008; Deeming et al., 1977). There are many fuel component attri-
butes, such as heat content, mineral content, and density, but the
most commonly used attribute across most fire management
applications is fuel loading or the biomass per unit area (Brown
and Bevins, 1986; Harmon et al., 1986; Pyne et al., 1996). Fuel
loads are required as inputs to nearly all fire applications (Burgan,
1987; Krivtsov et al., 2009), and they are also important for the
quantification of carbon inventories (de Groot et al., 2007), site
productivity (Neary et al., 1999), and wildlife habitat (Ucitel
et al., 2003). This paper evaluates three surface fuel classifications
used for the prediction of fire effects, such as fuel consumption,
smoke production, and soil heating, that describe actual fuel load-
ings on the ground and can, therefore, also be used for fuel descrip-
tion, inventory, and monitoring.

Two fuel loading classifications are commonly used in fire
management applications to predict fire effects. Fuel Loading
Models (FLMs) identify fuel classes designed specifically for pre-
dicting unique fire effects (Lutes et al., 2009). There are 27 FLMs,
which are mutually exclusive by design, yet intended to coarsely
represent the range of surface fuel conditions encountered across
the contiguous United States (Sikkink et al., 2009). The Fuel Char-
acteristic Classification System (FCCS) (Ottmar et al., 2007; Riccardi
et al., 2007a, 2007b) was developed to provide managers with a
conceptual framework to construct fuelbeds that describe biomass
across both surface and canopy fuel components. We also created a
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Table 1
Descriptions of commonly used surface fuel components.

General fuel type Fuel component Common name Size Description

Downed Dead
Woody

1 h woody Twigs <1 cm (0.25 inch) diameter Detached small woody fuel particles on the ground
10 h woody Branches 1–2.5 cm (0.25–1.0 inch)

diameter
Detached small woody fuel particles on the ground

100 h woody Large branches 2.5–7.6 cm (1–3 inch)
diameter

Detached small woody fuel particles on the ground

1000 h woody Logs, Coarse woody debris
(CWD)

7.6+ cm (3+ inch) diameter Detached small woody fuel particles on the ground

Fine woody debris
(FWD)

Twigs, branches, and large
branches

0–7.6 cm (0–3 inch)
diameter

Combined 1, 10, 100 h fuel loadings

Duff Duff Duff All sizes Partially decomposed biomass whose origins cannot be
determined

Litter Litter Litter All sizes excluding woody Freshly fallen non-woody material which includes leaves,
cones, pollen cones,

Total All fuels Total surface fuel load (TSFL) All surface fuels All material on the ground

Table 2
The median fuel loadings (kg m�2) assigned to each of six surface fuel components for
each forested FLM used in this study. FLM classification has a total of 27 classes, but
classes 014, 015, 053, 065, and 066 are non-forest FLM (Sikkink et al., 2009).

FLM Effects group Litter Duff 1 h 10 h 100 h 1000 h
Median loading (kg m�2)

011 01 0.04 0.00 0.01 0.02 0.01 0.00
012 01 0.06 0.00 0.06 0.35 0.60 0.58
013 01 0.56 0.27 0.05 0.34 0.46 0.50
021 02 0.26 0.74 0.04 0.14 0.15 0.21
031 03 0.42 1.64 0.06 0.20 0.24 0.34
041 04 0.54 0.00 0.06 0.37 0.58 0.58
051 05 0.34 3.55 0.04 0.25 0.32 0.32
061 06 0.20 0.81 0.06 0.29 0.55 3.75
062 06 0.30 4.61 0.03 0.21 0.28 0.36
063 06 0.34 3.82 0.04 0.31 0.53 1.74
064 06 0.65 5.80 0.07 0.25 0.37 0.75
071 07 0.49 2.10 0.10 0.32 0.49 2.58
072 07 0.85 3.76 0.09 0.23 0.30 0.64
081 08 0.20 0.89 0.07 0.26 0.60 8.15
082 08 0.85 3.97 0.12 0.35 0.71 2.70
083 08 0.56 2.67 0.11 0.36 0.64 5.03
091 09 0.26 10.30 0.07 0.32 0.37 0.65
092 09 0.68 3.33 0.12 0.36 0.74 10.34
093 09 1.39 7.36 0.13 0.31 0.54 4.82
101 10 2.24 22.42 0.09 0.21 0.24 0.36
102 10 4.03 2.35 0.03 0.11 0.24 1.03
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new Fuel Type Group (FTG) classification based on the forest type
groups of the Forest Inventory and Analysis (FIA) program for sim-
ulating emissions from fires across the US by summarizing fuel
component loadings from FIA plots by the 20 classes in the forest
type group classification (Ruefenacht et al., 2008). Each of these
classifications are different in that they were built using uniquely
different approaches; FLMs were developed using a top–down
clustering approach to identify distinct classification categories;
FCCSs were created using a bottom–up approach by sampling char-
acteristic fuelbeds on the ground that then become a classification
class; and FTGs summarize fuel loadings by forest types (Keane,
2013). None of these classifications have been formally tested for
performance and accuracy.

The FLM and FCCS classifications were mapped at 30 m pixel
resolution to describe fuel loadings across the contiguous United
States in the National LANDFIRE Project (Reeves et al., 2009; Rol-
lins, 2009) and the FTG classification was mapped to forest type
groups at 250 m resolution using the Remote Sensing Applications
Center (RSAC) FIA forest type group mapping effort (Ruefenacht
et al., 2008). The LANDFIRE FLM and FCCS maps are used exten-
sively in fire management planning projects, such as prioritizing,
designing, and implementing fuel treatment projects (Reynolds
et al., 2009). Yet, despite their widespread use, these fuel classifica-
tion maps have not been thoroughly assessed for accuracy and pre-
cision at fine scales (plot-level) because of a lack of extensive
ground data (Reeves et al., 2009). Recently, the Forest Inventory
and Analysis (FIA) program, under an agreement, made available
an extensive set of surface fuel data for forested areas for several
states in the western United States consisting of georeferenced plot
measurements of the surface fuel component loadings.

In this study, we used the extensive FIA surface fuels data for
the western US to evaluate the performance of the FLM, FCCS,
and FTG classifications and to estimate the accuracy and precision
of the LANDFIRE FLM and FCCS geospatial maps and the FTG map
developed from the RSAC forest type group layer. There are limita-
tions and weaknesses to all three classifications (Keane, 2013), so
we wanted to assess whether these limitations jeopardized the
application of the classifications in fire management, and to assess
whether the limitations propagated to the digital maps. The prob-
lem in the past has always been a lack of high quality, georefer-
enced fuel data for reference in development, validation, and
testing of fuel classifications (Keane, 2013). These new FIA fuels
data provided an excellent source for assessing the utility and
accuracy of the FLM, FCCS, and FTG classifications, along with an
extensive reference for validating the LANDFIRE and RSAC FTG
map products. At the same time we recognize that the plot-level
FIA fuels data also contain high uncertainty that might influence
this evaluation (Westfall and Woodall, 2007).
1.1. FLMs

The FLMs of Lutes et al. (2009) are distinctive in that they were
created using field-collected fuel loading data from 4000+ plots lo-
cated across the contiguous United States that were then used as
inputs to FOFEM to simulate smoke emissions and soil heating.
The simulation results for all 4000+ plots were clustered to identify
unique ‘‘effects groups’’, then a comprehensive key based on load-
ing was created using regression tree analysis to objectively iden-
tify the classification category for a field-assessed observations. As
a result, this classification integrated the resolution of the fire
effects models into the FLM classification design and used easily
obtained field measures in the field key. This direct, top–down ap-
proach partitions variation in the field data to reduce redundancy
and produce an effective classification that can be used in the field.
Fuel loading values were assigned to each FLM as the median fuel
loading across all plots in that class (Table 2). FLM development
was supported by the LANDFIRE prototype project to create a
national map describing fuel loadings for fire effects prediction
(Keane et al., 2007). FLMs can be used as (1) inventory techniques
to quantify fuel characteristics (Sikkink et al., 2009); (2) classifica-
tions of unique fuel types to facilitate communication between
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managers, scientists, and other professionals (Sandberg et al.,
2001); and (3) map units in fuel mapping efforts (Reeves et al.,
2009). There were insufficient data for some FLM classes and the
FLM analysis was missing critical data from several major US fuel-
beds that were unsampled at the time of FLM development, such as
non-forest rangelands and rare forest types (Lutes et al., 2009).

1.2. FCCS

The FCCS uses an indirect, bottom–up approach for quantifying
unique fuelbeds and associated fuelbed categories and subcatego-
ries (Ottmar et al., 2007). In this flexible classification, fuelbeds are
added into FCCS as they are identified by managers, scientists, and
resources specialists to account for succession, management, and
disturbance history for local, regional, or national applications
(Berg, 2007); new fuel conditions are sampled in the field and
these data become a new fuelbed in the FCCS (Riccardi et al.,
2007a). The FCCS also contains its own surface fire spread model
adapted from Rothermel (1972) to simulate surface fire behavior
using FCCS fuelbed data (Sandberg et al., 2001).

A national fuelbed database within the FCCS, compiled from
published and unpublished literature, fuels photo series, fuels data
sets, and expert opinion, was created to represent a particular scale
of interest. This set of national fuelbeds is referred to as FCCSs in
this paper and it was intended to represent broad vegetation types
and change agents (e.g., wildfire, insects and disease) throughout
the contiguous United States. They are mapped at regional and na-
tional scales (McKenzie et al., 2007), but for site-specific applica-
tions, such as prescribed burn planning, the FCCS fuelbed should
be customized with local field data. FCCS fuelbeds are datasets that
represent the physical characteristics of a diverse set of wildland
fuels from canopy characteristics (e.g., percent cover and height
of trees) to surface fuels (e.g., percent cover and depth of duff).
Because fuel loadings are calculated from input fuelbed character-
istics and FCCS fuelbeds were developed to represent the structure
and composition of wildland fuels, there is likely high ‘‘redun-
dancy’’ in the fuel loading values between FCCS classes.

1.3. FTG

We used the recently available FIA fuels data to assemble a new
fuel classification system to develop fire emission inventories and
eventually predict real-time emissions (Urbanski et al., 2011). The
Fuels Type Group (FTG) classification was built by summarizing
fuelbed component loadings by FIA forest type groups using the
new FIA fuels data (Table 3). We created the FTG classification by
extracting the forest type group variable for each FIA plot (Arner
et al., 2003) and computing the mean loading for each fuel compo-
nent for each forest type group using the keyed FIA fuels data (Ta-
ble 3). FTG classes were given the same name as the corresponding
forest type group. We included this new classification in our anal-
ysis to represent those fuel classifications that are based on vege-
tation types (Keane et al., 2001) and to evaluate the performance
of a classification that was created using the same data as was used
for the comparison (i.e., best case scenario). However, FTGs are
summarized to vegetation types (Forest Type Groups) and it has
been shown that fuels are rarely correlated to vegetation composi-
tion (Brown and Bevins, 1986; Keane et al., 2012b).

1.4. Classification mapping

FLMs were mapped by the LANDFIRE project using the follow-
ing protocol: (1) available FIA fuels plots were keyed to an FLM va-
lue using Sikkink et al. (2009) key; (2) FIA plots and their assigned
FLMs were matched to combinations of existing vegetation type,
existing vegetation cover, and existing vegetation height; and (3)
a FLM class was systematically assigned to each pixel using a
cross-walk approach where all possible pixels were assigned a
FLM by vegetation type/cover/height hierarchical combinations.
Because there were few data to assign a FLM to all combinations,
pixels were assigned a FLM by using more general vegetation
type/cover, or type/height combinations, and finally by a broad
existing vegetation type group classification (Reeves et al., 2009).
Approximately 75% of the FIA plots used in this study were also
used by LANDFIRE to assign FLMs to LANDFIRE classification class
combinations.

FCCS fuelbeds were mapped by the LANDFIRE project based on
the existing vegetation type classification (McKenzie et al., 2012).
For certain vegetation types, multiple FCCS were available that re-
flected certain seral stages of the vegetation, and, in these cases,
cover and height values were used to assign separate FCCS fuel-
beds. Post-disturbance vegetation types were assigned a ‘‘custom’’
set of FCCS fuelbeds because there were few post-disturbance FCCS
fuelbeds (Reeves et al., 2009).

Scientists at the USDA Forest Service RSAC and FIA mapped for-
est type groups for the conterminous US and Alaska with a spatial
resolution of 250 m and an overall accuracy of 64% for the western
US (Ruefenacht et al., 2008; http://fsgeodata.fs.fed.us). In the wes-
tern conterminous US, 17 forest type groups were mapped with an
area >10,000 ha; however, 12 forest type groups account for 98.6%
of total mapped forest area. Ten forest type groups comprised 99%
of forest burned area in the western conterminous US from 2003 to
2010 (MTBS, 2012). These 10 groups included 9 of the 10 most
commonly mapped groups. We assigned the FTG summarized
loadings to each forest type group to create the FTG map.
1.5. Project objectives

The primary objective of this study was to assess the perfor-
mance and accuracy of three fuel classification systems (FLM, FCCS,
and FTG) and their associated maps using field-measured FIA fuels
data. This primary objective was achieved through three separate
tasks:

� Assess classification performances: This was done by keying an
FTG, FLM and FCCS class for each FIA plot using the appropriate
keys and then comparing FIA measured fuel component load-
ings with the component loadings associated with that keyed
class.
� Assess emission predictions: This involved computing PM2.5 (fine

particulate matter) emissions for each FIA plot and each class in
the three classifications, and then comparing emissions rather
than loadings of the FIA plot to the keyed FLM, FCCS, and FTG
class for that FIA plot. We did this because emissions prediction
is the most common FLM, FCCS, and FTG application.
� Assess map accuracies: This was done by comparing keyed FIA

plot classification classes with mapped classification class and
by comparing FIA measured fuel component loadings with load-
ings of mapped classification class for the FIA plot location.

This study was intended to provide context and background for
those who plan on using FLMs, FCCSs, and FTGs in the field, and
those who plan on using the FLM and FCCS LANDFIRE maps and
FTG RSAC-based maps in their fire management activities.
2. Methods

In summary, we compiled a surface fuels dataset from the FIA
database by selecting specific FIA plots that met our evaluation
criteria as described below. We then keyed the FLM, FCCS, and
FTG classes for each selected FIA plot from the sampled fuels and
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Table 3
The mean fuel loadings (kg m�2) associated to each of the six fuel components assigned to each Forest Type Group to create the Fuel Type Group (FTG) classification.

FTG FIA FTG variable Percent of foresta n Litter 1 h 10 h 100 h 1000 h Duff

180 Pinyon/juniper group 23.0 1875 0.45 0.02 0.05 0.16 0.25 0.39
200 Douglas-fir group 22.3 2498 0.75 0.04 0.15 0.52 2.22 1.68
220 Ponderosa pine group 12.6 1327 1.35 0.01 0.08 0.26 0.92 1.49
240 Western white pine group 0.1 23 1.01 0.01 0.05 0.16 1.78 1.37
260 Fir/spruce/mountain hemlock group 16.1 1813 0.6 0.03 0.12 0.4 2.62 1.91
280 Lodgepole pine group 7.2 860 0.96 0.02 0.09 0.38 1.97 2.3
300 Hemlock/Sitka spruce group 1.9 397 0.72 0.03 0.16 0.51 5.93 3.04
320 Western larch group 0.2 104 1.39 0.04 0.16 0.63 3.06 3.62
340 Redwood group 0.3 55 3.46 0.03 0.15 0.52 4.52 3.09
360 Other western softwoods group 1.2 598 0.67 0.01 0.05 0.13 0.46 0.87
370 California mixed conifer group 5.0 782 1.95 0.02 0.14 0.43 2.07 2.37
700 Elm/ash/cottonwood group 0.1 29 1.28 0.03 0.18 1.12 1.17 3.4
900 Aspen/birch group 3.3 302 1.24 0.02 0.09 0.49 1.07 3.21
910 Alder/maple group 0.9 189 2.45 0.02 0.14 0.49 2.77 3.81
920 Western oak group 5.2 1084 1.79 0.02 0.09 0.27 0.54 1.45
940 Tanoak/laurel group 0.8 229 2.62 0.03 0.15 0.48 2.02 3.32
950 Retired (Other western hardwoods group) 0.8 89 0.8 0.02 0.06 0.15 0.13 0.81
960 Other hardwoods group 0.0 78 2.22 0.02 0.1 0.37 1.18 2.01
970 Woodland hardwoods group 0.0 67 1.31 0.01 0.1 0.27 0.56 1.34
999 Nonstocked NAb 739 0.62 0.01 0.06 0.2 0.66 0.67

a Percent of total forest area in western CONUS mapped as this classification by the RSAC/FIA forest type group map (see text).
b Nonstocked was not a classification in the RSAC/FIA map of forest type groups.

Fig. 1. The approximate FIA plot locations for all plots used in this study.
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vegetation data. And, for each FIA plot location, we determined the
mapped FLM, FCCS, and FTG by taking the value of a single pixel at
the FIA plot location. We then compared the FIA-keyed FTG, FLM
and FCCS values to the mapped values, and more importantly,
we compared the FIA-measured loadings of the four fuel compo-
nents to loadings of the mapped FLM, FCCS, and FTG classes. We
used a combination of contingency table, regression, and accuracy
assessment statistical techniques to compare results. We com-
pared FIA loadings to median FLM and mean FTG values because
most management applications use these values to simulate fire
effects.

This paper will confine its discussion to loading or the dry
weight biomass of fuel per unit area (kg m�2) of four major surface
fuel components: litter, duff, fine woody debris (FWD; 0–7.6 cm
diameter), and coarse woody debris (CWD, 7.6+ cm diameter; also
called logs or 1000 h fuels) (Table 1). While shrub and herb compo-
nents are included in the FLM and FCCS classifications, only cover
and height were sampled at the FIA plots for these components so
they were not included in this study. We combined 1, 10, and 100 h
downed woody fuel loadings into one FWD loading because of the
low and highly variable loadings for each of the individual fine
woody components (Table 1).

2.1. Study area

The geographic scope of this project includes eight states in the
western United States, covering the Pacific Northwest and Interior
West FIA regions (Fig. 1). The scope was limited to states where FIA
fuels data were available, which included Arizona, California, Colo-
rado, Idaho, Montana, Oregon, Utah and Washington. No FIA fuels
data were available at the time of analysis for Wyoming, Nevada
and New Mexico.

2.2. FIA sampling and data compilation

The FIA program applies a three-phase sampling design cover-
ing all ownerships across the USA using a hexagonal grid with
approximately one permanent plot per 2,428 ha (Bechtold and
Patterson, 2005). Phase 1 sampling is designed to reduce variance
of population estimates through stratification based on remotely
sensed forest cover at plot locations. Only forested land is included
in the inventory and it is defined as areas at least 10% stocked with
tree species, or land formerly having such tree cover and not cur-
rently developed for a non-forest use, at least 4000 m2 in size,
and at least 36.6 m wide (Bechtold and Patterson, 2005). Phase 2
sampling refers to the detailed measurements made at each plot
location.

Inventory plots consist of four 7.32-m fixed-radius subplots
spaced 36.6 m apart in a triangular arrangement with subplot 1
in the center and subplots 2, 3, and 4 at azimuths of 0�, 120�,
and 240� , respectively, from the center of subplot 1 (USDA Forest
Service, 2007, Woodall et al., 2010) (Fig. 2). The plot footprint,
defined as the minimum circle enclosing all four subplots, is
approximately 6000 m2. Phase 3 sampling is done on a 1/16th sub-
set of the Phase 2 plots and includes additional measurements
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associated with forest health such as such tree crown condition,
soil conditions, lichen community composition, understory vegeta-
tion, and down woody material (Bechtold and Patterson, 2005;
Woodall and Monleon, 2008; Woodall et al., 2011) (Fig. 2). Since
Pacific Northwest and Interior West FIA units began measuring
down woody material on all their Phase 2 plots in 2001 and
2006, respectively, and compiled Phase 3 data for the entire USA
are not yet available, the present study used the available Phase
2 sample for the western USA only.

Woody fuels were tallied by particle diameter size classes com-
monly used by fire management and fire behavior computer pro-
grams (Table 1). Measurement protocols included planar
intersect transect sampling for FWD and CWD, and systematic
Fig. 2. FIA plot layout for surfa
point sampling for duff and litter depths (Brown, 1974; Woodall
et al., 2010). Transect and point sample locations were different
for plots in the Pacific Northwest FIA region (California, Oregon,
Washington) from plots in the Interior West FIA region (Arizona,
Colorado, Idaho, Montana, Utah). In the Pacific Northwest, two
CWD transects originated at each subplot center and extended
out 17.95 m horizontal distance at azimuths of 150 and 270 de-
grees from center in subplots 1 and 4, and 30� and 150� from center
in subplots 2 and 3 (Fig. 2). Only one FWD transect was established
in each subplot at 150� azimuth that began at 4.27 m slope dis-
tance from subplot center and extended 1.83 m slope distance
for the 1-h and 10-h samples and 3.05 m slope distance for the
100-h sample, for total transect lengths of 7.32 m and 12.2 m slope
ce fuel loading sampling.
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distance. Litter and duff sample points were at 7.32 m slope dis-
tance from the beginning of each CWD transect for a total of eight
sample points per plot. The Interior West plots (Fig. 2) had three
CWD transects oriented at azimuths of 0�, 120�, and 240� from cen-
ter of subplot 1, beginning at the perimeter of subplot 1 and
extending 36.58 m horizontal distance across the centers of sub-
plots 2, 3, and 4. Three FWD transects were located along at ends
of the CWD transects in subplots 2, 3, and 4 with transect lengths
of 1.83 m slope distance for the 1-h and 10-h and 3.05 m slope dis-
tance for the 100-h samples. Litter and duff sample points were
located at the end of each CWD transect for a total of three sample
points per plot.

FIA sampling protocol specified CWD as pieces, or portion of
pieces, of down dead wood with a minimum small-end diameter
of at least 7.62 cm at the point of transect intersection, and a length
of at least 0.91 m. CWD pieces were detached from a bole and not
supported by a root system with a lean angle >45� from vertical
(Woodall and Monleon, 2008; Woodall et al., 2010). Information
collected for every CWD piece intersected by transects included
diameter at the transect intersection, decay class (Lutes et al.,
2006), and species. The piece length, small-end diameter, and
large-end diameter were also measured in Pacific Northwest plots.
Decay class was a subjective determination of the amount of decay
present in an individual log (class 1 – least decayed to class 5 – ex-
tremely decayed). Species of each fallen log was identified through
determination of species-specific bark, branching, bud, and wood
composition attributes (excluding decay class 5).

Biomass estimates of CWD, FWD, litter, and duff were calcu-
lated using estimators detailed in Woodall and Monleon (2008)
and summarized briefly here. For CWD in Pacific Northwest plots,
volume was calculated for every piece using end diameters and
length for pieces in decay classes 1–4, and using intercept diameter
and length for pieces in decay class 5. Volume was converted into
biomass through the use of decay reduction factors and bulk den-
sity based on the species and decay class of each piece (Harmon
et al., 2008). For CWD in Interior West plots, biomass was calcu-
lated using intercept diameters of each piece along with the bulk
densities and decay-reduction constants in an equation for the plot
on a per unit area basis (Woodall and Monleon, 2008). Volumes of
FWD were estimated per unit area using quadratic mean diameters
based on FIA forest type (Woodall and Monleon, 2010), and then
converted to biomass using bulk density values for FIA forest types
(Woodall and Monleon, 2008) and a default decay reduction factor
of 0.8. Duff and litter biomass were calculated by multiplying aver-
age depth of the sample points in the plot by the bulk density and a
unit conversion factor.

We used plots from the Pacific Northwest and Interior West FIA
regions measured during 2001–2009 that had fuel loading data
available and a single forest condition class described across all
four subplots (Woudenberg et al. 2010). We overlaid the plot loca-
tions on the LANDFIRE disturbance layers for 1999–2008 to iden-
tify plots that were disturbed after the plot measurement date
and omitted disturbed plots since they likely would not represent
conditions depicted on the circa 2008 LANDFIRE fuel maps. We
used a total of 13,138 FIA plots to evaluate the FCCS and FLM clas-
sifications and maps (Fig. 1).

2.3. Fuel classification of FIA data

Sikkink et al. (2009) key was used to identify most appropriate
FLM class for each FIA plot from the loadings of duff, litter, logs,
and FWD. All FIA plots were successfully keyed to a forested
FLM. Because FLMs characterize a large range of fuels, median
loading values were used for each of the four components in our
comparisons (Table 2). The FLM key had previously been coded
in the JMP IN statistical software package (JMP IN, 2003) for the
original FLM publication (Lutes et al., 2009), so all FIA fuel data
were imported into JMP to key FLM for each plot and then exported
from JMP using the unique plot identifier and the plot location
data.

We used LANDFIRE refresh mapping rule sets detailed in Reeves
et al. (2009) to assign an FCCS type to a FIA plot using vegetation
type, vegetation cover, and vegetation height by LANDFIRE map-
ping zone. Additionally, these rule sets accounted for disturbance,
severity, and time since last disturbance. We assigned 10,471 of
the 13,138 plots an FCCS category; the other 2667 were removed
because the FIA plot characteristics didn’t match an available rule
set, often because vegetation cover was less than 10%. Once an
FCCS was assigned to an FIA plot, we derived measurements of
the four fuel component loadings using a lookup table provided
by the Fire and Environmental Research and Applications Team
(http://www.fs.fed.us/pnw/fera/fccs/).

FTGs were already keyed to FIA plots based on the RSAC FIA for-
est type group classification (Arner et al., 2003). Every FIA plot has
an assigned FTG value and this value was matched to the FTG val-
ues in Table 3. There is some inherent bias because the FTGs fuel
classification was created with the same data used for this assess-
ment, but we thought the results would be informative and useful
to fire management since it represented a best-case scenario for
accuracy.

We extracted the mapped FLM, FCCS, and FTG values by over-
laying FIA plot locations on the LANDFIRE Refresh 2008 and RSAC
forest type group data layers. We selected the classification class
by taking the pixel value for each plot location. The RSAC forest
type group has a pixel resolution of 250 m, comparable to the res-
olution of the FIA plot footprint; the FTG assessment used the RSAC
map pixel in which each FIA plot was located.

2.4. PM2.5 emission simulations

A major management application for all three fuel classifica-
tions is the computation of smoke emissions so we also performed
an assessment of PM2.5 emissions computed from the FIA fuelbed
compared to the emissions computed using the classification
fuelbed. Emission flux (kg m�2) of the pollutant PM2.5 from wild-
land fire was estimated as the product of the fuel load consumed
(kg-dry vegetation burned m�2) and an emission factor for PM2.5
(kg-dry vegetation burned�1) (Urbanski et al., 2011 and references
therein). To compute PM2.5 emissions, we used the FOFEM model
(Reinhardt et al., 1997; www.firelab.org) to simulate consumption
of all four surface fuel components at each FIA plot using the FIA
measured fuel loadings and the keyed classification fuel loadings.
Other FOFEM inputs used in these simulations are (1) fuel mois-
tures set at 10-h = 10%, 1000-h = 15%, and duff = 40%, and (2) can-
opy fuels, herbs and shrubs were set to zero due to lack of data.

2.5. Analysis

To assess performance of FLMs and FCCSs, we compared the
surface fuel loading values for each of the four components and
for the total surface fuel loading (TSFL) for the keyed classification
class with the corresponding fuel loading measurements from FIA
data. For FLMs, we compared median fuel loadings for each fuel
components and TSFL (Table 2) for the FLM class keyed from the
FIA data with the measured loadings from that FIA plot. Using uni-
variate regression analysis, we computed measures of model accu-
racy (R2, slope, and intercept) by regressing measured FIA loadings
with keyed FLM median fuel loadings, and using error analysis, we
computed measures of uncertainty (root mean squared error-
RMSE, bias as a percent). We repeated this procedure for FCCS
and FTGs, and for the smoke emissions predictions. For FCCSs, we
compared each of FIA-keyed FCCS fuelbed loadings (see http://
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www.fs.fed.us/pnw/fera/fccs/) to the FIA measured surface fuels
loadings for the same fuel components. For FTGs, we compared
the average loadings for the fuel components in each FTG class (Ta-
ble 3) with the FIA loading measurements. We also compared the
keyed FLM and FCCS component loadings using the same statistical
tests to evaluate if they correlate with each other. To evaluate clas-
sification performance, we compared fuel component means for all
classification classes to FIA loadings for those classes with 50 or
more keyed FIA plots (20 FLM models, 31 FCCS models, and 12
FTG models) using three statistical tests (percentile bootstrap,
Welch, Wilcox). We included TSFL in some of the analysis to eval-
uate if differences in performance and mapping were due to the
stratification of fuel loadings by component.

To assess LANDFIRE and FTG fuel map accuracy, we used contin-
gency analysis to test for dependence of mapped classification on
the field-based FIA classification. We summarized relationships
with a contingency table analysis and tested for statistical signifi-
cance using chi square tests. We also estimated the Khat statistic for
each accuracy assessment. We analyzed the predictive power of
the mapped values for the FIA values (how well are FIA data repre-
sented by the mapped fuel classifications) using methods similar to
those used for the classification assessment. The same regression
and error analyses techniques used to evaluate classification per-
formance were also used to compare the mapped FLM median,
FCCS fuelbed loadings, and FTG mean loadings (predicted) to the
FIA loading data (observed). We summarized regression and con-
tingency statistics in both tabular and graphic formats.

3. Results

3.1. Classification performance

One measure of classification performance is the differentiation
of fuel component loadings across keyed classification classes, and
from our study results, we found many significant differences
(p < 0.05) in the mean of the FIA measured fuel loadings across the
majority of classes for all classifications (Figs. 3–5). There were 20
FLM classes (Table 2) that had more than 50 plots providing 380 pos-
sible combinations, and for litter, only 20 of these combinations had
mean values that were statistically the same (p < 0.05); the FLM clas-
sification differentiated the mean plot litter loading about 82% of the
time (360 of 380 combinations) (Fig. 3). FLMs had the best perfor-
mance of all classifications for duff and CWD, with 96% and 92% of
the model combinations having significantly different (p < 0.05)
mean loadings, respectively. FCCS had the lowest rate of differenti-
ation for all fuel components (Fig. 4). FTGs were the top performer
for litter and FWD with differentiation rates of 92% and 69%, respec-
tively (Fig. 5). All classifications had the poor performance for FWD
loading (>70%). Box-plots of fuel component loading for the 12 most
prominent FTGs (according to the RSAC/FIA forest type group map)
show poor differentiation between most of the 12 classes for FWD.

A better test of classification performance is how well the mea-
sured FIA fuel component loading values compared with the keyed
FLM, FCCS and FTG class component loadings (Table 4). For FLMs,
we found that FIA measured loadings compared well for duff and
CWD with R2 > 0.70 and slopes ranging from 0.98 to 1.02 (a slope
of 1.0 indicates good agreement), but there were few agreements
between observed and predicted loadings for litter and FWD with
computed R2 values quite low (<0.20) and regression slopes mostly
less than 0.88 indicating most loadings were under predicted (Ta-
ble 4). In addition, intercepts were statistically (p < 0.05) different
from zero (>0.16 kg m�2), the bias for litter was greater than 148%
of the mean, and the RMSE values were high (>0.5 kg m�2) (Fig. 6).

FCCS and FTG classification performances were poorer than FLM
performance with no fuel component having an R2 value greater
than 0.27 and all slopes less than 0.27 (Table 4). All FCCS fuel
component loadings were under-predicted (Fig. 7) with negative
bias values greater than 28% of the mean, while bias for FTGs were
significantly lower (0.01–0.26%) (Fig. 8). Both FCCS and FTG classi-
fications had high RMSEs (0.54–16.3) and high intercepts (>0.44).
There was no apparent relationship between keyed FLM and keyed
FCCS using the FIA loadings (Table 4).

We found that the FLM classification performed better than FCCS
and FTG classifications when we compared the computed PM2.5
smoke emissions of the FIA plots with the computed PM2.5 smoke
emissions for the loadings for the classification classes (Table 5).
The FLM emissions had a better fit (R2 = 0.74), higher slope (0.73),
and lower RMSE (534), than the FCCS (R2 = 0.12, slope = 0.37,
RMSE = 1198) and FTG (R2 = 0.21, slope = 0.21, RMSE = 837).

3.2. Map accuracy

We found low map accuracies for all three fuel classifications.
The LANDFIRE mapped FLM categories for the FIA plot locations
matched the keyed FLM categories from the FIA data only 25%
(Khat = 0.098) of the time (Table 6). FLM categories with lighter fuel
loadings (11–31) had the best agreement (4–67% agreement),
while those FLMs with heavy log and duff loadings (classes
63–102) had poor agreement (0–19% agreement) (Table 6). The
lightest load FLM 011 had both the highest agreement (67%) and
highest number of plots (3016), while the next most frequent FLMs
(021, 031) had high plot numbers (1847, 1856 respectively) but
low accuracies (<22%). Over 57% of the FIA plots were classified
to these three classes (011, 021, 031) thus explaining the lower Khat

(0.098). Five FLMs (041, 062, 083, and 091, and 102) did not have
any FIA plot classified correctly, probably because of their rarity
on the landscape and the low number of FIA plots for these catego-
ries (635 plots). In general, omission error was greater than com-
mission error for most FLMs.

FCCS and FTG mapped class values compared better than
mapped FLM classes to the FIA keyed classes (FCCS was 34% agree-
ment, Khat = 0.33 and FTG was 64% agreement, Khat = 0.54). How-
ever, this was probably because the key that was used to assign
FCCS classes to combinations of LANDFIRE vegetation composition
and structure (cover, height) layers was also used to assign FCCS
categories from FIA data and the same is true for FTGs (forest type
groups were used to key FIA plots). Therefore, the FCCS 34% and
FTG 64% agreements reflect the accuracy of the LANDFIRE vegeta-
tion and RSAC forest type group layers rather than the fuel maps.
FCCS results were similar to FLMs in that many plots (4661 of
10470) were in few categories (20% in FCCS 4, 12% in FCCS 9, 12%
in FCCS 210), and these categories had poor agreement (<25%).
There were several FCCS categories that had a high number of plots
(>500) and high agreement including FCCS 210 (1262 plots and
67% agreement), FCCS 70 (530 plots and 63%), FCCS 21 (507 plots
and 40% agreement). Interestingly, only six of the 55 mapped FCCSs
did not have any FIA plots correctly mapped, and only 11 of the
mapped FCCSs had less than 10 FIA plots. We did not include a
FCCS and FTG contingency table because of the high number of
classes (55 FCCS mapped classes).

A better measure of map accuracy is to compare measured FIA
fuel loadings to the loadings of the mapped FLM, FCCS, and FTG
classes. Here, results are even less promising (Table 7and
Figs. 9–11). Agreement between mapped FLM and FIA loadings
are poor (R2 < 0.1). Slopes of the regression line reveal severe under
prediction for all FLM components (<0.24) (Fig. 9) and FTG compo-
nents (<0.20) (Fig. 11), but are somewhat close to 1.0 for FCCS load-
ings (0.1–1.4) (Fig. 10). However, bias for mapped FCCS loadings
(39–811%) are much greater than FLM loadings (�73–18%) and
FTG loadings (�3.5–0.89%), and RMSE values are higher for FCCS
(1.46–22.54) than for FLM (0.66–3.53) and FTG (0.98–2.42)
(Table 7). As expected, mapped FCCS fuelbed loadings compared



Fig. 3. The 12 most common FLM classes keyed for each FIA plot compared to the measured fuel loading for the same plot for the four fuel components: (a) litter, (b) duff, (c)
FWD and (d) CWD (see Table 1 for definitions of fuel components).

Fig. 4. The 12 most common FCCS classes keyed for each FIA plot compared to the measured fuel loading for the same plot for the four fuel components: (a) litter, (b) duff, (c)
FWD and (d) CWD (see Table 1 for definitions of fuel components).
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poorly with mapped FLM loadings (Table 7), with R2 ranging from
0.04 to 0.17 and bias greater than 436% of the mean, and errors less
than 22 kg m�2.

4. Discussion

Results from this study demonstrate the remarkable difficulty
in describing and mapping fuels for fire management. All three
classifications performed poorly which resulted in poor map
accuracies. The FLM classification appeared to perform better than
both FCCS and FTG classifications probably because of the reliable
differentiation and agreement for duff and CWD loadings, likely
because these two components explain more of the variation in
the FLM key than litter or FWD (Lutes et al., 2009). We found a high
degree of redundancy in FWD and litter fuel loadings across most
classes in all classification systems (Figs. 3–5) and this redundancy



Fig. 5. The 12 most common FTG classes keyed for each FIA plot compared to the measured fuel loading for the same plot for the four fuel components: (a) litter, (b) duff, (c)
FWD and (d) CWD (see Table 1 for definitions of fuel components).

Table 4
Comparison of the FIA-keyed classification class loadings for the three fuel classifications to the reference FIA-measured surface fuel component loadings using regression and
error statistics. Ideally, R2 and slopes should be close to 1.0, intercepts should be zero, % bias should be zero, and Root Mean Square Error (RMSE) should be zero. Surface fuels are
described in Table 1.

Classification Reference Sample Fuel R2 Slope Intercept % Bias RMSE
Size Component

Fuel Loading Models (FLM)
FLM FIA 13,138 Duff 0.84 1.02 0.04 4.9 1.01

Litter 0.20 0.88 0.65 147.6 1.15
FWD 0.16 0.62 0.16 �4.2 0.55
CWD 0.70 0.98 0.48 40.3 1.38
TSFL 0.77 1.00 1.12 31.0 2.45

Fuel Characteristics Classification System (FCCS)
FCCS FIA 10,471 Duff 0.02 0.03 1.37 �86.4 16.30

Litter 0.04 0.24 0.71 �28.8 1.34
FWD 0.07 0.08 0.21 �86.7 3.74
CWD 0.11 0.12 1.02 �71.8 7.91
TSFL 0.14 0.09 2.82 �79.3 25.77

Fuel Type Groups (FTG)
FTG FIA 10,472 Duff 0.27 0.27 0.74 0.06 0.92

Litter 0.10 0.10 1.51 0.01 2.39
FWD 0.10 0.10 0.44 0.26 0.54
CWD 0.25 0.25 1.25 0.09 2.07
TSFL 0.23 0.23 3.70 0.07 3.91

FLM vs FCCS
FLM FCCS 10,471 Duff 0.02 0.03 1.32 �87.0 1.32

Litter 0.02 0.09 0.31 �70.7 1.45
FWD 0.16 0.08 0.24 �85.9 3.69
CWD 0.10 0.10 0.69 �79.6 8.25
TSFL 0.13 0.08 1.95 �84 26.75
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Fig. 6. Relationships of measured FIA loadings to the keyed FLM median fuel loadings for FIA plots for the following fuel components (a) litter, (b) duff, (c) FWD and (d) CWD
(see Table 1 for definitions of fuel components).

Fig. 7. Relationships of measured FIA loadings to the keyed FCCS fuel loadings for the following fuel components (a) litter, (b) duff, (c) FWD and (d) CWD (see Table 1 for
definitions of fuel components).
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probably served to make accurate quantification of classification
fuel loadings difficult (Table 4 and Figs. 6–8). Poor classification
performances for loadings (Table 4) are the major reason why
the map layers have poor accuracies (FLM 25%, FCCS 34%, and
FTG 64%) and poor loading comparisons (Table 7). It is nearly
impossible to accurately map fuel loadings when the classifications
cannot effectively discriminate fuel component loadings within
classification classes. Even when we summed all component load-
ings into a total surface fuel load (TSFL), we got poor classification
performances for FCCS and FTG (Table 4) and poor mapping accu-
racies (Table 7), indicating that the problem is not because the
loading was inappropriately stratified.



Fig. 8. Relationships of measured FIA loadings to the keyed FTG fuel loadings for the following fuel components (a) litter, (b) duff, (c) FWD and (d) CWD (see Table 1 for
definitions of fuel components).

Table 5
Regression and error statistics for the comparison of PM2.5 emissions for the fuel
loadings of keyed fuel classifications versus PM2.5 emissions based on the measured
FIA loadings. Ideally, R2 and slopes should be close to 1.0, intercepts should be zero, %
bias should be zero, and Root Mean Square Error (RMSE) should be zero. FLM-Fuel
Loading Models, FCCS-Fuel Characteristics Classification System, FTG-Fuel Type
Groups.

Classification R2 Slope Intercept % Bias RMSE

FLM 0.74 0.732 28.1 �24.2 534.4
FCCS 0.12 0.370 1070.0 43.5 1198.0
FTG 0.21 0.210 740.2 �5.6 837.7
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Probably the most important reason why these classifications
performed so poorly was the high degree of variability in fuel load-
ing in each of the four fuel components and the interaction of this
variability across spatial scales, which complicates sampling, map-
ping, and classification (Keane et al., 2012a). The fuel classifications
of FLMs, FCCSs, and FTGs best describe fuel information for small
areas so their accuracies will always be low unless they are applied
at the finest scale of variability (probably 1–5 m patch sizes),
which is often too small for cost-effective fuel sampling and map-
ping. In other words, FLM, FCCS, and FTG description systems
assessments are point estimates so when their application is across
large spatial scales (pixel or stand), there is a higher chance that
multiple classes will occur because of high spatial variability that
acts at different scales for each fuel component (i.e., the variability
within a pixel was so great that it overwhelmed the comparison
making it difficult to assess classification accuracy). This is
especially true in managed stands where slash piles, thinning
techniques, and harvest methods dictate spatial variability and dis-
tribution (Domke et al., 2013; Keane et al., 2012b). Moreover, there
is also a high variability and uncertainty in the FIA estimates and
methods used to collect fuels. Westfall and Woodall (2007) found
that 15 of 27 fuel variables assessed on FIA plots did not attain
the desired repeatability levels and some components (duff, litter
and CWD) may have potential measurement bias. And the ancillary
data needed for that calculation of loading for some components
(e.g., litter and duff bulk densities, wood particle densities) are
often lacking in many western US ecosystems (Woodall et al.,
2012). An alternative analysis for this study would have been to
use each FIA planar intercept transect as a sampling unit and
compute fuel component loading means and deviations across all
transects on individual FIA plots. We could then compare the FIA
mean and variation to the mean and variation of the data within
the keyed FLM category and the mean and variation of the data
used to create the keyed FTG fuelbed. However, these data were
not available to us and there are no measures of loading variability
within FCCS classes without obtaining the original plot data. An-
other related scale issue is that the footprint of the FIA plot
(6000 m2) is an imperfect match to the LANDFIRE pixels (900 m2)
and RSAC forest type group pixel (62,500 m2).

The top–down FLM classification showed the most promising
results even though our comparison also showed a great deal of
uncertainty. FLMs had good classification performance for duff
and CWD but poor differentiation of FWD and litter loading
(Table 4 and Fig. 3). The primary reason for the low FWD and litter
correlation is because the FLMs were developed for identifying
fuelbeds with significantly different PM2.5 emissions and soil sur-
face temperature. By their nature, each FLM class represents a wide
range of FWD and litter loading with similar emissions and surface



Table 6
Contingency table showing the accuracy of the LANDFIRE FLM map by comparing the mapped modal FLM value for the FIA plot location with the FLM value keyed from the FIA
measured fuel loading data for that location. The shaded cells in the table are the number of plots that were correctly identified using the FIA plots.

Table 7
Comparison of the mapped classification class loadings for the three fuel classifications to the reference FIA-measured surface fuel component loadings using regression and error
statistics. Ideally, R2 and slopes should be close to 1.0, intercepts should be zero, % bias should be zero, and Root Mean Square Error (RMSE) should be zero. Surface fuels are
described in Table 1.

Classification Reference Sample Fuel R2 Slope Intercept % Bias RMSE
Size Component

Fuel Loading Models (FLM)
FLM FIA 11,740 Duff 0.01 0.11 1.62 �32.7 3.53

Litter 0.01 0.25 0.97 �73.1 1.36
FWD 0.03 0.27 0.39 18.0 0.66
CWD 0.07 0.29 1.46 �45.7 2.96
TSFL 0.08 0.30 4.19 �44.2 5.79

Fuel Characteristics Classification System (FCCS)
FCCS FIA 10,469 Duff 0.03 0.02 1.42 811.4 22.54

Litter 0.02 0.15 0.85 39.8 1.46
FWD 0.04 0.05 0.33 612.1 3.80
CWD 0.12 0.08 1.10 356.7 11.40
TSFL 0.13 0.06 3.39 474.8 35.51

Fuel Type Groups (FTG)
FTG FIA 10,470 Duff 0.17 0.20 0.78 �3.52 0.98

Litter 0.07 0.08 1.58 �2.39 2.42
FWD 0.06 0.08 0.47 0.89 0.55
CWD 0.18 0.20 1.44 �0.07 2.21
TSFL 0.17 0.19 4.05 �1.47 4.07

FLM vs FCCS
FLM FCCS 11,738 Duff 0.04 1.28 14.50 1259.1 22.43

Litter 0.04 0.64 1.34 436.1 1.59
FWD 0.04 0.05 0.33 781.5 3.80
CWD 0.11 1.47 6.70 757.4 11.84
TSFL 0.17 2.56 21.96 939.2 36.35
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soil temp. Another source of error was the assumption that median
fuel load of the assigned FLM class accurately represented loadings
for FWD and litter. Given the large number of zero and low values,
another central tendency statistic might have been better. FLMs
performed quite well for predicting PM2.5 smoke emissions
(R2 = 0.74; Table 5) and this is a direct result of the approach used
in classification development where classes were clustered based
on emissions and soil heating (Lutes et al., 2009).
Design mismatches between LANDFIRE mapping and the FCCS
classification are probably the primary reason for the low FCCS
LANDFIRE map accuracies. The FCCS fuelbeds were not designed
to accommodate mapping across broad and diverse land areas;
FCCS was designed for stand- or point-level on-site fuel description
(Ottmar et al., 2007). Therefore it is difficult to scale this classifica-
tion across large spatial domains. The LANDFIRE FCCS fuel map was
created by representing broad vegetation types mapped by



Fig. 9. Relationships of measured FIA loadings to the LANDFIRE mapped FLM median fuel loadings (Table 2) for FIA plots for the following fuel components (a) litter, (b) duff,
(c) FWD and (d) CWD (see Table 1 for definitions of fuel components).
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Fig. 10. Relationships of measured FIA loadings to the LANDFIRE mapped FCCS fuel loadings for the following fuel components (a) litter, (b) duff, (c) FWD and (d) CWD (see
Table 1 for definitions of fuel components).
satellite imagery with a standard generic FCCS fuelbed that was
created for finer scale applications. For site-specific applications,
fire and fuels managers would need to customize these generic
fuelbeds by adjusting loadings using local data.

FLM and FCCS mapping accuracies for the LANDFIRE refresh
2008 products are low partly because the LANDFIRE project did
not have sufficient field data available at that time to build com-
prehensive FLM and FCCS maps and to conduct a thorough accu-
racy assessment. There were few national programs that gathered
comprehensive fuel loading data, even though these fuel data are
critical for carbon inventories, fire management, and wildlife hab-
itat analysis. Therefore, instead of linking fuel classifications to
biophysical settings, LANDFIRE had to link FLM and FCCS classes
to vegetation attributes. We know of no other study that
validated FLM or FCCS maps, but there have been studies that
evaluated other fuel maps. Huang et al. (2009) created a map of
coarse woody debris loading from a fusion of radar and optical re-
mote sensing data and calculated an R2 of 0.54 and a MAE of
2.9 kg m�2. Brandis and Jacobson (2003) estimated vegetation fuel
loads in Australia using Landsat TM imagery and computed R2

that ranged from 0.01 to 0.79 when compared with field data.
Keane et al. (1998) estimated that maps of Anderson (1982) fuel
models for the Selway Bitterroot Wilderness Area ranged from
10% to 44% accurate. These results compare well with our study



Fig. 11. Relationships of measured FIA loadings to the RSAC FTG mapped FTG fuel loadings (Table 3) for the following fuel components (a) litter, (b) duff, (c) FWD and (d)
CWD (see Table 1 for definitions of fuel components).

R.E. Keane et al. / Forest Ecology and Management 305 (2013) 248–263 261
in that all of them show that accurately mapping fuels is extre-
mely difficult.

There are two ways to improve these classifications. The easiest
and quickest is to expand the scope and context of the current clas-
sifications to increase accuracies. We suggest that the FLM classifi-
cation be redone with the new FIA fuels data, along with any other
recently available fuel data sets, to refine current classes, add more
classes, and improve key criteria (Lutes et al., 2009). Improving the
FCCS classification would involve sampling many more fuelbeds to
account for the diversity of fuel conditions across the US and then
refining the key criteria used to select and map FCCS fuelbeds to
focus more on the fuelbed than the vegetation. FTG performance
could be improved by (1) summarizing the fuels data over FIA for-
est types instead of groups, (2) including non-forest types, and (3)
stratifying the summary of FIA loading of forest type classes by re-
gion, physiographic setting, and ownership. However, we feel that
these suggested improvements may result in only minor to moder-
ate increases in accuracy. The harder and more effective way to im-
prove these classifications is to incorporate the high variability and
scale of fuels, along with those processes that control fuel dynam-
ics, into the classification (Keane, 2013). This would require
extensive basic research to understand fuel dynamics, explore
interactions between vegetation, disturbance, and biophysical pro-
cesses, and identify those processes that influence fuel attributes
(Keane, 2013). Then, fuel properties can be linked to those biophys-
ical gradients that can be mapped and used in conjunction with
appropriately scaled remote sensing products to map fuel loadings.

4.1. Management implications

Although mapping and loading accuracies for the three classifi-
cations were low, we feel that the three fuel classifications and the
LANDFIRE maps are still quite useful to most fire management
applications, especially across broad scales, because they (1) depict
relative differences in fuel loadings across major regions, (2) repre-
sent state-of-the-art fuel mapping technology, and (3) are the only
spatial surface fuel resource available at this time. Users of this
technology should account for the high uncertainty of these classi-
fications found in this study when designing their analyses and
interpreting their results. The use of FLMs for smoke emissions,
for example, has a lower uncertainty than using FLMs for carbon
inventories. The poor performances and low mapping accuracies
indicate a real scale issue with the current fuel classifications
and their associated maps in that the high variability of fuel load-
ings acting across multiple scales make accurate mapping of fuel
loadings with current classifications difficult.

One possible simple method to incorporate the inherent uncer-
tainty of fuel loading estimates into fire management applications
is to use the bias and RMSE estimates quantified in this study
(Tables 4 and 7) as bounds on classification loadings. Fuel loadings
for a fuel classification class can be made into a range by adding the
RMSE or incorporating the percent bias into the loading number.
For example, the range of the median duff loading for FLM 051 of
3.55 kg m�2 (Table 2) can be approximated to 2.54 to 4.56 kg m�2

using the RMSE of 1.01 (Table 4). Then, the summed lower and
upper ranges of the estimates can be input into models such as
FOFEM to simulate a range of possible effects.

Other more intensive approaches to incorporate variability into
fuel products may be to include an expression of uncertainty in the
estimate. An additional map layer, for example, might describe the
level of variability associated with using the mean or median load-
ings for pixel’s assigned classification category based on findings
from this study. This variability would be quantified from the base
data used to develop the classification. Or, the map may describe
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the spatial structure of the variability; Keane et al. (2012a), for
example, proposed mapping the parameters of algorithms used
to simulate the spatial distribution of surface fuel component load-
ing. Fuel classifications could be modified to identify redundancies
in loading between classes for each component with a detailed
quantification of the variability of loading for each component by
class.
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