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Summary

1. Species richness, the number of species in a defined area, is the most frequently used biodiversity measure.

Despite its intuitive appeal and conceptual simplicity, species richness is often difficult to quantify, even in well-

surveyed areas, because of sampling limitations such as survey effort and species detection probability. Nonpara-

metric estimators have generally performed better than other options, but no particular estimator has consis-

tently performed best across variation in assemblage and survey parameters.

2. In order to evaluate estimator performances, we developed the program SimAssem. SimAssem can: (i) simu-

late assemblages and surveys with user-specified parameters, (ii) process existing species encounter history files,

(iii) generate species richness estimates not available in other programs and (iv) format encounter history data

for several other programs.

3. SimAssem can help elucidate relationships between assemblage and survey parameters and the performance

of species richness estimators, thereby increasing our understanding of estimator sensitivity, improving estimator

development and defining the bounds for appropriate application.
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Introduction

Species richness, the number of unique species in a defined

area, is the most commonly used measure of biological diver-

sity (Gaston 1996; Moreno et al. 2006). Species richness (SR)

can be used to delineate protected areas, monitor biological

systems and investigate environmental relationships. Surveys

rarely encounter all of the species in an area; therefore,

numerous estimators have been proposed to improve upon the

negative bias of raw counts.

Three categories are regularly used to classify SR estimators

(Colwell & Coddington 1994). The first category includes

extrapolative methods applied to species accumulation curves

or species–area curves. The Michaelis–Menten equation

(Michaelis & Menten 1913), negative exponential model

(Holdridge et al. 1971) and power model (Arrhenius 1921;

Tjørve 2009) are commonly used to extrapolate to an estimate

of SR at some large sample or large area.

A second category includes parametric estimators that make

assumptions about the underlying species-abundance distribu-

tion or species detection probabilities (p). One type of

parametric estimator uses a fitted distribution, often either a

log-normal or log-series. For this category, required steps such

as estimating total abundance and selecting the discrete abun-

dance classes to which a continuous distribution is fit are often

prohibitive (see Colwell & Coddington 1994; Magurran 2004).

There are also parametric estimators based on the assumption

that p is constant across species.

A third category includes nonparametric estimators, which

are those that are neutral on the probability distribution from

which parameters are drawn. Many of the nonparametric SR

estimators were originally derived from methods to estimate

the number of individuals in a closed population (e.g. Burn-

ham&Overton 1978; Chao 1984; Pledger 2000).

The search for a single best estimator has not yet been

resolved. However, general comparisons of the three estimator

categories favour the nonparametric methods (see table 1 in

Cao, Larsen & White 2004; table 3 in Walther & Moore 2005).

Nonparametric estimators are therefore the focus of this project.

The performance of nonparametric SR estimators can be

affected by species- and assemblage-level attributes as well as

by survey design parameters, hereafter collectively referred to

as factors (Keating&Quinn 1998; Brose,Martinez &Williams

2003). Several studies have indicated that bias decreases as spe-

cies-abundance distributions become more even (Wagner &

Wildi 2002; O’Dea, Whittaker & Ugland 2006). One assump-

tion of the closed population estimators, translated for species

data, holds that species are equally detectable across space.

Spatial aggregation regularly challenges this assumption

*Correspondence author. E-mail: greese126@gmail.com

Earlier versions of this paper and supporting information constituted

chapter two inmy (GordonC. Reese) dissertationwhich is accessible at

http://hdl.handle.net/10217/68193.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society

Methods in Ecology and Evolution 2013, 4, 891–896 doi: 10.1111/2041-210X.12070



(Schmit, Murphy & Mueller 1999). Other factors found to

affect SR estimator performance include the number of species

(Keating &Quinn 1998; Poulin 1998), total abundance or den-

sity of individuals (Baltan�as 1992; Walther & Morand 1998)

and species detection probability, p (Boulinier et al. 1998).

Raw sample data and consequently, SR estimates, are also

affected by survey design parameters such as effort (Burnham

&Overton 1979; Brose, Martinez &Williams 2003). Addition-

ally, survey configuration has been important to other estima-

tion issues (Reese et al. 2005). Selecting survey locations

randomly is unbiased and therefore preferable; however, sur-

vey locations are often selected based on accessibility and pre-

vious results (Beck &Kitching 2007). The above factors can all

affect sample coverage (sc), which is the proportion of a species

pool represented in a sample and the single most important

factor with respect to estimator performance (Baltan�as 1992;

Brose, Martinez & Williams 2003). Unfortunately, one needs

to know the true number of species to calculate sc and, if this

information were available, estimation would be unnecessary.

It is therefore important to understand how the aforemen-

tioned factors affect performance.

Evaluating SR estimators across a wide range of factors in

the field is difficult because of temporal, financial and logistical

constraints as well as uncertainty about species- and assem-

blage-level parameters. Despite the simplifications, simulations

are advantageous because they can be systematically varied

and randomly surveyed, and most important, the true number

of species is known. Our objective therefore was to develop a

program in which specified parameters are used to simulate

and survey species assemblages, thereby revealing the behav-

iour of SR estimators in a controlled setting.Most, if not all, of

the programs currently available for estimating SR, for exam-

ple, EstimateS (Colwell 2006), SPADE (Chao & Shen 2010)

and ws2m (Turner, Leitner &Rosenzweig 2003), process exist-

ing encounter history data (information indicating whether a

species was encountered during a particular survey occasion),

but include little or no simulation capability. In addition, Sim-

Assem includes a more comprehensive suite of SR and vari-

ance estimators than other programs.

ProgramSimAssem

SimAssem is application software developed in Visual Basic

6.0 for 32-bit versions of Microsoft Windows and includes a

graphical user interface (Fig. 1) and internal dialogue with R

software (R Development Core Team 2009). SimAssem can

(a)

(g)

(h)

(b)

(c)

(d)

(e)

(f)

Fig. 1. The graphical user interface for SimAssem which includes sections for: inputting a file (a); setting simulation parameters for: species and

abundance (b), spatial configuration (c), species detection probability (d), and survey design (e); outputting files (f); displaying a simulated assem-

blage (g); and displaying estimates (h).
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process both existing encounter history data and data from

assemblages simulated with user-specified parameters. Other

than for someRfunctions, theMersenne twisterpseudorandom

number generator is used for randomizations (Matsumoto &

Nishimura 1998). The SimAssem program and source code

are available at http://sourceforge.net/projects/simassem/.

We hope that the source code provides a valuable foundation

for the quick evaluation and development of new estimators.

SIMULATING AN ASSEMBLAGE

In SimAssem, assemblages are simulated by specifying the

number of species (S), total abundance across species (N) and

a distribution to which abundances conform (Fig. 2, Table 1).

SimAssemwill run only whenN ≥ S.

The fundamental attributes of an assemblage include its spe-

cies richness and species-abundance distribution. Two estab-

lished theories about species abundance are: (i) abundances are

generally unequal amongst species and (ii) most species are rel-

atively rare (Fisher, Corbet & Williams 1943). The geometric-

series (Motomura 1932), log-normal (Preston 1948) and log-

series distributions (Fisher, Corbet&Williams 1943) have been

successfully fit to biological datasets; however, the representa-

tion of abundance distributions with purely mathematical

models has been criticized for not explaining the patterns.

Some of the earliest alternatives focusing instead on process

include the broken-stick and particulate-niche models

(MacArthur 1957). More recent work with abundance distri-

butions continued to emphasize the methodological steps

required to create a distribution and, by way of analogy, the

ecological processes that result in real abundance distributions

(Tokeshi 1990, 1993, 1996). These models are assumed to

approximate the interactions and subsequent patterns of small

groups of taxonomically related species, that is, species vying

for the same resources, and have therefore been termed niche-

basedmodels. A basic premise holds that niche apportionment

can be modelled by a stick being broken, where the units of the

stick represent individuals. Methods for generating the avail-

able species-abundance distributions and worked examples are

given inAppendix S1.

Several different algorithms are included for distributing

individuals across a square landscape (Table 2). Possible spa-

tial patterns range from aggregated (species-specific or assem-

blage-wide), to random, to hyper-dispersed (more evenly

spaced than random) (Fig. 3; see Appendix S1 for details).

CREATING ENCOUNTER DATA: DETECTION AND DESIGN

Before ps are assigned, species are grouped into thirds based

on abundance, for example, one group is comprised of the least

abundant species. A randomly selected group is increased by

one for each species that remains when the true number of spe-

cies (Strue) is not a factor of three. Within each group, species-

specific ps can be randomly drawn from a beta distribution

with specified a and b parameters (R function rbeta). Beta dis-

tributions are characterized by an expected value (mean), E

Fig. 2. Species-abundance distributions available in SimAssem (see

Table 1 for abbreviations). In this example, we specified 25 species and

10 000 total individuals and, other than for the ZS distribution, each

graph point was the average of 1000 iterations. Due to stochasticity,

the line shown for ZS represents the first iteration with 25 species

(h = 4). For the LS distribution, x = 0.99969074 (see Appendix S1 for

details).

Table 1. Species-abundance distributions in SimAssem. See the

referenced publications andAppendix S1 for details

Abundance distributions Descriptive literature

Broken-stick (BS)1 Tokeshi (1990)

Dominance-decay (DD)1 Tokeshi (1990)

Dominance-preemption (DP)1 Tokeshi (1990)

Geometric-series (GS) Tokeshi (1990)

Log-normal (LN)1 Appendix S1

Log-series (LS) Magurran (2004)

Power-fraction (PF)1 Tokeshi (1996)

Particulate-niche (PN)1 Tokeshi (1993)

Random-assortment (RA)1 Tokeshi (1990)

Random-fraction (RF)1 Tokeshi (1990)

Sugihara’s sequential model (S75)1 Sugihara (1980), Tokeshi (1993)

Zero-sum (ZS)1 Hubbell (2001)

1The allocation of abundances to species is stochastic. Final abun-

dances are the integer portion of averages across the specified number

of iterations (Iterationsmenu item).

Table 2. Spatial configuration algorithms in SimAssem.User-specified

parameters are described in Appendix S1 and include distance (D)

[0–1], fidelity (F ) [0–1], maximum number of seeds (Sds), and the length

of the shoulder (s) [0–1] and rate of decline (x) [0–1] for a distance-decay
formula, 1– (1–xDistanceToSeed)s

Configuration algorithms Parameters

Aggregated (centres) D,F

Aggregated (centres equal abun) D,F

Aggregated (individuals) D,F

Aggregated (individualsmax dist) D,F

Clustered (assemblage-wide) Sds, s,x
Clustered (species-specific) Sds, s,x
Hyper-dispersed None

Random None
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(X) = a/(a + b) and variance, var(X) = (ab)/[(a + b)2

(a + b + 1)], where X is a random beta variate. Additionally,

ps can be fixed for each abundance group.

Each simulated landscape is partitioned by a 100 9 100 grid

for the purpose of conducting surveys. User-settings include

the Survey design, that is, spatial configuration of surveyed grid

cells, and Number of cells to survey (t), from 1 to 10 000. Cells

are surveyed without replacement.

SimAssem includes two survey designs. Surveyed grid cells

can be randomly selected (Random) or added to randomly ori-

ented, horizontal or vertical linear transects that are each one

grid cell wide (Linear transect). The Linear transect option

requires a Minimum number of transects (m) across which t is

divided. Due to landscape dimensions, the maximum transect

length is the smaller of 100 or t/m. When transect length is

truncated to 100 or whenm is not a factor of t, additional tran-

sects are added until the number of surveyed cells equals t. One

random uniform variate is drawn for every individual in a sur-

veyed cell, and an individual is encountered when the random

uniformvariate ≤ p.

Estimating species richness

SimAssem includes numerous SR estimators. Two, in particu-

lar, are computer intensive estimators, that is, CY-1 and CY-2

(see Table 3 for estimators and abbreviations), that performed

relatively well in comparative studies (Reese 2012), but are

unavailable elsewhere. Log-transformed variance estimates are

used to restrict the lower bound of 95% confidence intervals to

the number of species observed, Sobs (Burnham et al. 1987,

part 3). Several estimators involve iterations that can be set

under the Iterationsmenu item. Formore details and estimator

equations, see Appendix S1.

Additional output

Other reported values, some requiring simulated data, include:

(i) the number of simulated species, (ii) the total number of sim-

ulated individuals, (iii) the number of species observed, (iv) the

number of surveys with encounters, (v) the total number of

individuals encountered, (vi) the true and estimated sample

coverage (via CY-1), (vii) Shannon’s evenness index (Shannon

&Weaver 1949) and (viii) Clark and Evans aggregation index

(Clark & Evans 1954). Two diversity indices are also reported,

Margalef’s diversity index (Clifford & Stephenson 1975) and

Menhininck’s index (Whittaker 1977).

Biological surveys are generally expensive and often provide

diminishing returns on investment, that is, effort. SimAssem

includes two estimators of the additional effort needed to

encounter a user-specified proportion (Parametersmenu item)

of certain SR estimators (Chao et al. 2009). One estimates the

additional number of individuals needed to encounter the spec-

ified proportion of Chao1, thus requiring abundance data. An

incidence-based version estimates the number of additional

surveys, for example, quadrats, needed to encounter a user-

specified proportion of Chao2.

Import and export options

SimAssem can import comma-, space- and tab-delimited

encounter history data saved as a plain text file. The first line is

disregarded and therefore useful for documentation, line two

must contain two numbers, Sobs and the number of surveys

conducted, and line three must begin the encounter history

data, where each row represents a different species and each

column a different survey result, either by abundance, that is,

the actual number of individuals encountered, or by incidence,

that is, a one indicates that one or more individuals were

encountered and a zero that there were zero encounters.

There are several export options available in SimAssem.

Estimates can be exported to a comma-delimited file, where

the first line lists estimator names and the following lines list

the estimates. Encounter history data can be formatted for

programs EstimateS (Colwell 2006), MARK (White &

Burnham 2009) and SPADE (Chao & Shen 2010). Also, indi-

vidual-level data can be exported to a comma-delimited text

file including (in the following order): a numerical species

identifier, x-coordinate, y-coordinate, the grid cell in which it

fell (beginning with 1 in the lower left corner and proceeding

first across and then up), p, and whether the individual was

encountered (1) or not (0). Accumulation curve data are also

exportable where, beginning with the specified survey size (1-

t) and increasing sequentially by that amount, surveys are

randomly drawn without replacement, and estimates at each

survey size are averaged over a user-specified number of

replications.

Fig. 3. Example configuration patterns with 1 species and 1000 individuals, including aggregated (left panel), random (middle panel) and

hyper-dispersed (right panel).
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Utility

SimAssem allows users to quickly and easily evaluate numer-

ous estimators across a wide range of assemblages. Such

investigations are difficult, if not impossible, in the real world

because of both sampling limitations and uncertainty regard-

ing the true assemblage parameters. Simulating assemblages

involves a considerable amount of stochasticity; therefore,

SimAssem provides the option to set the number of runs

with a specific set of parameters in order to facilitate

comparisons.

We envision SimAssem being used to compare estimator

performance under surveyed or expected field conditions,

thereby improving estimator selection for a particular applica-

tion. For example, suppose that data were collected from an

assemblage with an apparent log-normal species-abundance

distribution, species-specific spatial aggregation and where

species detection probabilities varied around an average of 0.3.

SimAssem could reveal that coverage-based estimators (see

Chao & Lee 1992; Lee & Chao 1994) are less biased than

other estimators in assemblages simulated with similar

characteristics and robust to variation in the degree of spatial

aggregation. Furthermore, SimAssem could provide an esti-

mate of the amount of bias (e.g.�15%) given the level of effort

expended.
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